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Abstract

Much research effort in HRI has focused on how to en-
able robots to learn new skills from observations, demon-
strations, and instructions. Less work, however, has focused
on how skills can be corrected if they were learned in-
correctly, adapted to changing circumstances, or general-
ized/specialized to different contexts. In this paper, a skill
modification framework is introduced that allows users to
modify a robot’s stored skills quickly through instructions to
(1) reduce inefficiencies, (2) fix errors, and (3) enable gen-
eralizations, all in a way for modified skills to be immedi-
ately available for task performance. A thorough evaluation
of the implemented framework shows the operation of the
algorithms integrated in a cognitive robotic architecture on
different fully autonomous robots in various HRI case stud-
ies. An additional online HRI user study verifies that subjects
prefer to quickly modify robot knowledge in the way we pro-
posed in the framework.

Introduction
Consider a household robot that has learned how to pre-
pare (regular) pancakes (e.g., from an online how-to website,
Beetz et al. 2011) and already prepared them for its owner
multiple times. One day, however, the owner decides to try
out vegan pancakes and tells the robot to replace the regular
milk with soy milk in the pancake recipe, rather than teach-
ing the modified recipe from scratch.

Such adaptations of known recipes and processes are very
natural for humans, but they are currently not easy to make
for robots. For one, because they require a knowledge rep-
resentation format where different components of a script
representing a skill are accessible and can be replaced with-
out negatively impacting other parts, or other scripts in the
robot’s knowledge base. For example, skill representations
in terms of large weight vectors embedded in a neural net-
work do not lend themselves to easy modification (even if
one knew how each weight was related to each particular
skill, changing a few of those weights to accommodate the
modified skill might also modify other stored skills given the
distributed data representations in most neural networks).
Similarly, modifying an action for a particular state in a
given action policy without modifying an RL agent’s reward

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

function under which the policy was generated could lead to
the action being changed back if the agent continues to learn
based on its existing reward function. Both types of action
representation thus likely require complete retraining of all
learned skills with the modified skill included.

To enable fast modification, we present a knowledge rep-
resentation framework which allows a user to modify skills
to take effect immediately without the need for relearning all
existing skills. We accomplish this by explicitly representing
all relevant aspects of a skill – its signature with arguments
and parameters, and its action steps with and pre-, operating,
and post-conditions – which then allows for quick modifica-
tions of any of these components through formal operators
defined on them. Since all modifiable aspects are explicit
and can be described in natural language, robots can nar-
rate or visualize their knowledge in a way that is intuitive to
humans, and humans can give robots verbal (or graphical)
instructions to perform the necessary modifications which
are mapped onto formal operators that perform the neces-
sary changes to the scripts. We evaluated the implemented
framework and demonstrated in four case studies in which
a human instructs different robots to modify their known
actions that the robots are able to accommodate and exe-
cute the modifications immediately. We also verified in a
user study that people, indeed, want the option of instructing
robots to modify their knowledge.

This paper thus makes the following contributions to-
wards correcting, generalizing/specializing learned actions:
• a formal skill modification framework that allows users to

modify a robot’s stored skills through verbal or graphical
instructions,

• an implementation and evaluation of the framework in a
cognitive robotic architecture,

• four HRI case studies demonstrating the operation of the
algorithms on different autonomous robots, and

• a user study showing if and to what extend human users
would want to modify a robot’s skills and in what form.

