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Abstract

Effective emotion inference from user queries helps to give
a more personified response for Voice Dialogue Applica-
tions(VDAs). The tremendous amounts of VDA users bring in
diverse emotion expressions. How to achieve a high emotion
inferring performance from large-scale Internet Voice Data
in VDAs? Traditionally, researches on speech emotion recog-
nition are based on acted voice datasets, which have lim-
ited speakers but strong and clear emotion expressions. In-
spired by this, in this paper, we propose a novel approach
to leverage acted voice data with strong emotion expressions
to enhance large-scale unlabeled internet voice data with di-
verse emotion expressions for emotion inferring. Specifically,
we propose a novel semi-supervised multi-modal curriculum
augmentation deep learning framework. First, to learn more
general emotion cues, we adopt a curriculum learning based
epoch-wise training strategy, which trains our model guided
by strong and balanced emotion samples from acted voice
data and sub-sequently leverages weak and unbalanced emo-
tion samples from internet voice data.Second, to employ more
diverse emotion expressions, we design a Multi-path Mix-
match Multimodal Deep Neural Network(MMMD), which
effectively learns feature representations for multiple modal-
ities and trains labeled and unlabeled data in hybrid semi-
supervised methods for superior generalisation and robust-
ness. Experiments on an internet voice dataset with 500,000
utterances show our method outperforms (+10.09% in terms
of F1) several alternative baselines, while an acted corpus
with 2,397 utterances contributes 4.35%. To further compare
our method with state-of-the-art techniques in traditionally
acted voice datasets, we also conduct experiments on public
dataset IEMOCAP. The results reveal the effectiveness of the
proposed approach.

Introduction
Driven by fast development of deep learning techniques,
smart Voice Dialogue Application (VDAs) brings great con-
venience to our daily life. Effective emotion inference from
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Figure 1: The logical workflow of our framework.

user queries can be very helpful to understand users’ real
meanings and intents, and subsequently provide anthropo-
morphic answers. While the tremendous amounts of uncer-
tain speakers with a great diversity of dialects, expression
preferences in VDAs benefit training in the deep learning
framework, it is still very difficult to accurately and com-
prehensively infer emotion due to the weak and unbalanced
emotion expressions. As reported by related works, the state
of the art techniques always suffer from low and instable per-
formance when facing large-scale internet voice data from
VDAs(Wu et al. 2016) (Zhou et al. 2018b).

Driven by demand from real applications, considerable re-
search development in speech emotion recognition has been
witnessed in previous decades. (Aguilar et al. 2019) propose
a hierarchical multimodal model including Modality-based
attention for multimodal emotion recognition. (Zhang et al.
2019) propose a f-Similarity Preservation Loss for deep met-
ric learning with soft labels, and apply the proposed meth-
ods on the task of cross-corpus speech emotion recognition.
While these works based on acted voice data achieve good
performances inner dataset due to strong and clear emotion
expressions, they have limited generalization and robustness
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Figure 2: The workflow of our framework.

for real-world applications. Inspired by the contrast between
the large scale internet voice data from VDAs and the acted
emotional voice dataset, can we use one’s strengths to com-
pensate for the other’s weakness? However, two main chal-
lenges remain unsolved: 1) how to effectively leverage acted
voice dataset with strong and clear emotion expressions to
enhance internet voice data? 2) how to utilize large-scale
unlabeled data with diverse user emotion expressions to aug-
ment few labeled data.

