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Abstract
State estimation problems without absolute position measure-
ments routinely arise in navigation of unmanned aerial vehi-
cles, autonomous ground vehicles, etc. whose proper oper-
ation relies on accurate state estimates and reliable covari-
ances. Unaware of absolute positions, these problems have
immanent unobservable directions. Traditional causal estima-
tors, however, usually gain spurious information on the unob-
servable directions, leading to over-confident covariance in-
consistent with actual estimator errors. The consistency prob-
lem of fixed-lag smoothers (FLSs) has only been attacked
by the first estimate Jacobian (FEJ) technique because of the
complexity to analyze their observability property. But the
FEJ has several drawbacks hampering its wide adoption. To
ensure the consistency of a FLS, this paper introduces the
right invariant error formulation into the FLS framework. To
our knowledge, we are the first to analyze the observability
of a FLS with the right invariant error. Our main contribu-
tions are twofold. As the first novelty, to bypass the com-
plexity of analysis with the classic observability matrix, we
show that observability analysis of FLSs can be done equiv-
alently on the linearized system. Second, we prove that the
inconsistency issue in the traditional FLS can be elegantly
solved by the right invariant error formulation without arti-
ficially correcting Jacobians. By applying the proposed FLS
to the monocular visual inertial simultaneous localization and
mapping (SLAM) problem, we confirm that the method con-
sistently estimates covariance similarly to a batch smoother
in simulation and that our method achieved comparable ac-
curacy as traditional FLSs on real data.

Introduction
Positioning and navigation of a variety of vehicles, e.g., un-
manned aerial vehicles (UAVs), autonomous ground vehi-
cles (AGVs), depends on real-time state estimation. Accu-
rate system state and reasonable covariance output by state
estimators in real time are necessary for the proper oper-
ation of these systems. For state estimation, these systems
usually fuse measurements captured by sensors that do not
provide absolute positions, like cameras, lidars, inertial mea-
surement units (IMUs), etc. It is well known that estimators
which fuse such measurements have unobservable directions
(Jones and Soatto 2011).
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As reported in the literature, traditional real-time estima-
tors, e.g., filters, fixed-lag smoothers (FLSs), tend to gain
fictitious information on unobservable directions (Huang,
Mourikis, and Roumeliotis 2010; Dong-Si and Mourikis
2011), and to output falsely optimistic covariance inconsis-
tent to the actual state error. This inconsistency is caused by
the marginalization step of real-time estimators which re-
moves old state variables and measurements (i.e., factors)
from an estimator and approximates those measurements by
a linear prior factor. A deeper cause is that for a variable
in the prior factor, its linearization point used by the prior
factor differs from that used by the remaining factors. Obvi-
ously, the batch estimator and its incremental variants, e.g.,
iSAM2 (Kaess et al. 2012), do not have this issue as they do
not marginalize variables.

To fix the estimator inconsistency, techniques that modify
the measurement Jacobians to fit certain criteria have been
proposed. For instance, the “first estimate Jacobian (FEJ)”
technique (Huang, Mourikis, and Roumeliotis 2010) evalu-
ates Jacobians relative to variables in the linear prior factor at
their estimates upon marginalization. Because the Jacobian
computation depends on specifics, such as an earlier esti-
mate of a variable, it is usually difficult to apply such tech-
niques to an existing estimator framework. A new trend is to
use right invariant error formulation (Barrau and Bonnabel
2016a) where a navigation state variable (consisting of ori-
entation, position, and velocity) is associated to a Lie group
SE2(3) and the error vector is invariant to transforming the
trajectory by a right multiplication. Besides mathematically
elegant, it is easy to implement as it fits the conventional fil-
tering framework. However, this formulation has not been
used in FLSs, mainly because of the challenge to analyze
their consistency property.

Previous work has shown that the estimator inconsistency
comes along with the observability issue where the unob-
servable directions become spuriously observable (Hesch
et al. 2014a). Thus, consistency has been predominantly
studied by examining rank deficiency of the linearized ob-
servability matrix, e.g., (Huang, Mourikis, and Roumeliotis
2010; Dong-Si and Mourikis 2012; Brossard, Barrau, and
Bonnabel 2018). The local observability matrix is accept-
able in complexity for analyzing filters, but becomes very
involved for dealing with FLSs, e.g., (Dong-Si and Mourikis
2012). Because the observability matrix is a derivative of the
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linearized original system, we think that directly working
with the linearized system can greatly simplify the observ-
ability analysis.

Based on this analysis, we prove that the right invariant er-
ror formulation leads to a consistent FLS. The claims made
in the proof are validated with simulation. Furthermore, the
practicality of the proposed right invariant FLS is verified
with the EuRoC benchmark (Burri et al. 2016).