Related Work
Prior approaches to skill learning differ with respect to their
required input modalities as well as their employed knowl-
edge representations for the learned skills. While some
methods are purely data-driven (e.g., RL methods), oth-
ers are purely knowledge-based (e.g., some NL methods).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6075



Roughly, we can distinguish between how a skill is de-
scribed (e.g., from explicit teaching through demonstrations
(Argall et al. 2009; Chernova and Thomaz 2014; Mohseni-
Kabir, Chernova, and Rich 2014), instructions (Mohan and
Laird 2011; Scheutz et al. 2017; Rybski et al. 2007), crowd-
sourced datasets (Clair et al. 2016), or through unsupervised
learning such as exploration (Baranes and Oudeyer 2013;
Pape et al. 2012), observation (Andry et al. 2001), or trial-
and-error (Mahadevan and Connell 1992; Whitehead and
Ballard 1991)) from how a skill is learned (e.g., using differ-
ent variants of reinforcement learning (Hershkowitz, Mac-
Glashan, and Tellex 2015; Konidaris et al. 2010), backpropa-
gation (Gu et al. 2017), explicit natural language instructions
(Suddrey et al. 2017; Frasca et al. 2018), or gestures (Cali-
non and Billard 2007)), and furthermore how the learned
skill is represented in the robotic architecture (e.g., as ac-
tion scripts, behavior trees, action policies, Q values, or key-
frame-based trajectories).

Regardless of how the skill was described and learned
by the robot, the robot should be able to modify it sub-
sequently should the need arise. Corrective demonstra-
tions, for example, have been used for updating primitives
through kinesthetic teaching. Akgun et al. (2012) introduced
methods for learning keyframe-based models of skills and
adding/removing keyframes in the learned model in subse-
quent interactions. Gutierrez et al. (2018) present an incre-
mental task modification algorithm based on a demonstra-
tion that creates and probabilistically selects corrections for
structural modifications in a finite-state machine task model.
Gutierrez et al. (2019) build on this approach by providing a
demonstration at or near execution failure so as to only hav-
ing to locally update the model. The local update procedure
determines if the demonstration represents a known primi-
tive (as opposed to a new one), in which case the demon-
stration is added and the primitive retrained. However, it is
unclear if a single demonstration significantly impacts the
primitive model and may require multiple corrective demon-
strations. In contrast, our approach works with a single in-
struction to modify the known skill. Additionally, their cor-
rective demonstrations are limited to trajectories, whereas
ours allows a user to specify other corrections including nav-
igation directions and locations.

Repairing actions has also been used in formal logic sys-
tems, including linear temporal logic (Boteanu et al. 2017).
When the system receives an instruction and is unable to
synthesize a controller, it prompts a user with possible
causes and environment assumptions that if true could al-
low the system to execute the action. Unlike their reactive
only approach, our system allows the user to be both reac-
tive, if the system cannot perform an action, and proactive
when the user wants to modify the task. It is unclear if the
repaired instruction is saved for later, whereas ours saves the
modified action for future use and modification.

A Framework for Representing and Modifying
Robot Actions

For the action modification framework, we assume explicit
action representations such as action scripts to capture the

robot’s procedural knowledge, which allows a human to ab-
stract over low level implementations. We thus start with a
formal definition of “action script” and then introduce oper-
ators on action scripts that perform various types of modifi-
cations (these operators can easily be adapted to other for-
malisms like programs, behavior trees, plans, recipes, etc.).

Action Representation

Action scripts (e.g., Brick, Schermerhorn, and Scheutz
2007; Scheutz et al. 2007) are compact ways of specifying
hierarchical robot behavior without explicitly modeling the
entire robot or world state relative to each action. They are
defined by an expression α(p1 : t1, p2 : t2, . . . , pm : tm)
where α is an action symbol and each pi : ti is a parameter
pi of a given type ti (e.g., a reference to a graspable object).
Having typed parameters is important for generalizing ac-
tions. Action scripts are similar to STRIPS operator (Fikes
and Nilsson 1971) in that each has a set of pre-conditions Πα

that need to be met for the action to be executable and a set
of post-conditions Σα that will be true when the action suc-
ceeds. However, ours has a set of operating conditions Ωα