In this paper, via leveraging a real-world voice dataset
from Sogou Voice Assistant containing 500,000 utterances
assigned with its corresponding speech-to-text information
and social attributes (user location, query topic, etc. pro-
vided by 1), we propose a novel semi-supervised multi-
modal curriculum augmentation deep learning framework.
First, to learn more general emotion cues, we adopt a
curriculum learning based epoch-wise training strategy. In
each epoch, model is pre-trained by strong and balanced
emotion samples from acted voice data and sub-sequently
leverage weak and unbalanced emotion samples from in-
ternet voice data. Second, to employ more diverse emo-
tion expressions, we design a Multi-path Mix-match Mul-
timodal Deep Neural Network(MMMD). Specifically, to ef-
fectively learn feature representations for multiple modal-
ities, we propose a Multi-path Multimodal Deep Neural
Network(MMD) to integrate multiple modalities. Extend-
ing MMD to a semi-supervised model based on Mix-match,
we introduce MMMD to achieve superior generalization
and robustness. Experiments on an internet voice dataset
with 500,000 utterances collected from Sogou Voice As-
sistant1 show our method outperforms (+10.09% in terms
of F1) several alternative baselines, while an acted corpus
with 2,397 utterances contributes 4.35%. To further compare
our method with state-of-the-art techniques in traditionally
acted voice datasets, we also conduct experiments on pub-
lic dataset IEMOCAP. The results reveal the effectiveness

1http://yy.sogou.com

of the proposed approach. The illustration of our proposed
novel approach is shown in Figure 1 and Figure 2.

Our main contributions are summarized as below.
• We successfully leverage the traditional acted voice

dataset to enhance the emotion inferring results from the
large-scale internet voice data in VDAs. The proposed
curriculum learning based epoch-wise training strategy
can well integrate the strong and clear emotion expres-
sions with the users’ diversity.

• To utilize large-scale unlabeled data to augment few la-
beled data, we propose a Multi-path Mixmatch mul-
timodal deep learning method (MMMD). This semi-
supervised framework enables us to learn effective feature
representations for multiple modalities (acoustic, textual
and social information) and promote the generalisation
and robustness for emotion inferring in VDAs.
The rest of paper is organized as follows. Section 2 gives

a comprehensive review on related works. Section 3 formu-
lates the problem. Section 4 presents the key methodologies
and core algorithms. Section 5 introduces the experimental
configuration and core test results. Section 6 concludes the
study with summary.

Related Work
Inferring Voice Emotion. In terms of emotion analysis for
voice, previous works have focused primarily on extract-
ing effective features and utilizing diverse types of learning
methods(Neumann and Vu 2019)(Freitag et al. 2017)(Zhang
et al. 2019). However, all these researches mainly focused on
inferring emotions from acted corpora data, few have been
done to address the problem for real-world large-scale inter-
net voice data with weak emotion expressions and tremen-
dous uncertain speakers. It is potential to transfer the empha-
sis on emotion recognition in the wild and assist this work
through the augmentation of acted corpus.

Curriculum Learning. Curriculum learning is training
strategy to learn from simple to complex and proved to
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achieve great improvements in generalization and speed of
convergence(Bengio et al. 2009). It is natural to apply cur-
riculum learning to emotion recognition since we learn to
perceive emotions gradually from infant to adulthood. Pre-
vious work on speech emotion recognition has utilize cur-
riculum learning to solve the problem of Crowd-sourced La-
bels and achieve improvements (Lotfian and Busso 2019).
In this paper, for a new task to learn more general emotion
cues from strong emotion samples, we design a curriculum
learning based epoch-wise training strategy, in which classi-
fier is guided by strong and balanced emotion samples first
and sub-sequently leverage weak and unbalanced emotion
samples.

Semi-supervised Learning. Autoencoders have always
been a common way to make better use of unlabeled data
in speech emotion recognition.(Deng et al. 2017)(Jia et al.
2018). Some Generative and Adversarial Networks(Semi-
VAE (Zhou et al. 2018b), DCGAN(Chang and Scherer
2017), ADDoG(Gideon, McInnis, and Provost 2019) are
also utilized to make improvements. However, these works
mainly adopt single Semi-supervised learning(SSL) method.
(Berthelot et al. 2019) propose a hybrid method named Mix-
match which combines several ideas and components from
the current dominant paradigms for SSL. This idea of hybrid
SSL methods achieves great success in several image clas-
sification and facial expression recognition tasks. In this pa-
per, we introduce the hybrid SSL methods in our framework
to solve the diversity of user dialects and expression prefer-
ences and to use the large-scale unlabeled data of VDAs to
learn some universal pattern to enhance the performance of
classification in emotion.