In summary, our contributions include
• To avoid the complexity of observability matrices, we

prove that observability analysis of FLSs can be done
equivalently on the linearized system.

• To clarify effects of variables on observability, we show
that using different linearization points for a state variable
expressed in a local coordinate frame and for a sensor pa-
rameter do not impact unobservable directions and hence
consistency.

• To our knowledge, we are the first to prove and validate
that FLS with the right invariant error formulation main-
tains consistent covariance without artificially modifying
Jacobians.
The following text presents the formulation and observ-

ability analysis of the FLS to solve the visual inertial SLAM
problem and the application of right invariant errors in the
FLS. Then, results of simulation and real data tests are sup-
plied. Lastly, we draw conclusions and indicate future work.

Related Work
There are several approaches to ensure consistency of tra-
ditional real-time estimators. Most of them are designed
for Extended Kalman Filters (EKFs) and few are proposed
for optimization-based approaches, i.e., FLSs. Costante and
Mancini 2020 developed a deep neural network to output
state estimates and uncertainty measures, but their consis-
tency is very challenging to analyze. The optimization-based
iSAM2 (Kaess et al. 2012) method updates only affected
variables as new observations arrive, keeping constant com-
putation cost. As it keeps the entire history of variables and
observations for inference, its consistency naturally follows.
But it will drain the memory in a long-term operation. For
EKFs, the consistency remedies include robocentric coordi-
nation (Castellanos et al. 2007), FEJ (Li and Mourikis 2013),
observability constraints (Hesch et al. 2014b), and the re-
cently developed right invariant error formulation (Barrau
and Bonnabel 2016a; Zhang et al. 2017; Heo and Park 2018).
The invariant error formulation for filters defines the error
state in an extended Lie group such that the error state is
independent of the state variable’s linearization point. As a
result, the inconsistency caused by using different lineariza-
tion points for the same state variable is prevented.

For FLSs, to our knowledge, their consistency has only
been improved with the FEJ technique (Dong-Si and
Mourikis 2011). But the FEJ technique for FLSs has sev-
eral downsides. The obvious one is that Jacobian matrices
required by the estimators are evaluated at less accurate ear-
lier estimates of state variables which may adversely af-
fect state estimation accuracy. Second, it is often confus-
ing to tell which state variable should lock its linearization

point, and which Jacobian should be computed with these
preset linearization points. For instance, Li and Mourikis
2013 locked linearization points for only position and ve-
locity, and Usenko et al. 2020 locked linearization points
for position, velocity, and biases once they are in the prior
factor. Third, assigning and tracking linearization points re-
quested by FEJ is often impossible for generic nonlinear
solvers without hacking. For example, a solver may encap-
sulate state variables such that they are not tampered by ex-
ternal assignment. Recently, the left invariant error formula-
tion has been used in a FLS (Brossard et al. 2020) but for
the purpose of uncertainty propagation on the extended Lie
group SE2(3).

To analyze the observability of an estimator, there are
in general two categories of approaches: those based on
the linearized observability matrix of the discrete system,
and those based on the observability matrix built from Lie
derivatives of the continuous-time system. The discrete anal-
ysis is suitable to identify unobservable directions under a
degenerate motion, and the Lie differentiation analysis is
suitable to identify the requirements to make all state vari-
ables observable. Other methods exist but are typically un-
suitable to examine the interplay between observability and
consistency (Hesch et al. 2014a). The first category includes
(Huang, Mourikis, and Roumeliotis 2010; Li and Mourikis
2013; Hesch et al. 2014b; Dong-Si and Mourikis 2012;
Zhang et al. 2017; Yang et al. 2020). The second category in-
cludes (Mirzaei and Roumeliotis 2008; Kelly and Sukhatme
2011; Hesch et al. 2014a; Jung, Heo, and Park 2020). The
conclusions by methods from the two categories are congru-
ent. Interestingly, in examining observability, all cited meth-
ods parameterize landmarks in the world frame rather than in
a local camera frame, possibly to reduce complexity. How-
ever, we find that expressing landmarks in a local frame is
actually advantageous to the consistency analysis.

Methodology
This section presents the proposed right invariant FLS ap-
plied to the visual inertial SLAM problem with the analysis
of its consistency. Though many state estimation problems
without absolute position measurements may exhibit the in-
consistent issue in an estimator, e.g., stereo visual odom-
etry (Dong-Si and Mourikis 2012), we choose to analyze
the visual inertial SLAM problem regarding consistency be-
cause its observability property has been well studied and
well-known. Though some variables in the following discus-
sion are specific to the visual inertial SLAM, the proposed
method for ensuring consistency is generic enough to trans-
late to other state estimation problems solvable by a FLS.

We first formulate the visual inertial SLAM problem from
the perspective of a FLS. Second, we present the right invari-
ant error formulation, and prove that the consistency prop-
erty is guaranteed.

