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Abstract

Robots operating in the real world must deal with uncertainty,
be it due to working with humans who are unpredictable,
or simply because they must operate in a dynamic environ-
ment. Ignoring the uncertainty is dangerous, while account-
ing for all possible outcomes is often computationally infea-
sible. One approach, which lies between ignoring the uncer-
tainty completely and addressing it completely is using flexi-
ble plans with choice, formulated as Temporal Planning Net-
works (TPNs). This method has been successfully demon-
strated to work in human-robot teamwork using the Pike ex-
ecutive, an online executive that unifies intent recognition and
plan adaptation. However, one of the main challenges to using
Pike is the need to manually specify the TPN. In this paper,
we address this challenge by describing a technique for auto-
matically synthesizing a TPN which covers multiple possible
executions for a given temporal planning problem specified
in PDDL 2.1. Our approach starts by using a diverse planner
to generate multiple plans, and then merges them into a single
TPN. As there were no available diverse planners for tempo-
ral planning, we first present a novel method for adapting an
existing diverse planning method, based on top-k planning,
to the temporal setting. We then describe how merging di-
verse plans into a single TPN is performed using constraint
optimization. Finally, an empirical evaluation on a set of IPC
benchmarks shows that our approach scales well, and gen-
erates TPNs which can generalize the set of plans they are
generated from.

Introduction
Operating in the real world necessitates dealing with uncer-
tainty at some degree, be that it stems from a dynamic envi-
ronment, or even simply from the need to work alongside a
human counterpart. Several approaches to dealing with this
uncertainty exist in the literature. One common approach is
to “determinize and replan” (Yoon, Fern, and Givan 2007),
that is, come up with a single plan which might solve the
problem, start executing it, and if anything goes wrong — re-
plan. Although this approach often works, it preforms poorly
on problems which are “probabilistically interesting” (Little
and Thiebaux 2007), such as problems with avoidable dead-
ends. This is even more problematic in the case of human-
robot teamwork, as the new plan will need to be communi-
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cated to the human every time replanning occurs. Another
approach, on the other extreme, is to account for all possible
uncertainty and come up with a contingent plan (e.g., (Hoff-
mann and Brafman 2005)), which dictates what must oc-
cur in response to any possible uncertain outcome or distur-
bance. Alas, offline contingent planning is a computationally
challenging problem, and this approach does not scale well.
We advocate taking a middle-ground approach between the
two aforementioned options by using flexible plans with
choices. Specifically, we advocate using Temporal Planning
Networks (Kim, Williams, and Abramson 2001), referred to
as TPNs, to address some of the uncertainty.

TPNs were originally designed to control robotic space
explorers. More recently, they have been demonstrated in the
context of human-robot teamwork in an airplane manufac-
turing scenario (Burke et al. 2014), and in controlling micro-
UAVs (Timmons et al. 2015). The Pike executive (Levine
and Williams 2018), which was used in both demonstrations
mentioned above, executes TPNs by making choices for the
robots, while monitoring execution and dispatching actions
at the appropriate times. While the effectiveness of Pike and
TPNs has been shown, there is little use of them in the field,
mostly due to the complexity of their construction. So far,
generating a TPN was only possible by manually encoding
them with the help of a domain expert. Although it is pos-
sible to compile a control program written in the Reactive
Model Planning Language (RMPL) (Ingham, Ragno, and
Williams 2001) into a TPN, the control program itself must
still be manually written, leaving us right where we started.

In this paper, we describe the first method for the auto-
matic generation of a TPN, given a specification of a tempo-
ral planning problem in standard PDDL 2.1 (Fox and Long
2003). This work focuses on generating TPNs and leaves
advocating their efficiency (compared to contingent plan-
ning or replanning methods for instance) to other papers. In
this work we assume deterministic dynamics and propose a
method for dealing with uncertainty in decision-space.

We describe an approach based on merging diverse plans.
Unfortunately, none of the existing diverse planners (Bryce
2014; Nguyen et al. 2012; Srivastava et al. 2007; Katz and
Sohrabi 2019) are capable of handling temporal planning,
so we first establish and describe the first diverse temporal
planner, based on adapting the top-k based diverse planner
(Katz and Sohrabi 2019) to the temporal setting. Next, we
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identify sets of points along different plans (denoted as time
points) which can be merged together, creating passages be-
tween the diverse plans. Lastly, we choose which of these
time points should be merged by modeling and solving a
Constraint Optimization Problem (COP). The result is a sin-
gle TPN encompassing all the generated plans. An empirical
evaluation on a set of IPC benchmarks shows that our ap-
proach can quickly generate TPNs, even for large problems.

In this work we attempt to create the smallest possible
TPN. This is achieved by maximizing the number of points
our process merges along the different plans. Smaller TPNs
encode all the original plans more compactly, reduce com-
plexity by lowering the number of elements in the TPN, and
intuitively, are easier to communicate to a human counter-
part. In addition, maximizing merges also results in prioritiz-
ing encompassing more possible transitions between plans,
allowing the overall TPN more freedom of choice between
them.

Background
We start by reviewing the necessary background on temporal
planning, TPNs and diverse planning.