Problem Formulation
Given a set of utterances V . For each utterance v ∈ V , we
denote v = {xa, xt, xc}. xa represents the acoustic features
of each utterance, which is a Na dimensional vector. xt rep-
resents the textual features of each utterance, which is a Nt

dimensional vector. xc represents the social attributes fea-
tures of each utterance, which is a Nc dimensional vector.
In addition, Xa is defined as a |V | ∗Na feature matrix with
each element xaij denoting the jth acoustic feature of vi. The
definition of Xt and Xc is similar to Xa.

The study involves two emotion datasets Vt and Ve, corre-
sponding to two different recording environments. Ve refers
to acted dataset with strong and clear emotion expressions.
Vt refers to real world voice dataset with large amount of
speakers. Specifically, we divide Vt into two sets V L

t (labeled
data) and V U

t (unlabeled data).
Definition. Emotion. Some previous researches (Ren

et al. 2014a) (Jia et al. 2018) discover that, emotion cat-
egories about human-mobile interaction are different from
theories about facial expression(Ekman and Friesen 1969).
According to their findings, we adopt {Neutral, Sadness,
Disgust, Anger, Happiness, Boredom} as the emotion space
and denote it as ES , where S = 6.

Problem. Learning task. Given utterances sets Vt and Ve,
we aim to infer the emotion for every utterance v ∈ Vt:

f : (V L
t , V

U
t , Ve)⇒ ES (1)

Figure 3: The structure of MMD and MMMD.

Methodology
In order to leverage acted voice data with strong emotion ex-
pressions to assist large-scale unlabeled internet voice data
with diverse emotion expressions for emotion inferring, we
formulate it to three tasks: 1) we design a supervised Multi-
path Multimodal Deep Neural Network(MMD) to effec-
tively learn feature representation for multiple modalities.
2)we design a Multi-path Mix-match Multimodal Deep Neu-
ral Network(MMMD) to employ more diverse emotion ex-
pressions from large-scale internet voice data. 3) we adopt a
curriculum augmentation based epoch-wise training strategy
to learn more general emotion cues from acted voice data
with strong emotion. The structures of the proposed MMD
and MMMD are shown in Fig. 3 and the epoch-wise training
strategy is shown in Fig. 4.

Multi-path Multimodal Deep Neural Network
We adopt a multi-path solution to model the complex intra-
modality relationship which balances both the independen-
cies and dependencies of multi-modal features. Specifically,
in our task, we first divide the raw features into groups
based on different low-level descriptors(LLDs), and differ-
ent modalities, such as mean for low-level acoustic fea-
tures. Then, each group of feature of different modalities are
feeded into different classifiers, which is called local clas-
sifier. With the approach, the problem of high-dimensional
inputs can be effectively avoided. Then, we merge the high-
est hidden layers of each local classifier to generate a global
representation by an effective approach, Multimodal Com-
pact Bilinear pooling (MCB) (Fukui et al. 2016), to get a
good joint representation.

The MCB method not only inherits the advantage of bi-
linear models, allowing all elements of both acoustic, textual
and social features to interact with each other by matrix mul-
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tiplying, but also overcomes its disadvantage of high mem-
ory consumption and an excessive amount of parameters.
The original form of the multi-modal fusion in bilinear mod-
els is outer product. To project the outer product to a lower
dimensional space and avoid computing the outer product
directly, we transform it in the count sketch approach,

Φ(x1
⊗

x2, h, s) = Φ(x1, h, s) ∗ Φ(x2, h, s) (2)

where ∗ donates the convolution operator and
⊗

donates
outer product. x1 ∈ Rn1 and x2 ∈ Rn2 are two vectors to
calculate their outer product. For the Count Sketch function
Φ(x, h, s), it projects an input vector x ∈ Rn to an output
y ∈ Rd,

y[h[i]] = y[h[i]] + s[i] · x[i] (3)

where [i] denotes the ith feature of a vector. s ∈ {−1, 1}n
and h ∈ {1, ..., d}n are two randomly initialized vectors.
Additionally, according to the convolution theorem states,
for y1 ∈ Rd1 and y2 ∈ Rd2 , y1 � y2 can be rewrit-
ten as FFT−1(FFT (y1) � (FFT (y2)), where � refers to
element-wise product. y1 and y2 are the Count Sketch results
of x1 and x2.