Visual Inertial SLAM Formulation
In a typical visual inertial SLAM problem, we try to estimate
the platform state, sensor parameters, and the unknown po-
sitions of landmarks in the environment, by fusing data cap-

6085



tured by at least one camera and an IMU rigidly mounted on
the platform.

State Variables The state of the system at time ti consists
of the navigation state of the platformπi and the IMU biases
bi, i.e., xi = (πi,bi). In turn, a navigation state πi includes
orientation Ri, velocity vi, and position pi of the body
frame {B} (affixed to the platform) expressed in a world
frame {W} (z-axis along gravity), i.e., πi = (Ri,vi,pi).
For clarity, the considered sensor parameters are only the
IMU biases b which includes the gyro bias bg and the
accelerometer bias ba, i.e., b = (bg,ba). We denote by
x0:k the entire history of system states up to time tk, i.e.,
x0:k = {xi|i = 0, 1, . . . , k}.

The SLAM problem also estimates landmark feature po-
sitions fl, each of which is represented by an inverse depth
parameterization in an anchor camera frame {Ca} (Civera,
Davison, and Montiel 2008), i.e.,

fl = [α, β, 1, ρ]ᵀ = [x/z, y/z, 1, 1/z]ᵀ (1)

where [x, y, z]ᵀ is the Cartesian coordinates of the landmark
in {Ca}. The inverse depth parameterization is chosen for
two reasons. First, it has been shown to outperform the tra-
ditional Euclidean parameterization (Solà et al. 2012; Polok
et al. 2015). Second, it decouples the landmark parameters
from the platform pose in the world frame, thus they remain
invariant under Euclidean transform of the original problem
and have no bearing on the observability analysis.

We denote by Xk the history of state variables up to tk,

Xk = {xi|i = 0, 1, . . . , k} ∪ {fl|l = 1, 2, . . . , L}. (2)

Measurements Measurements in the visual inertial
SLAM problem include camera observations and IMU
readings. The observation zil of a landmark fl in camera
frame {Ci} at ti is represented by a projection model h
which encodes the camera intrinsic parameters, i.e.,

zil = h(T−1
BCT−1

WBiTWBaTBCfl) + nc (3)

where nc ∼ N(0,Σc) is 2D Gaussian noise of covariance
Σc, TBC ∈ SE(3) is the camera extrinsic parameters, and
TWBi = (RWBi,pWBi) = (Ri,pi) and TWBa are the
platform poses at the observing epoch ti and the anchor
epoch ta. Without loss of generality, we assume TBC is well
calibrated and known. Considering that TWBi and TWBa

are subsumed by xi and xa, the projection model can also
be written as zil = h(xi,xa, fl) + nc.

In a simplified IMU model, the IMU measurements am
and ωm are assumed to be affected by accelerometer and
gyroscope biases, ba and bg , and Gaussian white noise pro-
cesses, νa and νg , of power spectral densities, σ2

aI3 and
σ2
gI3, respectively, i.e.,

am = Bas + ba + νa (4)

ḃa = νba (5)
ωm = BωWB + bg + νg (6)

ḃg = νbg, (7)

where the biases are assumed to be driven by Gaussian white
noise processes, νba and νbg , of power spectral densities,

σ2
baI3 and σ2

bgI3, respectively. For brevity, we denote the
IMU readings from ti to tj by ui:j = {(ωm,am)k|k =
i, i+ 1, . . . , j}

With a sequence of IMU readings ui:j , the navigation
state variable x(tj) can be propagated from x(ti) as ex-
pressed by f(·),

x(tj |ti) = f(x(ti),ui:j ,wimu), (8)

where the continuous noises of IMU readings are stacked
in wimu = [νᵀ

g ,ν
ᵀ
a,ν

ᵀ
bg,ν

ᵀ
ba]ᵀ. For brevity, we will drop

the time symbol and keep only its index for variables in (8),
e.g., xj|i = x(tj |ti). The propagated navigation state πj|i
can be solved with the Runge-Kutta method (Jekeli 2001).

Global Bundle Adjustment and FLS
Before looking at the FLS, we first presents the basics of
global bundle adjustment (BA) (Triggs et al. 2000) which is
the base of the FLS. For the visual inertial SLAM problem,
the objective function to be minimized in the global BA up
to tk is

E =
k∑
i=1

‖rx(xi,xi|i−1)‖2Σx,i−1:i
+∑

(i,l)∈Ck

‖ril(xi,xa, fl)‖2Σc
,

(9)

where rx and ril are residual errors associated with IMU
and camera measurements, Σx,k−1:k and Σc are their cor-
responding covariance matrices, and Ck denotes all image
measurements up to tk. Note that the objective function does
not include a gauge-fixing prior which will shadow unob-
servable directions.