which must hold true during action execution for the execu-
tion to succeed (as otherwise the action will fail), and a set
of failure post-conditions (or failure effects) Φα that will be
true when action execution fails. All condition sets are finite,
containing first-order formulas over a finite set of predicates.
Semantically, pre-conditions determine an equivalence class
of world states (without requiring representations of those
states in the system) in a transition system such that when a
given action is started in any of the equivalent states and the
operating conditions hold true throughout the execution, the
system will end up in a successor state which is a member of
the equivalence class of states defined by the success post-
conditions; otherwise it will end up in a state in the equiv-
alence class of the failure post-conditions. Scripts contain a
finite sequence of action steps α1;α2; . . . ;αn (without ad-
ditional non-action expressions such as control expressions
like “if-then-else” conditions, “for” and “while” loops, event
descriptions, observer expressions). Whereas STRIPS does
not per say define sequence of operators. Each αi represents
an action script, or action primitive, where an action primi-
tive is represented in the same manner, except it provides a
single operation instead of containing a sequence of steps. 1

1Action scripts are instances of programs in quantifier-free
first-order dynamic logic with empty assignments, see (Harel
1979). Consequently, the meaning of dynamic logic formulas
Πα → [α]Σα and Πα → 〈α〉Σα which state that if Πα (the
preconditions) are true, then all or one execution path of α, re-
spectively, will make Σα (the post-conditions) true, can be trans-
ferred to action scripts as well. As a result, action scripts inherit
the semantics of dynamic logic and with it provable properties
such as action sequencing (and thus script composition): given
Πα → 〈α〉Ψα and Ψα → 〈β〉Σα, then Πα → 〈α;β〉Σα (cp.
to Hoare’s rule of composition (Hoare 1969)). The main differ-
ences between action scripts and standard dynamic logics is that
operating conditions that hold true throughout the execution can-
not be explicitly expressed in dynamic logic (one would have to
use a more expressive temporal operators as in CTL or CTL*).
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Action
Name: HandOver
Parameters Agent: a1

Agent: a2
Object: o1

Pre-Conditions holding(a1,o1)
Steps locate(a1,a2)

moveObj(a1,o1,towards(a2))
graspObj(a2,o1)
releaseObj(a1,o1)

Operating-Conditions holding(a1,o1)
Post-Conditions not(holding(a1,o1))

holding(a2,o1)

Table 1: Example action script for the action HandOver.

Action Modifications
Given an action script α(p1 : t1, p2 : t2, . . . , pm : tm)
with pre-conditions Πα, operating conditions Ωα, post-
conditions Σα and Φα, and with action steps α1;α2; . . . ;αn,
where each αi is either a primitive action or an action script
with its own conditions Παi , Ωαi , Σαi and Φαi , we want
to allow for modifications to any aspect of α and possibly
recursively, to any part of αi. Modifications can insert or
delete information such as adding or deleting conditions or
action steps, or replace information such as altering existing
conditions or action steps with different formulas. Accord-
ingly, we define three types of modification operators, Oins,
Odel, andOrep.Oins andOdel which yield a modified action
script described in the equations below (where “Z[X/Y ]”
means that Y replaces X in Z):

Oins(α, γ, k, ↑) := α[αk/γ;αk] (1)
Oins(α, γ, k, ↓) := α[αk/αk; γ] (2)

Oins(α, γ, k, C) := α[Cαk/Cαk ∪ {γ}] (3)
where k, the action step index received from the user input
system, is 1 ≤ k ≤ n and C ∈ {Π,Ω,Σ,Φ}.

Equation 1 and Equation 2 define the insertion of the new
action γ either before or after the k-th action step, respec-
tively, whereas Equation 3 defines the addition of γ, where
γ is a new condition.

Similarly, Equation 4 and Equation 5 define the removal
of action step β relative to the k-th action step, and Equa-
tion 6 defines the removal of a condition: since the condi-
tions are sets, there is only a single instance of β, where β is
the condition being removed.

Odel(α, β, k, ↑) := α[β;αk/αk] (4)

Odel(α, β, k, ↓) := α[αk;β/αk] (5)

Odel(α, β, k, C) := α[Cαk/Cαk − {β}] (6)
where 1 ≤ k ≤ n and C ∈ {Π,Ω,Σ,Φ}.