In our model, the multi-path local classifers generate
groups of high-level acoustic hidden features h1a, h

2
a, ..., h

l1
a

and concatenated textual and social featuresh1tc, h
2
tc, ..., h

l2
tc,

where l1 and l2 refers to the numbers of the acoustic and
textual-social paths. We first concatenate the vectors from
the same modality and produce two main feature vector ha
and htc.

ha = Concatenate([h1a, h
2
a, ..., h

l1
a ]) (4)

htc = Concatenate([h1tc, h
2
tc, ..., h

l2
tc]) (5)

Instead of concatenating the two vectors to get subsequent
predictions, we combine them by MCB method into a sin-
gle vector of feature h ∈ Rd, where d is a hyperparameter
affecting the amount of the information compressed.

h = MCB(ha, htc) (6)

Then, this h is applied to train a global classifer. More-
over, the local classifers and global classifer are trained si-
multaneously through a single objective function. Finally,
we get the weighted emotion prediction from all of the local
classifiers and global classifier.

Multi-path Mix-match Multimodal Deep Neural
Network
To employ more diverse emotion expressions from large-
scale internet voice data, we employ hybrid semi-supervised
methods from the idea of MixMatch(Berthelot et al. 2019)
which achieve success in computer vision.

First, we perform the SSL method of data augmentation
by adding a Gaussian noise to the multi-modal features and
generate the K augmentations v̂Ut,k from unlabeled data vtU .
We produce a guessed label q by

q =
1

K

K∑
k=1

P (y|v̂Ut,k; θ) (7)

Figure 4: Learning Strategy in an epoch.

P (y|VtU ; θ) refer to a model which produces a distribu-
tion over class labels y for input VtU with parameters θ.
In our work, this generic model is our proposed supervised
component MMD.

To encourage the model to give predictions at entropy
minimization in semi-supervised learning, the sharpening
function is applied to reduce the entropy of the label distri-
bution in each path.

Sharpen(q, T ) = q
1
T /

L∑
j=1

q
1
T
j (8)

where T is a hyper-parameter related to temperature to
control the entropy of the label distribution and q is the
guessed label distribution produced as Eq.7. L is the num-
ber of emotion categories. For lower-entropy predictions we
need to keep T under 1 and close to 0. We apply the sharpen
function to model’s predictions for the augmented unlabeled
data, to encourage the model polarizing its predictions.

Then, we fuse the data with ground truth label and
guessed label by applying a regularization SSL method
MixUp. We get a parameter λ from the Beta distribution
and fuse the labeled and unlabeled data by the weight of λ.

λ ∼ Beta(0.75, 0.75) (9)
λ′ = max(λ, 1− λ) (10)

x′ = λ′x1 + (1− λ′)x2 (11)
p′ = λ′p1 + (1− λ′)p2 (12)

where (x, p) represent a pair of data and its label, and we
utilize data from (x1, p1) and (x2, p2) to compute the new
pair(x′, p′). The Beta distribution with weight (0.75,0.75)
ensures the λ is close to either 0 or 1, so that the data mixed
up mostly resemble x1 or x2.