We assume we have a planning problem modeled in the
propositional subset of PDDL 2.1 (Fox and Long 2003),
that is, given by a tuple Π = 〈F,A, I,G〉, where F
is the set of Boolean propositions, s.t S, the set of all
possible states is then all the subsets of F . A is The
set of durative actions. Each durative action a ∈ A has
a duration dur(a) ∈ [durmin(a), durmax(a)] and is de-
scribed by a = 〈pre`(a), eff`(a), inv(a), prea(a), effa(a)〉,
where minimum duration durmin(a) and maximum duration
durmax(a), follow 0 ≤ durmin(a) ≤ durmax(a). Start con-
dition pre`(a) ⊆ F (respectively, end condition prea(a) ⊆
F ), must hold when durative action a starts (respectively,
ends). Start effect eff`(a) (respectively, end effect effa(a)),
occurs when durative action a starts (respectively, ends). The
effects specify which propositions in F become true (add ef-
fects), and which become false (delete effects), and invariant
condition inv(a) ⊆ F which must hold during the whole ex-
ecution of a. I ⊆ F is the initial state, specifying exactly
which propositions in F are true at time zero. G ⊆ F is the
goal, which propositions we wish to be true at the end of
plan execution.

A solution to a temporal planning task is a schedule τ
which is a sequence of triples 〈a, t, d〉, where a ∈ A is a du-
rative action, t ∈ R0+ is the time when the durative action
a is started, and d ∈

[
durmin(a), durmax(a)

]
is the duration

chosen for a. Similarly to plan validity, we call a solution’s
schedule τ valid, if the assignment for the time duration for
each durative action respects all the temporal constraints. A
schedule can be seen as a sequence of Instantaneous Hap-
penings (IHs) occurring at least ε time units apart (Fox and
Long 2003), which occur when a durative action starts and
when a durative action ends. Specifically, for each triple
〈a, t, d〉 in the schedule, we have an IH (also called snap ac-
tion), a` occurring at time t (requiring pre`(a) to hold ε time
before t, and applying the effects eff`(a) right at t), and an
ending IH aa at time t+d (requiring prea(a) to hold ε before
t+ d, and applying the effects effa(a) at time t+ d). Thus,

a solution for a temporal planning problem can be viewed
as a sequence of such happenings, each with its time stamp,
e.g. 〈(a1`, t1), ..., (ai`, ti), ..., (a

1
a, tj), ..., (a

i
a, tk), ...〉. In or-

der for a schedule to be feasible, we also require the invariant
condition inv(a) to hold over the open interval between t and
t+d. Finally, given a state s and a sequence of IHs Σ (with-
out timestamps), we will denote the state resulting from ap-
plying Σ from s by T (s,Σ). From a TPS point of view (i.e.
ignoring temporal constraints on action durations), a sched-
ule τ is valid if G ⊆ T (I,Σ), where Σ is the sequence of
IHs in τ , ordered by the time they occur – that is, we require
the goal to hold after all actions have completed.

In this work we make use of diverse planners, which gen-
erate dissimilar solutions for the same planning task. Various
approaches to diverse planning have been proposed (Bryce
2014; Nguyen et al. 2012; Srivastava et al. 2007; Katz and
Sohrabi 2020). Reviewing the extensive literature on diverse
planning is out of scope of this paper, see (Roberts, Howe,
and Ray 2014) for such a review. In this paper, we extend
the diverse planner (Katz and Sohrabi 2019), which uses a
top-k planner (Katz et al. 2018) to generate the top-k best
solutions to the planning task.

We are now ready to define Temporal Planning Networks
(TPNs), a formalism for representing flexible plans with
choices. A TPN is an extension to the Simple Temporal Net-
work (Dechter, Meiri, and Pearl 1991), which adds decision
nodes and labels on constraints conditioned on these deci-
sions (also referred to as choices). We shall build upon (but
simplify) the definition supplied in (Levine and Williams
2018) for a Temporal Planning Network under Uncertainty,
as this is the formalism Pike expects as input. The main dif-
ference between a TPN and a TPNU being the mapping of
the decision variables to groups of controllable and uncon-
trollable choices. Formally a TPNU is a tuple 〈V, E , C,A〉,
where:
• V : The set of decision variables. Decision variables are

partitioned into two groups V = VC∪VU . Each v ∈ V is a
discrete variable with a finite domainDomain(v). VC are
controllable decisions, determined by the executive at run
time. VU are the uncontrollable decision variables, whose
decisions are determined by the human or environment,
rather than the executive.

• E : The set of notable time points (Events). Each e ∈ E is
associated with a conjunction of decision variable assign-
ments ϕe. Events can be seen as correlated to the under-
lying PDDL states of the original task.

• C: The set of temporal constraints (Episodes). Each c ∈ C
is a tuple 〈es, ef , l, u, ϕc〉 where es is the start event, ef
is the finish event, ϕc is a conjunction of decision variable
assignments and l, u ∈ R represent temporal upper and
lower bounds s.t. ϕc =⇒ (l ≤ ef − es ≤ u).

• A: The set of activities. An activity a ∈ A is a tuple 〈c, α〉
where c ∈ C is a temporal constraint, and α is an action
that will be executed online. With c = 〈es, ef , l, u, ϕc〉,
action α starts when es is scheduled, and terminates when
ef is scheduled. We require that l > 0. Activities relate to
the durative actions of the underlying PDDL domain.

We note that in this work we only generate TPNs, i.e. no un-
controllable decisions are assigned. Determining which de-
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cisions are uncontrollable is a subject for future work.

Automatic Generation of TPNs
Now that we have supplied the relevant motivation and back-
ground for the task at hand, we can further define the prob-
lem which we wish to solve. Given a Temporal Planning task
Π = 〈F,A, I,G〉 as input, we wish to generate a Temporal
Planning Network (TPN) which represents multiple dissim-
ilar plans that solve the task at hand.