Finally, the replace operator Orep replaces the k-th action
step or condition β with γ in any of the condition sets:

Orep(α, γ, k) := α[αk/γ] (7)

Orep(α, γ, β, k, C) := α[Cαk/Cαk − {γ} ∪ {β}] (8)

where k ∈ {Π,Ω,Σ,Φ}. It is easy to see that Orep can be
defined in terms of Oins and Odel:

Corollary: Let β be the k-th action step of α.
Then Orep(α, γ, β, k) = Odel(Oins(α, γ, k, ↑
), β, k, ↓). And similarly, Orep(α, γ, β, k, C) =
Odel(Oins(α, γ, k, C), β, k, C), where β is the condi-
tion in alpha.

All of the above operations can be proved to accomplish
the intended effects on action script through induction on
the structure of the script, e.g., given an action script α of
the form α1;α2; . . . ;αn, then Orep(α, γ, k) will result in
the script α1; . . . ;αk−1; γ;αk+1;αn (we omit the proofs for
space reasons). Similarly, all of the above operators can be
extended to recursive versions where insertions, deletions,
and replacements occur not only in script action steps, but
also in actions steps of subscripts, their subscripts, and so on
(again, we omit the formal definitions for space reasons).

Evaluation of the Framework Implemented in
a Cognitive Robotic Architecture

The above framework can be directly implemented in any
robotic architecture that has some sort of action sequencer,
i.e., a component or algorithm that takes in action scripts,
recipes, behavior trees, plans, etc. and executes them step by
step (e.g., see Kortenkamp and Simmons 2008). The details
of the implementation will vary based on the architecture
(e.g., what particular script representation the architecture
uses, where scripts are stored, etc.) and how the architec-
ture allows for triggering modifications (e.g., modifications
might come in as task goals, or via user interfaces such as
GUIs or spoken dialogue, Nirenburg et al. 2018). We imple-
mented the framework in the DIARC architecture (Scheutz
et al. 2019) due to the easy access of action scripts in its
action database and its integrated and customizable natural
language processing system which allows for script-access
through spoken natural language instructions (additionally,
DIARC allows for learning of new action scripts from in-
structions and can verbally describe scripts). We also made
the particular implementation decision (that can be changed
in different implementations) that when an action step αk
matching a modification argument is found, the first match-
ing instance is always selected even if there are multiple pos-
sibilities (if no matching action is found, then the modifica-
tion operation returns without updating the action database).
A copy of the retrieved action representation is created to
allow for the evaluation of the effect of the modification be-
fore updating the action database. Upon completion of the
modification, if the new signature, pre-conditions, or effects
are different from the original action, the system retains the
original action script, hence the modifications will not affect
the rest of the knowledge database, otherwise the system up-
dates the existing action script, overwriting the original rep-
resentation.

We evaluated the correctness of the framework implemen-
tation on 50 randomly generated action scripts as follows.
For each randomly generated action script, we randomly
generated 1 to 4 parameters, and 1 to 4 conditions of ran-
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Action
Name action 0
Parameters Agent: actor

Object: obj 0
Object: obj 1

Pre-Conditions holding(actor, mug)
on(obj 0, obj 1)

Steps moveObj(actor, obj 0, down)
placeOn(tyler, ball, mug)
graspObj(dempster, obj 1)

Operating-Conditions
Post-Conditions on(obj 1, table)

Table 2: Randomly generated action using the arguments,
initial actions, and conditions

domly selected type {Π,Ω,Σ,Φ} using
Parameter types and arguments:

Thing = {Agent,Object}
Agent = {andy,tyler,dempster,laura}
Object = {ball,mug,table,cup}
Direction = {right,left,up,down}

Conditions:
touching(Thing,Thing), on(Object,Object)
holding(Agent,Object), see(Agent,Object)

And we recursively created new action steps for the script
starting with the following set of initial actions:
Initial Actions and Type Signatures:

graspObj(Agent,Object)
moveObj(Agent,Object, Direction)
pickUp(Agent,Object)
placeOn(Agent,Object,Object)
releaseObj(Agent,Object)

and then added each newly created action to the set of ac-
tions to choose from (call it Actions), so that subsequently
generated actions would choose from the initial primitive ac-
tions as well as more complex actions. For each action in
Actions we then created nine random modifications as fol-
lows: we either operated on one of the steps αk within the
action, or on one of its four conditions {Πα,Ωα,Σα,Φα}.