To apply the above MixUp method in our work, we con-
catenated the data X ′ augmented from labeled data X =
V L
t ∪Ve and the data U ′ augmented from the unlabeled data
V U
t to produce data W . Then we randomly seize data from
W by the length of X ′ as W1 and the rest of W as W2. X ′′

and VtU
′′

are generated by Mixup as follows.
X ′ = Augment(X) (13)

Vt
U ′

= Augment(Vt
U ) (14)

W = Shuffle(Concatenate(X ′, Vt
U ′

)) (15)
X ′′ = MixUp(X ′,W1) (16)

Vt
U ′′

= MixUp(Vt
U ′
,W2) (17)

X ′′ and VtU
′′

are then concatenated as new training data for
next epoch training.
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Training Strategy Design
It is natural to apply curriculum learning to our task since we
learn to perceive emotions gradually from infant to adult-
hood. In our work, as shown in Fig. 4, we adopt a epoch-
wise training strategy to learn more general emotion cues
from acted voice data with strong emotion, which train our
model guided by strong and balanced emotion samples and
sub-sequently leverage weak and unbalanced emotion sam-
ples. Specifically, in each epoch, we first train the data from
acted voice data Ve. Then we train the data from the labeled
internet voice data VtL. Thirdly, we training the model by
mixed labeled X ′′ and unlabeled dataVtU ′′.

Finally, we induce the combined loss function L.

LVe
=

1

|Ve|
∑

x,p∈Ve

H(p, P (y|x; θ)) (18)

LVt
L =

1

|VtL|

∑
x,p∈Vt

L

H(p, P (y|x; θ)) (19)

LX =
1

|X ′′|
∑

x,p∈X′′

H(p, P (y|x; θ)) (20)

LU =
1

L|VtU
′′ |

∑
u,q∈Vt

U′′

||q − P (y|u; θ)||22 (21)

L = LVe
+ LV L

t
+ LX + λULU (22)

where p is the true distribution of one-hot label and q
is the guessed label for unlabeled data. H(p, q) is the
cross-entropy between distributions p and q. P (y|x; θ) and
P (y|u; θ) are the approximating distribution getting from
our supervised component MMD. λU is a hyperparameter.

Experiments
Dataset
Internet Voice Dataset(IVD). Based on Sogou Voice As-
sistant 1 (Chinese Siri), provided by Sogou Corporation,
we collect 7,534,064 Mandarin utterances recorded from
405,510 users by 2013. The corresponding text, query topic
and user’s accent information are attached to utterances.
First, we randomly select 500,000 utterances as the unla-
beled data in our proposed framework. Then, we randomly
select 2,946 utterances and manually label them with the
same labeling method as in (Zhou et al. 2018b). The emo-
tion distributions of labeled utterances are: Neutral: 49.3%,
Happiness: 16.5%, Disgust: 11.0%, Boredom: 8.7%, Anger:
9.8% and Sadness: 4.6%. We utilize the 500,000 unlabeled
data and 2,946 labeled data for our semi-supervised learning
approach.

Acted Voice Dataset(AVD). To enhance the IVD, we
establish an acted Chinese voice data with strong emo-
tion including 2397 utterances. The texts of utterances are
originally selected from STC conversation dataset (Zhou
et al. 2018a) (Shang, Lu, and Li 2015) constructed from
Weibo. Specifically, texts are manually selected according
to whether expressing emotion easily and adapting to daily
communication. Each utterance has averagely 14 characters.
Then we invited 27 volunteers(20 women and 7 men) to read

the selected text with reference emotion label. Specifically,
volunteers are allowed to modify the text and emotional la-
bels according to their own speaking habits and preferences.
Then we invite two well-trained annotators to label the ut-
terances. Only when two annotators and the volunteer who
read the utterance have same opinion about the emotion la-
beling, the utterance and its label will be adopted. Finally,
we get 2397 labeled strong emotional expression utterances.
The emotion distributions of labeled utterances are: Neutral:
14.0%, Happiness: 23.8%, Disgust: 17.4%, Anger: 22.6%
and Sadness: 22.2%.