We note here that our work focuses primarily on the TPN
time points (events) E as these are the elements we wish
to minimize in order to achieve the smallest TPN. Merging
time points creates decision variables. Different combina-
tions of such decisions might lead to valid or invalid plans,
thus, other possible optimization objectives could include
generating TPNs with a high number of decision variable
combinations, or which lead to a high number of valid plans.
We leave optimizing these measures for future work.

The TPN executive (Pike) incorporates the ability to avoid
making combinations of choices that lead to infeasible paths
(i.e. invalid plans), so we do not address how these merges
may affect the TPN’s temporal constraints C.

We first describe our devised approach to diverse temporal
planning, then go on to tackle the question of how to merge
multiple solutions into a single representation (TPN), and
lastly we showcase the results of our technique on the latest
IPC domains.

Diverse Temporal Planning
Our approach to diverse temporal planning builds upon the
top-k approach (Katz and Sohrabi 2019). The main chal-
lenge we address here is that temporal plans are not a se-
quence of instantaneous happenings, but rather a schedule,
and thus the top-k approach does not apply directly. There-
fore, we first define the temporal plan skeleton of a solution
to a temporal planning task.

Definition 1 (Temporal Plan Skeleton). Given a planning
task Π = 〈F,A, I,G〉 and a solution τ , the temporal plan
skeleton (TPS) π is the sequence of the IHs in τ (without
their time stamps), ordered by time.

Given a TPS π and an IH a ∈ π, the TPS suffix of π from
a, denoted Σπa , is the sequence of IHs in π from right after a
occurs (excluding a) until the end of the TPS.

The objective of diverse temporal planning is to find dis-
similar solutions to the temporal planning task Π. We ar-
gue that two different plans, with the same TPS, and which
vary only in their time stamps, are not very different. Specif-
ically, for the purposes of merging these plans into a TPN,
they are not different at all, as the TPN executive will make
the scheduling decisions. Thus, we define two plans to be
different if and only if they have a different TPSs.

The diverse top-k planning approach (Katz and Sohrabi
2019) works iteratively by calling a planner to obtain a so-
lution τ , then creating a modified planning task which elim-
inates the solution τ , calling the planner again, and so forth.
Thus, to apply this approach to temporal planning, we cre-
ate a temporal plan elimination formulation, which takes as

Figure 1: All the possible points to deviate from TPS π, from
the point of view of the ith action in π, ai.

input a temporal planning task Π and a solution τ , and cre-
ates a modified temporal planning task Π′ which eliminates
all solutions which share the same TPS as τ (while all other
solutions remain valid).

The main technical challenge here is that temporal plan-
ning is performed with durative actions, while the plan for-
bidding reformulation (Katz et al. 2018) works on IHs (as in
classical planning). Furthermore, the plan forbidding refor-
mulation is based on detecting when the current candidate
plan deviates from the plan to forbid, which is simpler for
classical planning.

To overcome this challenge, we instead of dealing with
the durative actions, we deal with the IHs a` and aa. Note
that a TPS is determined by the order of the IHs, similarly to
a classical plan. Thus, if we could somehow plan with IHs
(while still respecting action durations, invariant conditions,
and temporal constraints) we could use the classical plan-
ning approach directly. While this is not possible, we can
think of a durative action as a pair of two IHs, and look at
five different points where a durative action might deviate
from the given TPS π. These are illustrated in Figure 1, and
correspond to the five cases described below.
Case 1: We have already deviated from π before a started.
Case 2: We have followed π for i − 1 IHs, but action a is

different than the ith action in π.
Case 3: Action a starts according to π, but between a` and
aa, another instantaneous event occurs, which deviates
from π.

Case 4: Action a starts according to π, but the end event aa
is not according to π, i.e., the end event is not according to
the sequence. This occurs when some other event should
have occurred before aa.

Case 5: Action a starts and ends according to π. This case is
when π is being followed, and a future action will deviate.
Having described these 5 cases, we can now describe our

temporal plan elimination formulation. This formulation has
6 different versions of each durative action that takes part in
the plan: one for each of the above five cases, and one for
actions which do not appear in π. Also, similarly to the top-
k approach (Katz et al. 2018), we introduce new proposition
to encode deviation from π. Specifically, for a given TPS
with n durative actions, we use 2n + 2 propositions: 2n +
1 to encode the sequence π, and another for representing
whether we have already deviated. Note, that only durative
action participating in the plan to forbid will be multiplied,
and not the entire space of durative actions.

We now formally describe our formulation.
Let Π = 〈F,A, I,G〉 be a planning task, and
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τ = 〈a1, t1, d1〉, ..., 〈an, tn, dn〉 be some temporal
plan with a corresponding TPS π, where i and i′ are the
time indexes of a` and aa appropriately in π. The planning
task Π′ = 〈F ′, A′, I ′, G′〉 is defined as follows:
• F ′ = F ∪ {p, p0, ..., p2n},
• A′ = {a0 | a ∈ A, a 6∈ τ} ∪ {a1, a2, a3, a4, a5 | a ∈ τ}

where:

a0 =
〈
pre`(a), eff`(a) ∪ {p}, inv(a), prea(a), effa(a)

〉
a1 =

〈
pre`(a) ∪ {p}, eff`(a), inv(a), prea(a), effa(a)