For insertion and replacement, we randomly picked an ac-
tion from Actions for a new action step and a random con-
dition from Conditions for condition operations (deletions
for both actions and conditions simply removed the actions
and formula, respectively).

We manually compared the results of 450 automatically
modified action scripts to those modified by hand and ver-
ified they all matched up. The perfect result confirmed the
correctness of the implementation and integration of the
framework into the robotic DIARC architecture. It allowed
us to further investigate in human-robot interaction case
studies how the framework can be used to make quick mod-
ifications through natural language dialogues.

Validation on Fully Autonomous Robots
We also validated the fully functional implementation of the
action modification framework in four case studies on a PR2

and a Nao robot, where the only difference in the configura-
tions was the set of primitive actions each robot is capable of
performing (note that even though a robot may not be able
to perform an action, it can still reason about it and describe
it). We tested the following key capabilities: inserting, re-
moving, and replacing action steps and adding conditions,
showing that our approach works in realistic world prob-
lems where a human needs to make modify the robots skills.
In each case, a human instructor, Brad, instructs a robot us-
ing a restricted set of language utterances to perform actions
and also provides modification descriptions for one of the
actions. We show transcripts of the interactions as well as
the generated goal predicates (for details, see Scheutz et al.
2017), the script representation of the modified action at the
start of the interaction, the updated representation resulting
from the modification, and discuss the importance of each
modification. Note, although we used NL to provide the in-
structions, a GUI could also be used where the user selects
the action to modify and how to modify it.

Generalizing an Action by Replacing a Step
This case shows the replacement of a problematic step in
a known script. The interaction begins by Brad asking the
robot to pass him a knife.

Brad: Pass me the knife.
pass(self,Brad,knife)

Robot: Ok
The robot performs the pass action shown in the First row

of Figure 1, which results in it dropping the knife out of
Brad’s reach. Since Brad is familiar with the action script
used for the pass action, he can directly provide a modifica-
tion that generalizes it to passing a knife to a person in any
position, not just one in front of it.

Brad: When you pass me the knife replace move the knife
forward with move the knife toward me.
modifyAction(pass(self,brad,knife),
replace(moveObj(self,knife, toward,brad),
moveObj(self,knife,forward)), step())

Robot: Ok.

Original Script New Script
Name: pass
Parameters: act1 act2 obj
Steps:
findObj act1 obj
graspObj act1 obj
moveObj act1 obj up
moveObj act1 obj forward
releaseObj act1 obj

Name: pass
Parameters: act1 act2 obj
Steps:
findObj act1 obj
graspObj act1 obj
moveObj act1 obj up
moveObj act1 obj toward act2
releaseObj act1 obj

Discussion The robot already knows how to perform the
instructed action, but it requires the person receiving the ob-
ject to be directly in front of it. As this will not always be
the case, Brad provides a generalizing modification which
instantly makes it applicable in more situations.

Repairing an Action by Inserting a Missing Step
Suppose the robot learned the squat action described below.
Brad instructs the robot to perform the action and recognizes
an omitted step. Upon recognizing the error, Brad asks the
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Figure 1: First row: When passing the knife the robot moves the knife forward, Brad tells it to move the knife toward him
instead. Second row: The robot performs the squat action and Brad notices it didn’t lower its arms. He repairs the action by
telling the robot to lower its arms after standing up. Third row: The robot doesn’t know show the knife. Brad tells the robot that
show is similar to passing a knife, however don’t release it. Fourth row: Asking the robot to hand over the object, which the
robot knows how to perform, but it requires that it holding the knife. The robot doesn’t understand that it is holding the knife
when it picks it up. Brad instructs the robot that it is indeed holding the knife.

robot to describe the learned action and uses that information
to instruct a fix as shown in the Second row of Figure 1.