IEMOCAP. The IEMOCAP (Busso et al. 2008) is a
widely-used English acted speech emotion database. To
compare with the state-of-the-art supervised method, we
form a four-class emotion classification dataset by merging
the excitement category into the happy category. The emo-
tion distributions of labeled utterances are: Happy: 29.6%,
Anger: 19.9%, Sad: 19.6% and Neutral: 30.9%. There are
in total 5531 utterances.

Feature Extraction
Acoustic Feature. OpenSMILE toolkit (Eyben et al. 2010)
is used to extract acoustic features for both three datasets.
Totally, we obtain 1,582 statistic acoustic features, which
are also utilized in the Interspeech 2010 Paralinguistic Chal-
lenge (Schuller et al. 2010).

Textual Feature. As for the textual information of Chi-
nese utterances in IVD and AVD. First, we utilize Thu-
lac Tool (Li and Sun 2009) to segment words . Then
300-dimensional word2vec (Mikolov et al. 2013) vec-
tors are trained by 31.2 million word corpora from our
IVD. As for the textual information of English utter-
ances in IEMOCAP, we utilize the publicly available 300-
dimensional word2vec vectors, which are trained on 100
billion words from Google News(Mikolov et al. 2013).
Then, 4200-dimensional utterance-level textual features
are extracted according to the statistic functions (max,
min, mean, range, std, disp, kurtosis,skewness,iqr1-2/2-3/1-
3,quartile1/2/3) over the LLDs.

Social Feature. For social attribute feature in Real-world
voice Data, we define 7 query topic types {Chat, Consulta-
tion, Joke, Entertainment, Operation, Search and Other} as
type features and user query locations as the accent features.

Experimental Setup
Parameter Settings. Softmax function is adopted for pre-
diction layers, while the other layers use eLU activation. The
model is optimized by Adam (Kinga and Adam 2015) with a
mini-batch size of 256. Each local classifier has two hidden
fully connected layers with 128 and 64 neurons. The hyper-
parameter d in MMD is 2048.

Evaluation Metrics. In all the experiments, we evalu-
ate the performance in terms of F1-measure (Powers 2011),
Unweighted accuracy(UA) and Weighted accuracy(WA)
(Rozgic et al. 2012) . The results reported in IVD are based
on 5-fold cross validation. To compare with the state of the
art supervised methods, the results reported in IEMOCAP
are based on 10-fold leave-one-speaker-out(LOSO) cross-
validation.
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Method Neutral Sadness Disgust Anger Happiness Boredom Average

F1-Measure

DNN 0.7038 0.3260 0.2264 0.3893 0.4313 0.1814 0.3764
SAE 0.6688 0.3407 0.2384 0.4000 0.4280 0.2406 0.3861

MixMatch 0.6759 0.3451 0.2265 0.4087 0.4393 0.2531 0.3914
MMMD-w/o-avd 0.6966 0.3521 0.2310 0.4186 0.4453 0.2445 0.3980
MMMD-w-avd 0.6898 0.3706 0.2388 0.4026 0.4563 0.2719 0.4050

epoch-wise MMMD 0.6874 0.3976 0.2511 0.4115 0.4618 0.2772 0.4144

Table 1: The F1-Measure of inferring emotion in different classification models.

Method A(%) T(%) A+T(%)
UA WA UA WA UA WA

RNN [ICASSP, 2017] 58.8 63.5 - - - -
MDNN [AAAI, 2018] 62.7 61.8 66.9 65.8 76.7 75.2

AE-ACNN [ICASSP, 2019a] 59.54 - - - - -
CNN-LSTM [ICASSP, 2019b] 53.23 53.43 59.40 59.63 65.9 64.97

Attention-GMU [ACL, 2019] 59.76 - - - 71.69 -
MMD Our Method 63.7 62.2 66.06 66.37 77.0 76.6

Table 2: The performance on IEMOCAP with different features and comparison with the state of the art. A:acoustic. T:text.

We design two experiments:
Experiment 1. To evaluate the effectiveness of our pro-

posed epoch-wise-MMMD, we compare the performance
with some semi-supervised baseline methods:

DNN: Learning a Deep neural network(Ren et al. 2014b)
merely in labeled IVD.