〉
a2 =

〈
pre`(a) ∪ {¬p,¬pi−1}, eff`(a) ∧ p, inv(a),

prea(a), effa(a)
〉

a3 =
〈
pre`(a) ∪ {¬p, pi−1}, eff`(a) ∧ ¬pi−1 ∧ pi,
inv(a), prea(a) ∪ {p}, effa(a)

〉
a4 =

〈
pre`(a) ∪ {¬p, pi−1}, eff`(a) ∧ ¬pi−1 ∧ pi,
inv(a), prea(a) ∪ {¬p,¬pi′−1}, effa(a) ∧ p

〉
a5 =

〈
pre`(a) ∪ {¬p, pi−1}, eff`(a) ∧ ¬pi−1 ∧ pi,
inv(a), prea(a) ∪ {¬p, pi′−1},
effa(a) ∧ ¬pi′−1 ∧ pi′

〉
• I ′ = I ∪ {p0}
• G′ = G ∪ {p}

We now explain the reformulation. For ease of presenta-
tion, we abuse notation and say that a temporal action a is
along π, when a`, aa ∈ π with indexes i, i′. The variable p
represents a deviation from π, so it starts as false, and be-
comes true when the sequence of actions applied is not a
prefix of π. Once the value p is achieved, it remains true. p
is also part of the new goal, G′, as the objective here is to
find a deviation from π.

Propositions p0, ..., p2n encode the progress along the
TPS π, before deviating from it. Actions a0 are the activities
that do not appear in π, thus automatically indicate devia-
tion from π and achieve p. The actions a1, ..., a4 are copies
of actions in π, corresponding to cases 1...4 above. a5 are
copies of actions along π, these actions are responsible for
following the sequence π and are applicable only while the
sequence is still followed, i.e. p is false. Note that in all five
cases when an action along π has more than one instance,
each instance is treated as a different action with a differ-
ent corresponding pi variable indicating its position in the
sequence. The convention in the reformulation is that the
preconditions are sets which requirements are added to, and
effects are sets comprised of delete and add effects, thus the
conjunction between delete and add effects of the auxiliary
variables.
Theorem 1. Let Π be a temporal planning task and τ a
solution with TPS π. The task Π′ is a plan elimination refor-
mulation of Π and π.1

Proof. For the first direction, we show that the set of solu-
tions of the reformulation, e.g., the set of solutions of Π′ is
included in the set of solutions of Π. We define a backward
mapping between Π′ and Π and show the inclusion.

1Full proofs supplied in supplementary file.

I

e1s e1f e1s e1f

e2s e2f e2s e2f

G

Walk Order

Taxi Cook

I

e1s e1s e1f

e2s e2s e2f

e1f , e
2
f G

Walk

Order

Ta
xi

Cook

Figure 2: Additional paths created as a result of a merge.
Choice time points are depicted with double circles.
Top: Two separate plans, number of possible paths: 2.
Bottom: Two merged plans, number of possible paths: 4.

For the second direction, we show that every solution of
Π is included in Π′, excluding π. We make use of a forward
mapping and show the inclusion in the forward direction.

Merging Diverse Plans into a TPN

Now that we have obtained a set of diverse TPSs {π1 . . . πk}
for our input planning task Π, we would like to merge these
into a single TPN, that compactly encodes all generated so-
lutions and possibly more. The naive approach would be to
create a single decision variable v ∈ V corresponding to a
choice between the k obtained solutions. The structure of
the TPN would then be a single decision at the start diverg-
ing into the k constituent plans in parallel to one another, up
until they converge again at the end, when reaching the ter-
minal state which is shared. Of course, this approach defeats
the purpose of having a flexible plan with choices.

The technique we describe here starts with the aforemen-
tioned naive TPN, but then looks for opportunities to merge
additional time points. We note here that although the naive
TPN is seemingly uninteresting, it is always possible to con-
struct given that we obtained k solutions.

It is convenient to think of a TPN as a graph where
time points are nodes (events) connected by constraints
(episodes). By merging time points, additional solutions can
be created, as demonstrated by the example in Figure 2.

In this example, after a long day at work, our agent needs
to get home and eat dinner. The two constituent plans, shown
at the top, are to walk home and then order in, or to take a
taxi home and then cook. However, by merging the middle
time point of these two solution paths, we obtain the TPN
shown below, which yields 2 new solutions: walking home
and then cooking, and taking a taxi home and then ordering.

Next, we describe how we choose which time points from
the naive TPN to merge.
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Merging Time Points in the TPN
While it is theoretically possible to merge any two time
points in the TPN, it is likely a bad idea to merge two ran-
dom time points.

Some intuitive approaches include i) comparing the un-
derlying PDDL states of time points and ii) comparing or-
dered sequences of activities originating from time points.
Unfortunately, both techniques fall short of accounting for
important merges possibilities we wish to obtain. We por-
trayed this in the following example:
Consider the merge demonstrated in Figure 2, it is possible
that the time points e1f , e

2
f share the same state predicates,

as arriving home may be a landmark, and the rest of the so-
lution does not have to be dependent on the method of ar-
rival. Whereas there could be a predicate denoting if money
has been spent, whereas the time points would not have
an equal state representation. This highlights how sensitive
state-space comparison can be to the way each domain is
constructed, hence, state-space comparison was abandoned.