Brad: Describe how to do a squat.
describeAction(self,squat)

Robot: To do a squat I raise my arms, I crouch down, and I
stand up.

Brad: When you do a squat make sure you lower your
arms after you stand up.
modifyAction(squat(self), insert(lower(self,arms)),
step(after(standUp(self))))

Robot: Ok.

Discussion Initially, the robot does not know how to per-
form a squat. Brad provides instructions, but forgets to tell
the robot to lower its arms (omissions that happen typi-
cally when the human has more domain knowledge than the
robot). Additionally, the human could have knowledge of
operating assumptions the robot is unaware are important.

Original Script New Script
Name: squat
Parameters: act
Steps:
raise act arms
crouch act
standUp act

Name: squat
Parameters: act
Steps:
raise act
crouch act
standUp act
lower act arms

When Brad notices the robot does not lower its arms after
squatting down, instead of having to reteach the robot, he
simply adds the missing action.

Generating an Action from an Existing Script
Here, Brad teaches the robot an action similar to a known
one by describing it in terms of the known action as seen
in the Third row of Figure 1. The newly generated action is
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stored independently of the action on which it was based.
Brad: Show me the knife.

show(self,brad,knife)
Robot: Sorry, I do not know how to show you the knife.
Brad: Show me the knife is like pass me the knife without

release the knife.
modifyAction(show(self,brad,knife),
pass(self,brad,knife),
remove(release(self,knife)), step())

Robot: Ok.
Brad: Show me the knife.

show(self,brad,knife)
Robot: I cannot show you it, because I do not know how to

find it.
Brad: Describe how to show me the knife.

describeAction(self,show(knife))
Robot: To show you the knife, I find it, grab it, I move it up,

and I move it toward you.

Original Script New Script
Name: pass
Parameters: act1 act2 obj
Steps:
findObj act1 obj
graspObj act1 obj
moveObj act1 obj up
moveObj act1 obj toward act2
releaseObj act1 obj

Name: show
Parameters: act1 act2 obj
Steps:
findObj act1 obj
graspObj act1 obj
moveObjact1 obj up
moveObjact1 toward act2

Discussion This scenario is similar to that of making ve-
gan pancakes when the robot already knows how to make
regular pancakes. Instead of teaching the new action from
scratch, Brad modifies an existing skill the robot knows how
to perform. Additionally, note that when Brad asks the robot
to perform the action it replies that it can not do so because
it cannot physically perform some of the primitive actions
(i.e., detecting knife given its limited vision system). Yet,
as evidenced by its description, the robot has successfully
learned the modification.

Adding an Effect to an Action Script

Here, Brad provides the robot additional semantic informa-
tion, the post-condition, for one of its actions which makes
the action usable by an automated planner as seen in the
Fourth row of Figure 1.

Brad: Pick up the knife.
pickUp(self,knife)

Robot: Ok.
Brad: Hand me the knife.

handOver(self,knife)
Robot: Sorry, I cannot hand you the knife because I am not

holding the knife.

The handOver action has the precondition that the robot
must beholding the object it is to hand over. The pick up
action that the robot performs does satisfy this condition,
but the robot is not aware of that. The human modifies the
pick up action so that the robot is aware of its effect on the
state of the world.

Brad: After you pickup the object successfully you are
holding the object.
modifyAction(pickUp(self,knife),
insert(holding(self,knife)),post-condition(success))

Robot: Ok.