SAE: Learning a DNN with labeled and unlabeled IVD
pre-trained with Stacked Autoencoder(SAE)(Vincent et al.
2010).

Mixmatch: Learning a DNN with labeled and unlabeled
IVD augmented with Mixmatch(Berthelot et al. 2019).

MMMD without acted voice data(MMMD-w/o-avd):
Training labeled and unlabeled IVD with our proposed
MMMD.

MMMD with acted voice data(MMMD-w-avd): Learn-
ing MMMD with AVD, labeled and unlabeled IVD. The data
samples are trained without curriculum and in random turn.

Our proposed epoch-wise-MMMD: Learning MMMD
with AVD, labeled and unlabeled IVD in epoch-wise strat-
egy.

Experiment 2.To compare our method with other cur-
rently state-of-art supervised approaches, we conduct Ex-
periment 2. The works we compared have similar condi-
tions as our work(emotion classes, evaluation metrics, con-
sider current utterance instead of conversations). More im-
portantly, since the IEMOCAP is acted and has all labeled
data, we utilize the supervised component MMD of our pro-
posed method in comparing. The comparison methods are
as follows:

[ICASSP, 2017] This paper studies automatically dis-
covering emotionally relevant speech features using a deep
recurrent neural network(RNN) and a local attention base
feature pooling strategy. (Mirsamadi, Barsoum, and Zhang
2017)

[AAAI, 2018] This paper proposes a multi-path deep neu-
ral framework while raw features are trained by groups in lo-

cal classifiers and high-level features fused into global clas-
sifier. All classifiers are trained simultaneously. (Zhou et al.
2018b)

[ICASSP, 2019a] This paper learns integrating repre-
sentations by an unsupervised autoencoder into an atten-
tive convolutional neural network(ACNN) with multi-view
learning emotion classifier to improve the speech emotion
recognition accuracy.(Neumann and Vu 2019)

[ICASSP, 2019b] This paper use a LSTM network to de-
tect emotion from acoustic features and a multi-resolution
CNN to detect emotion from word sequences.(Cho et al.
2019)

[ACL, 2019] This paper presents a hierarchical mul-
timodal model including modality- and context-based at-
tention mechanisms for multimodal emotion recognition.
Meanwhile, it adopts multi-view learning for acoustic-only
emotion recognition. (Aguilar et al. 2019)

Performance
Performance on Experiment 1. Table 1 shows the per-
formance of our proposed semi-supervised MMMD frame-
work, epoch-wise training strategy and other baselines.
First, to evaluate the effectiveness of our proposed semi-
supervised framework MMMD, we conduct the experi-
ments of SAE, MixMatch and MMMD to compare their
capacity of exploiting the unlabeled data. The results show
that the MixMatch approach which combines hybrid semi-
supervised learning methods, outperforms the baseline SAE
with 1.37% of F1 relatively. And our proposed MMMD-
w/o-avd which combine hybrid semi-supervised learning
methods based on MixMatch and supervised component
MMD further improves the F1 by 3.08% comparing to
SAE relatively. It verifies that our proposed semi-supervised
framework MMMD is a more effective way to leverage
large-scale IVD in VDAs. Furthermore, to evaluate the ef-
fectiveness of our proposed epoch-wise training strategy, we
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Figure 5: (a)Effects of Lamda. (b)Effects of T. (c) Performance with different amount of unlabeled data. (d)Feature contribution
analysis.

conduct the experiments among MMMD-w/o-avd, MMMD-
w-avd and epoch-wise MMMD. The MMMD-w-avd which
leverage AVD to augment learning outperforms +1.76% the
MMMD-w/o-avd which only utilize IVD relatively. The
epoch-wise-MMMD with a epoch-wise learning strategy to
leverage AVD further improves the F1 by 4.12% relatively.
It verifies that our proposed epoch-wise-MMMD is a more
effective way to leverage AVD with strong emotion.