Thus we suggest a method to determine whether two time
points should be merged based on the validity of the solu-
tions originating from their merge. We introduce the com-
patibility attribute of two IHs. We define compatibility based
on IHs as opposed to time points as the latter can change
when merging time points in the TPN while the former re-
mains a static property of the TPSs of the original diverse
solutions. We define two notions of compatibility:
Definition 2 (Full and Semi Compatibility between IHs).
Given a pair of IHs a1, a2 from TPSs πi, πj respectively,
let sa1 , sa2 be the underlying PDDL state after these IHs
occurred in πi, πj , respectively, and let their corresponding
TPS suffixes be Σπi

a1 ,Σ
πj
a2 . a1, a2 are compatible:

• Fully iff G ⊆ T (sa1 ,Σ
πj
a2 ) and G ⊆ T (sa2 ,Σ

πi
a1)

• Semi iff G ⊆ T (sa1 ,Σ
πj
a2 ) or G ⊆ T (sa2 ,Σ

πi
a1)

In other words two IHs a1, a2 are Fully Compatible if we
can execute the TPS suffix of each π from the other’s cur-
rent state sa and achieve the goal, while two IHs a1, a2 are
merely Semi Compatible if the goal is achieved by at least
one of the TPS suffixes from the other’s current state sa.

We denote the set containing all such compatible pairs as
M. Since M is static, we can efficiently compute it once at
the beginning of the process. Each pair of compatible IHs
{a1, a2} ∈ M is an operation m corresponding to a merge
we can perform on the TPN time points.

From now on, we will restrict our attention to apply-
ing only merges between pairs contained in M to the TPN.
While this limits the space of possible TPNs, it also reduces
the complexity of the problem to a manageable size.

Merging two time points in the TPN outputs a single new
time point. This new time point must account for all IHs
involved in the merge (recall that a time point may consist of
multiple IHs). Therefore the merging of two time points is an
operation between sets of IHs. Consider the 2-step merging
sequence to the naive TPN m(a1, a2),m(a2, a3). The first
merge operation creates a new time point enew. The second
merge operation is now m(enew, a3) = m({a1, a2}, a3).

This scenario raises questions about the compatibility at-
tribute as it applies to sets of IHs. We can define differ-

ent transitivity notions when merging in order to experi-
ment with this concept and widen or narrow our solution
space. We define two notions of transitivity in when we al-
low merges. Formally, merging e1, e2 is applicable iff:
• Strict: ∀ai ∈ e1 ∧ ∀aj ∈ e2 : {ai, aj} ∈M
• Loose: ∃ai ∈ e1 ∧ ∃aj ∈ e2 : {ai, aj} ∈M

We have not limited ourselves to generating TPNs with
only valid solutions as the TPN executive (Pike) incorpo-
rates the ability to avoid making combinations of choices
that lead to infeasible paths (Levine and Williams 2018).

Merge Selection
Once M has been acquired, we require a method to deter-
mine which merge operations to execute. The reason for this
necessity is that the merge operations in M are only com-
patible by definition in the naive TPN. Consider the fol-
lowing configuration — the naive TPN contains three TPSs
π1, π2, π3, and each path contains time points e1, e2, e3 in
π1, π2, π3, respectively, such that e1 is fully compatible with
e2 or e3 but not with both. This scenario demonstrates the
dilemma we now face — which pairs of time points to
merge? This is an instance of the minimum clique cover
problem. However, in future work we plan to introduce more
constraints and change the cost function to account for addi-
tional preferences such as human decision models and thus
we require a more flexible encoding.

Constraint Programming To solve this optimization
problem we call upon CP to maximize the number of merges
we can apply to the naive TPN and formulate the problem as
a Constraint Optimization Problem (COP). We define the set
of all IHs participating in the optimization as N , in other
words, these are all the different IHs appearing in M. To
mark a pair of IHs ai, aj ∈ N as chosen to be merged to-
gether, we define the Boolean decision variable mi,j . The
set of all such variables is then M ≡ {mi,j | ∀i, j ∈ N}.

Our objective is to create the smallest possible TPN by
merging groups of IHs. To formulate our optimization ob-
jective using the mi,j decision variables, we must create
auxiliary decision variables for keeping track of groups. For
example, merging a1, a2 and a3 sets six decision variables
to TRUE (m1,2,m2,1,m1,3,m3,1,m2,3 and m3,2), but only
counts as one group. To do so we assign each IH the shared
minimal index i of its group. For example, given the group
containing IHs a1, a2, a3, each IH is assigned the shared
minimal index 1. This assignment is described via an ad-
ditional decision variable si of type integer which is simply
derived from the mi,j decision variables. The set of all such
variables is then S ≡ {si | ∀i ∈ N}. The initial value for
each shared minimal index variable is its own index: si = i.
The COP therefore contains N2 +N decision variables.

Let us now formulate the constraints applied in our COP.
These will also define the merging transitivity, as discussed
previously, which we wish to apply to the TPN. The follow-
ing constraints hold for both Strict and Loose configurations:
• Compatible Merges: mi,j =⇒ {ai, aj} ∈M.
• Symmetric Merges: mi,j ⇐⇒ mj,i.
• Shared Minimum index: si 6= i =⇒ mi,si and
mi,j =⇒ si = min(si, sj)
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The Strict configuration contains a single additional con-
straint dictating that any merging between three time points
must uphold that they are all compatible with one another:
mi,j ∧mi,k =⇒ {ai, aj}, {ai, ak}, {aj , ak} ∈M.