Original Script New Script
Name: pickUp
Parameters: act1 obj
Effects:
Steps:
findObj act1 obj
graspObj act1 obj
moveObj act1 obj up

Name: pickUp
Parameters: act1 obj
Effects: holding(act1, obj)
Steps:
findObj act1 obj
graspObj act1 obj
moveObj act1 obj up

Discussion When learning a new task, the robot may not
know how it completely affects the state of the world. Al-
though the robot may observe the environment and learn
some effects, it may not acquire all knowledge about the ac-
tion’s impact. For example, if a human teaches the grasp ac-
tion and doesn’t inform the robot that when it grasps an ob-
ject the robot is then holding it. Therefore, the robot should
be able to get additional conditional information from in-
structors. This scenario demonstrates the robots ability to
quickly gain the knowledge required to hand over the knife.

Human-Subjects Study
To better understand how users would experience the act of
modifying robot behaviors, we conducted an on-line study,
in which participants had to determine how to modify dif-
ferent robot behaviors and then answer questions about their
impressions of the modification process.

Subjects
Participants were recruited on the Amazon Mechanical Turk
platform. Thirty-one participants completed the study, 14 fe-
male, 16 male and one did not identify their gender with ages
ranging from 24 to 67 (Mean = 43.7 years, SD = 11.4).

Procedure
Participants watched three short videos in which robots end
up incorrectly performing a task: the “passing the knife” task
performed by the Willow Garage PR2 robot as described in
detail above, and two additional tasks, “setting the table”
and “clearing the plate”, preformed by the Kinova Gen 3
robotic arm. In the “setting the table” task, the robot fails
by placing two forks on top of each other, next to the plate.
In the “clearing the plate” task the robot fails by not remov-
ing the fork and the knife from the plate before emptying
the plate’s contents in the trash, resulting in throwing away
the cutlery. After watching the videos, the participants were
asked to reflect on how they would modify the robot’s be-
havior, first by formulating and writing down the instruc-
tions they would give to the robot to correct its behavior, and
then, after watching the video one more time, by choosing a
modification from a list of multiple choices. We then asked
participants how they would like to convey these instructions
to the robot: by using a programming language, by using a

6080



PR2 Kinova
Item Agree Rating Agree Rating
I feel comfortable making a modification to the robot’s behavior. 73% 2.81± 0.21 93% 3.33± 0.17
I would ask the robot to explain the modification in order to assess its correctness. 67% 2.63± 0.20 73% 2.80± 0.24
I would like the robot to make autonomous self-improvements to its behavior. 57% 2.30± 0.24 60% 2.67± 0.28
I feel more comfortable knowing I can modify the robot’s behavior. 93% 3.47± 0.13 97% 3.63± 0.10
I would trust the robot more knowing I could modify its behavior. 97% 3.57± 0.10 93% 3.50± 0.11
I would like the robot to provide feedback if the modification might impact other
behaviors.

90% 3.33± 0.16 93% 3.40± 0.17

I would ask the robot to explain its behavior. 63% 2.70± 0.20 66% 2.77± 0.22

Table 3: Impressions on the modification of robot behavior: percentages of people who agreed or strongly agreed with the
statements, and mean Likert-scale ratings with standard errors.

graphical user interface (GUI), or by speaking to the robot
using natural language. We did not include demonstrations
because they are not always applicable nor practical. Finally,
to capture participants’ impressions regarding the capabil-
ity of modifying behavior in robots we asked them to rate a
series of statements (see Table 3) on a 5-point Likert scale
from “strongly disagree” (1) to “strongly agree” (5) for each
of the two robots they saw performing the task.