Performance on Experiment 2. Table 2 shows the un-
weighted accuracy (UA) and weighted accuracy (WA) of
competitive methods and the proposed supervised com-
ponent MMD. While comparing the performance ‘feature
A+T’, our proposed method outperforms all the state-of-
the-art baseline methods. Especially, for the UA of the ‘fea-
ture A+T’, +11.1% compared with [ICASSP, 2019b] us-
ing CNN-LSTM and +5.3% compared with [ACL, 2019]
using Attention-GMU. As for UA of ‘feature A only’, it
shows that our propose MMD (63.7%) is +4.9% compared
with [ICASSP, 2017] with RNN, +4.16% compared with
[ICASSP, 2019a] using AE-ACNN. These strongly demon-
strates the effectiveness of the supervised part of our pro-
posed method.

Analysis
Parameter Analysis. 1)Loss coefficient λ. λ is the weight
of semi-supervised loss in our model. Figure 5(a) shows the
relation between F1-score performance and the magnitude
of λ under logarithmic scale. The semi-supervised function
starts to take effect when lg(λ) increase from −∞ to -2 (λ
from 0 to 0.01), but as it increases more, the semi-supervised
loss will disturb the main loss function and trigger a worse
performance. 2)Temperature T . T controls the degree of the
entropy of the predictions. Lower T means lower entropy,
and encourages the model to give a more precise answer. As
the results shown in Figure5(b), the F1 score increases when
T lows down from 1 to 0.3. However as T is closer to 0, the
restrain will limit model’s ability to prediction.

Data Scalability Analysis. To verify the effectiveness of
the scale of unlabeled data that our model benefits from, we
inspect different scale of unlabeled data from 0 to 500,000.
We adopt the epoch-wise MMMD to calculate the perfor-
mance. In Figure 5(c), as the scale of unlabeled data in-
creases, the model gradually reaches higher performance,
ensuring the strong capacity of our proposed model to take

advantage of the large-scale data.
Feature Contribution Analysis. We discuss the contri-

butions of different modality features. The F1-measure re-
sults for 6 emotion categories and their average are shown
in Figure 5(d). Specifically, for all these we adopt the epoch-
wise MMMD to calculate the performance in the IVD. The
performance of ‘Textual Only’ outperforms ‘Acoustic Only’
by 3.81%, which indicates that the textual information can
contribute more to the emotion recognition in VADs. More-
over, ‘Textual + Acoustic’ which contains both Textual in-
formation and acoustic information performs best than sin-
gle modality, indicating the necessity to consider both acous-
tic and textual information into account. When we take so-
cial attribute ‘Accent’ and ‘Topic’ into consideration, the
average f1-score improve by 0.658% and 1.2% correspond-
ingly, which reveal the potential of social and environmental
attributes in assisting the emotion recognition in IVD. More-
over, ‘Textual + Acoustic + Accent + Topic’ which contains
both acoustic, Textual and social information performs best,
demonstrates that considering multi-modalities simultane-
ously can be more effective to infer emotional utterances.

Conclusion
In this paper, we propose a novel semi-supervised multi-
modal curriculum augmentation deep learning framework to
infer emotion for large-scale Internet voice data. To effec-
tively utilize the strong and clear emotion from acted cor-
pus to enhance internet voice data, we design a curriculum
learning based epoch-wise training strategy, which trains our
model guided by strong and balanced emotion samples from
acted voice data and sub-sequently leverages weak and un-
balanced emotion samples from internet voice data. Then
to take advantage of the large-scale unlabeled data of Real-
world dataset, we introduce a Multi-path Mix-match Mul-
timodal Deep Neural Network(MMMD), which effectively
trains labeled and unlabeled data in hybrid semi-supervised
methods for superior generalisation and robustness. Our ap-
proach turns out to be effective in real-world speech emo-
tion inferring, which can provide more intelligent response
in real-world VDA applications.
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