The Loose configuration allows more freedom for ap-
plying merges but must make sure no two IHs originat-
ing from the same original solution are merged. Therefore,
for this configuration, we pass P , a mapping from time
points to original solutions, as input to the COP. Therefore,
P ≡ {pi | i = 1, ..., k} where k is the number of TPSs.
The additional constraints are then: i) mi,j =⇒ pi 6= pj ii)
mi,j ∧mi,k =⇒ pj 6= pk iii) si = sj =⇒ pi 6= pj

Lastly, the objective function of the COP is to maximize
the number of elements in S who’s value differs from their
index, in other words we want to count the number of IHs
which were merged. Formally: f = Max

∑N
i=0 1 | si 6= i.

This concludes the description of our process, we now pro-
vide claims regarding it’s soundness and completeness.

Proposition 1 (Soundness). Any TPN returned by our tech-
nique is valid and contains at least the k original plans.

Proof. Our technique starts off by generating the naive TPN
and then advances by initiating merges. These, can change
the number of plans the TPN represents, but never hinder the
original k solutions. Therefore, any TPN returned contains
at least the original k plans.

Proposition 2 (Completeness). Given a complete planner,
our technique is also complete.

Proof. Given that at least a single plan has been found
by the planner, the naive TPN can always be generated by
merging the initial and terminal time points of all found
plans. Thus, our technique is complete.

Granting these, We note that our technique is not optimal.

Empirical Evaluation
In order to empirically evaluate our algorithm, our compi-
lation takes a temporal planning task Π and generates a set
of k diverse solutions using the plan elimination compila-
tion previously described, with OPTIC (Benton, Coles, and
Coles 2012) as the underlying solver. The TPS of each solu-
tion is obtained and M is computed, containing all the com-
patible time point pairs found in the naive TPN. We then
construct a COP based on M in Minizinc (Nethercote et al.
2007) and use Gecode (Schulte, Tack, and Lagerkvist 2019)
to solve it. As output, we receive a mapping from time point
pairs to merge operations resulting in a TPN. If no compat-
ible pairs are found (i.e. M = ∅) the naive TPN is returned
as output. We evaluated all combinations of k chosen from
{2, 4, 8}, both compatibility methods (Full & Semi denoted
as F,S) and merging transitivity (Strict & Loose denoted as
St,L). Thus, for each planning problem, we ran the diverse
planner 3 times (for the different values of k), and then ran
4 different versions of our COP (for the different compati-
bility and transitivity). The experiments were performed on
Intel i7-7700K 32GB RAM, with a time limit of 30min for
generating the diverse solutions and 30min for the COP task.

We evaluated our approach on domains from the tempo-
ral track IPC in 2011, 2014, and 2018. Of these, we elimi-
nated domains with actions whose durations depend on the
current state, as TPNs do not support such instances. From
the remaining, we only display domains where OPTIC was
able to retrieve multiple diverse solutions for more than a
single problem2. We mention here that although the number
of viable domains is limited by OPTIC, as the solutions of
OPTIC are our input, its ability to solve temporal planning
problems is out of the scope of this paper.

To broaden our benchmark domains and bolster our re-
sults, we further expanded our algorithm to enable the gen-
eration of TPNs from classical planning instances. In order
for the process to take a non-temporal planning problem and
output a Temporal Planning Network we require that the
user supply a specification for the action durations of the
domain at hand. If none are supplied, our algorithm treats
all actions as actions with duration 1. The significance of
this extension is in its ability to generate a TPN complete
with valid solutions and schedules out of a relatively easy-
to-construct classical PDDL model. For this classical imple-
mentation we make use of the Fast Downward planning sys-
tem (Helmert 2006) extended with the support for structural
symmetries and the orbit space search algorithm (Domshlak,
Katz, and Shleyfman 2015) with LM-cut heuristic (Helmert
and Domshlak 2009) as was used in (Katz et al. 2018). The
classical domains we present are supplied without action du-
rations and were taken from the results of (Katz et al. 2018)
where the emphasis was on domains which our parser sup-
ports (no PDDL constants, no grounded actions).

We define a run on a specific problem to be successful if:
i) OPTIC is able to obtain k diverse solutions to the problem
and ii) the generated TPN is more compact than the naive
TPN. Otherwise, although the algorithm might have termi-
nated successfully, we do not count it as a success. Such a
scenario occurs when the generated solutions in Π are very
different from one another and no compatible pairs are found
between them, leading to no possible merges to the naive
TPN. In Table 1 we report the number of problems for which
we were able to obtain k solutions as #N, and the number of
successful runs is shown in the columns per configuration.

Table 1 also displays a cost analysis (CA) between plan-
ning and optimizing phases of our process. CA is the ra-
tio between the planning duration and the average optimiza-
tion duration per configuration averaged over all commonly
solved problems. For instance CA = 2 means that planning
took twice as long as solving the COP.

Table 2 reports by how much our approach was able to
reduce the size of the naive TPN. As different values of k
for the same problem lead to different sizes of the naive
TPN, we evaluate the compactness of the generated TPN rel-
ative to the size of the naive TPN: compactness(TPN) =

1 − |Enew|
|Enaive| . We display the average compactness over the

commonly solved problems for each k by the four different
configurations of our approach. #P denotes the number of
commonly solved problems for each k. We note here that the
attainable compactness varies greatly between domains and

2Full domain names are provided in the supplementary file.
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Successes
#Sol k=2 k=4 k=8
Trans St L #N CA St L #N CA St L #N CA
Compat F | S F | S - - F | S F | S - - F | S F | S - -
Ba(20) 8 | 8 8 | 8 8 26.86 8 | 8 8 | 8 8 0.21 0 | 0 8 | 8 8 0.21
De(22) 9 | 9 9 | 9 9 234.73 7 | 7 7 | 7 12 0.07 8 | 8 8 | 8 9 0.08
DL(13) 12 | 12 12 | 12 12 5.17 12 | 12 12 | 12 12 0.09 12 | 12 12 | 12 12 6e−3