Results
Participants predominantly wanted to convey behavior mod-
ification instructions to the robot using natural language:
67% of participants wanted to use natural language for mod-
ifying the robot’s behavior for the passing the knife task
(23% wanted to use a programming language, and 10% a
GUI), 53% for the setting the table task (30% programming
language, 17% GUI), and 67% for the clearing the plate task
(23% programming language, 10% GUI). Almost all partici-
pants correctly identified the modification needed from a set
of multiple choices: 77% for the passing the knife scenario,
83% for the setting the table scenario, and 93% for the clear-
ing the plate scenario. Participants indicated that they felt
comfortable knowing they could modify the robot’s behav-
ior, and also that they felt comfortable making the modifi-
cation: 93% and 73% agreed and strongly agreed with these
statements respectively for the PR2 robot, and 97% and 93%
for the Kinova Gen 3 robotic arm. Also, participants indi-
cated that they would trust the robot more knowing they
could modify its behavior: 93% agreed or strongly agreed
to this statement for the PR2 robot and 97% for the Ki-
nova Gen 3 robotic arm. To note that a much lower percent-
age of people wanted the robot to make autonomous self-
improvements to its behavior (PR2: 57%, Kinova: 60%),
suggesting that people appreciate the capability of choosing
and conveying their own modifications to the robot.

Discussion and Future Work
The user study demonstrates the need for modifying robot
knowledge quickly, ideally through verbal instructions (but
possibly also through other means such as GUIs). While
more than half of the subjects would like robots to make
self-improvements to their behaviors, almost all users want
to have the option of modifying the robots’ behaviors them-
selves and would also trust robots that allowed such user-
instructed modifications more. These results show the need

of an action modification framework that can be easily con-
trolled by users, which our framework thus addresses.

While the framework can be integrated into different
robotic architectures as long as they provide explicit rep-
resentations of all relevant aspects of the robot’s procedu-
ral knowledge, our particular integration into an architecture
with a natural language interface allows non-expert users to
naturally modify the robot’s skills, inserting, removing, and
replacing action steps, pre-conditions, operating conditions,
and post-conditions.

One interesting question for future work is how to handle
modified scripts that are used as subscripts in other scripts
where the modification might affect the proper operation of
the script. For example, if the initial squat script where the
robot did not lower its arms was part of a larger exercise of
doing repeated squats with the hands up, the modified script
would lead to the wrong execution. This kind of inconsis-
tency is difficult to spot unless the post-conditions of the
modification break the preconditions of the next action step
in the larger script (see also (Nirenburg et al. 2018)). Fu-
ture work will investigate the extent to which consistencies
can be detected and resolved automatically (e.g., by renam-
ing variables, conditions, and script names, and duplicating
parts of scripts) or need to be resolved in consultation with
the user (e.g., via dialogue interactions about the actions and
scripts implicated by the modification).

Conclusion
We introduced a skill modification framework that allows
users to make different types of modifications to a robot’s
stored skills through instruction. We formally presented the
operations, implemented them in a robotic architecture to
enable skill modifications, and thoroughly evaluated the in-
tegration using random sampling from a large space of pos-
sible scripts and modifications that were manually verified.
Through four case studies, we demonstrated the operation
of the integrated algorithms in a robotic architecture run on
two different robots. A user study showed that their trust
in robots providing action modification was higher, and that
natural language was the preferred modification method.

Acknowledgments
This work was supported in part by U.S. Office of Naval Re-
search grants #N00014-18-1-2503 and #N00014-19-1-2311.

6081



References
Akgun, B.; Cakmak, M.; Yoo, J. W.; and Thomaz, A. L.
2012. Trajectories and keyframes for kinesthetic teaching:
A human-robot interaction perspective. In Proceedings of
the seventh annual ACM/IEEE international conference on
Human-Robot Interaction, 391–398.

Andry, P.; Gaussier, P.; Moga, S.; Banquet, J. P.; and Nadel,
J. 2001. Learning and communication via imitation: an au-
tonomous robot perspective. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans 31(5):
431–442.

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5): 469 – 483.

Baranes, A.; and Oudeyer, P.-Y. 2013. Active learning of
inverse models with intrinsically motivated goal exploration
in robots. Robotics and Autonomous Systems 61(1): 49 – 73.

Beetz, M.; Klank, U.; Kresse, I.; Maldonado, A.;
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