El(30) 22 | 22 22 | 22 22 55.37 22 | 22 22 | 22 22 0.55 14 | 14 22 | 22 22 0.14
Fl(20) 16 | 16 16 | 16 16 12.68 16 | 16 16 | 16 17 0.12 4 | 4 16 | 16 16 0.13
Gr(20) 20 | 20 20 | 20 20 0.09 8 | 8 13 | 13 20 9e−4 3 | 3 7 | 6 20 3e−4

Mi(150) 141 | 93. 108 | 84. 141 0.36 77 | 76 112 | 106 142 0.14 35 | 37 71 | 72 141 8e−4

Mo(30) 29 | 29 29 | 29 30 0.76 30 | 30 30 | 30 30 0.46 30 | 30 21 | 29 30 2e−3

My(30) 15 | 15 15 | 15 21 426.31 15 | 15 15 | 15 20 100.14 14 | 14 14 | 14 22 7.93
NM(15) 12 | 12 12 | 12 12 9.13 12 | 12 12 | 12 12 0.04 12 | 12 12 | 12 12 0.01
Pe(30) 28 | 28 28 | 28 28 4.06 28 | 28 28 | 28 28 0.1 27 | 27 28 | 28 28 0.02
Sc(30) 12 | 15 12 | 15 16 37.32 16 | 16 16 | 16 16 9.34 16 | 16 16 | 16 16 0.05
So(30) 13 | 13 14 | 14 20 0.03 5 | 4 12 | 13 20 9e−4 1 | 1 2 | 0 15 -
St(30) 17 | 17 17 | 17 17 30.38 17 | 17 17 | 17 17 0.79 16 | 16 17 | 17 17 0.1
Tp(30) 7 | 7 7 | 7 7 4.09 7 | 7 7 | 7 7 0.28 5 | 5 7 | 6 7 0.02
Ts(30) 9 | 9 9 | 9 11 21.54 11 | 11 11 | 11 11 1.43 5 | 5 9 | 9 9 0.05
Vis(20) 7 | 9 7 | 9 14 61.4 11 | 11 11 | 11 14 0.76 9 | 9 9 | 9 16 0.8
Ze(20) 12 | 12 12 | 12 13 28.9 13 | 13 13 | 13 13 1.06 12 | 11 12 | 12 13 0.05
Total C 389 | 346 357 | 338 417 - 315 | 313 362 | 357 421 - 223 | 224 291 | 296 413 -
CP(30) 5 | 5 5 | 5 25 2e−4 5 | 5 5 | 5 25 6e−4 2 | 0 4 | 2 22 3e−3

Pa(10) 8 | 8 8 | 8 9 972 9 | 9 9 | 9 9 1216 6 | 6 6 | 6 6 558
QC(10) 5 | 5 5 | 5 8 0.84 5 | 5 5 | 5 6 5.25 5 | 5 5 | 5 5 1e−3

Tr(10) 8 | 8 8 | 8 10 37.68 10 | 09 10 | 10 10 16.99 8 | 8 9 | 9 10 0.07
TO(20) 2 | 2 2 | 2 2 1116 1 | 1 1 | 1 1 0.19 0 | 0 1 | 0 1 -
Total T 28 | 28 28 | 28 54 - 30 | 29 30 | 30 51 - 21 | 19 25 | 22 44 -

Table 1: Summary of Empirical Success Results

is a function of their inherent structure, this in turn is why
the average at the bottom of the table is of little relevance
for any specific domain. the table supplies both the average
for successful runs Avg S and for overall runs Avg O for
both Temporal (T ) and Classical (C) domains

Before we analyze the results, we note that the larger k
is, the more IHs we have to compare between diverse solu-
tions. Therefore we expect that an increase in k will result
in more compatible pairs and thus in more merges and better
compactness. On the other hand, an increase in compatible
pairs also inflates our optimization’s search space thus rais-
ing complexity and memory consumption, meaning finding
a good solution in the time limit becomes more challenging.

As intuition suggests, for larger k the number of successes
decreases. However, on the other extreme, we notice specific
domains where low k also results in such a decrease. With
smaller ks there is greater probability that the diverse so-
lutions generated will differ significantly from one another.
Such instances may lead to either a low number of compat-
ible pairs – less merges and a worse compactness or finding
no compatible pairs all together and resulting in an unsuc-
cessful run. Indeed, this can be seen in the parking (Pa) and
trucks (Tr) domains, where using k = 4 resulted in more
success than either k = 2 or k = 8.

In addition, Table 1 can also highlight for us major struc-
tural differences between domains. Such an example can be
seen in the crewplanning domain (C-P) when comparing the
number of problems the the planner was able to obtain di-

verse solutions for vs. the number of solutions for the con-
figurations. The cause of this delta is due to the fact that no
possible merges were available for most of the problems in
the domain. This can suggest that either the diverse solutions
in this domain vary greatly or that the order of the actions is
crucial such that no merges result in a valid solution.

We now turn out attention to examining the differences
between the four configurations of our approach. First, we
note that using semi-compatibility always results in at least
as many compatible pairs as using full-compatibility. This
increase in the number of possibilities leads to an increase in
the difficulty of solving the COP, which explains the higher
success count of the full-compatibility, as can be seen in
crewplanning for k = 8 and truck for k = 4.

On the other hand, the extra possibilities allow for more
merges, and thus for better compactness. This is especially
evident for k = 2, where a single merge contributes more
to the compactness than for higher values of k, as it uses a
higher proportion of the original solutions’ time points.

Comparing strict transitivity to loose transitivity, the for-
mer applies stricter constraints, thus pruning the space of
possible solutions. With lower values of k, this pruning
makes little difference, implying that the best solutions are
typically not pruned by this. With higher values of k this
pruning reduces the size of the search space, allowing the
solver to find better solutions in the alloted time, at the cost
of a slight reduction in the success count.
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Compactness
#Sol k=2 k=4 k=8
Trans St L #P St L #P St L #P
Compat F | S F | S - F | S F | S - F | S F | S -
Ba(20) .48 | .48 .48 | .48 8 .5 | .5 .62 | .58 8 - | - - | - 0
De(22) .45 | .45 .45 | .45 9 .69 | .69 .61 | .61 7 .52 | .52 .31 | .31 8
DL(13) .44 | .44 .44 | .44 12 .67 | .67 .65 | .65 12 .63 | .64 .50 | .50 12
El(30) .45 | .45 .45 | .45 22 .69 | .69 .64 | .64 22 .59 | .58 .36 | .37 14
Fl(20) .47 | .47 .47 | .47 16 .45 | .45 .7 | .7 16 .43 | .43 .25 | .26 4
Gr(20) .48 | .48 .48 | .48 20 .50 | .51 .50 | .50 8 .66 | .66 .22 | .42 3
Mi(150) .46 | .43 .46 | .44 84 .52 | .54 .60 | .41 76 .61 | .63 .37 | .29 35
Mo(30) .36 | .43 .36 | .43 29 .58 | .69 .58 | .69 30 .72 | .84 .69 | .80 21
My(30) .33 | .33 .33 | .33 15 .59 | .59 .59 | .59 15 .77 | .77 .75 | .75 14
NM(15) .44 | .44 .44 | .44 12 .68 | .68 .68 | .68 12 .64 | .64 .41 | .40 12
Pe(30) .38 | .38 .38 | .38 28 .57 | .57 .56 | .56 28 .52 | .53 .38 | .38 27
Sc(30) .42 | .41 .42 | .41 12 .58 | .61 .56 | .66 16 .68 | .75 .45 | .62 16
So(30) .41 | .41 .42 | .42 13 .55 | .55 .51 | .41 4 - | - - | - 0
St(30) .31 | .31 .31 | .31 17 .54 | .54 .52 | .52 17 .58 | .57 .38 | .38 16
Tp(30) .42 | .42 .42 | .42 7 .62 | .61 .67 | .67 7 .71 | .71 .34 | .35 5
Ts(30) .38 | .38 .38 | .38 9 .59 | .59 .57 | .57 11 .70 | .70 .47 | .47 5
Vis(20) .34 | .31 .34 | .31 7 .39 | .49 .38 | .48 11 .42 | .62 .41 | .47 9
Ze(20) .41 | .41 .41 | .41 12 .61 | .61 .61 | .61 13 .63 | .67 .47 | .47 11
Avg S C .42 | .42 .42 | .42 332 .56 | .58 .59 | .56 313 .62 | .65 .45 | .46 212
Avg O C .33 | .33 .33 | .33 417 .42 | .44 .44 | .42 421 .32 | .33 .23 | .24 413
CP(30) .25 | .29 .25 | .29 5 .18 | .17 .18 | .18 5 - | - - | - 0
Pa(10) .04 | .04 .04 | .04 8 .09 | .10 .09 | .10 9 .12 | .12 .10 | .11 6
QC(10) .15 | .15 .15 | .15 5 .09 | .09 .09 | .09 5 .32 | .32 .31 | .32 5
Tr(10) .05 | .08 .05 | .08 8 .07 | .07 .06 | .07 9 .07 | .06 .03 | .03 8
TO(20) .03 | .06 .03 | .07 2 .16 | .05 .02 | .02 1 - | - - | - 0
Avg S T .10 | .12 .10 | .12 28 .10 | .10 .09 | .10 29 .15 | .15 .13 | .13 19
Avg O T .05 | .06 .05 | .06 54 .06 | .06 .05 | .06 51 .07 | .06 .05 | .06 44

Table 2: Summary of Empirical Compactness Results

Summary and Future Work

We have presented the first approach for automatically gen-
erating a TPN from a description of a planning task. This
makes the useful tools based on the TPN formalism, such as
the Pike executive (Levine and Williams 2018), much more
broadly applicable, as there is no need to manually gener-
ate a TPN or RMPL program. We also adapted the plan re-
formulation elimination (Katz et al. 2018) to the temporal
setting, thus creating the first diverse temporal planner.

In this paper, we focused on fully controllable TPNs. In
future work, we plan to address the uncertainty inherent in
some domains, such as human-robot teamwork – one of the
original motivations for the TPN formalism. In order to do
this, we intend to use a multi-agent formalism, such as MA-
STRIPS (Brafman and Domshlak 2008), and define which
agents are under our control and which are not. The objective
here will be to generate a TPNU.

Finally, the objective we optimized here, minimizing the
size of the resulting TPN, is only one possible objective. In
the human-robot teamwork context, one may want to opti-
mize for human-focused metrics, such as the ease of explain-
ing the TPN to the human, mental effort needed to keep track
of the current state of execution, and the flexibility given to
the human at any given moment during execution.
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