The reprojection error ril is usually defined to be the mis-
match between predicted image coordinates of a landmark
fl and its measurement zil, i.e., ril = h(xi,xa, fl)− zil.

The IMU residual error rx and its covariance depends on
the error definitions and will be discussed later on.

Solving the objective function (9) is equivalent to finding
a solution to fit the below nonlinear system,

W



rx(x1,x1|0)
...

rx(xk,xk|k−1)
...

ril(xi,xa, fl)
...


︸ ︷︷ ︸

r

= 0

W =



Σ
−1/2
x,0:1

. . .
Σ
−1/2
x,k−1:k

Σ
−1/2
c,1

. . .
Σ
−1/2
c,m


(10)
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where m = |Ck| is the total number of image observations.
FLS minimizes (9) by repeatedly going through two steps,

linearization and marginalization, as described next.

Factor Linearization Before linearizing the measurement
factors, the error state (i.e., the ‘small’ perturbation) must be
defined. Without loss of generality, we define the error state
δx as a function η of the random variable x and its noise
free estimate x̄, i.e., δx = η(x, x̄). For a variable in a real
vector space, the error state is simply δx = x− x̄. Also, we
define the inverse of η such that x = η−1(x̄, δx).

With the error state, the residual errors can be linearized
at estimates of state variables with the first order approxima-
tion. The reprojection error is linearized as

ril(xi,xa, fl) ≈ ril(x̄i, x̄a, f̄l) + Jxi,lδxi+

Jxa,lδxa + Jflδfl
(11)

where Jxi,l, Jxa,l, and Jfl are Jacobians of ril relative to xi,
xa, and fl.

The above-mentioned IMU residual error rx is usually de-
fined to be rx(xi,xi|i−1) = η(xi,xi|i−1). It is linearized as

rx(xi,xi|i−1) ≈ rx(x̄i, x̄i|i−1) + Aiδxi+

Ai|i−1δxi|i−1

= rx(x̄i, x̄i|i−1) + Aiδxi+

Ai|i−1Φ(ti, ti−1)δxi−1

(12)

where Ai and Ai|i−1 are the Jacobians of rx relative to δxi
and δxi|i−1, and Φ(ti, ti−1) is the discrete IMU transition
matrix obtained by linearizing (8). To obtain the weight co-
variance Σx,i−1:i, we note that the covariance of δxi|i−1,
Σxi|i−1

, can be propagated from a zero matrix by the prop-
agation function (8) given the defined error state δx, then
Σx,i−1:i = Ai|i−1Σxi|i−1

Aᵀ
i|i−1.

Linearization turns the nonlinear system (10) to a set of
linear equations that we try to satisfy at once,

W





rx(x̄1, x̄1|0)
...

rx(x̄k, x̄k|k−1)
...

ril(x̄i, x̄a, f̄l)
...


︸ ︷︷ ︸

r̄

+J



δx0

...
δxk

...
δfl
...


︸ ︷︷ ︸

δXk


= 0

J =


A1|0Φ1|0 A1

. . .
Ak|k−1Φk|k−1 Ak

. . .
Jxi,l Jxa,l

. . .

. . .
Jfl
. . .

 .
(13)

Unobservable Directions and Nullspace To analyze the
observability of the visual inertial SLAM problem, we need

to specify the unobservable directions and relate them to the
objective function (9) and the linearized system (13).

First, let’s define a transformation Tξ (minimally param-
eterized by ξ) of the considered problem which transforms
all state variables from the present world frame {W} to an-
other one, say {Wy}. The transformation applies to all vari-
ables relevant to {W}, i.e., x0:k, which become y0:k after
the transformation.

With measurements from a camera and a consumer-grade
IMU, it is impossible to determine the absolute position and
heading of the platform (Jones and Soatto 2011) which are
the unobservable directions for the visual inertial SLAM
problem. When a transformation involves only an transla-
tion δt and a rotation about gravity δφ, i.e., ξ = [δφ δt], the
value of the objective function (9) is invariant to the trans-
formation because the residual errors do not change w.r.t the
new variables y0:k, i.e.,

rx(xi,xi|i−1) = rx(Tξ(xi), Tξ(xi|i−1))

ril(xi,xa, fl) = ril(Tξ(xi), Tξ(xa), fl)
(14)

Thus, the linearized system (13) still holds but with y0:k.
Next, we reveal that the unobservable directions corre-

spond to the nullspace of J in (13). When ξ is close to the
zero vector, the objective function after the transformation
Tξ can be linearized at the estimates for Xk, and the lin-
earized system becomes

W(r̄ + JδYk) = 0 (15)

where δYk is the error between the transformed state vari-
ables Yk = Tξ(Xk) and their linearization points X̄k. By
comparing (13) and (15), we observe that

0 = J(δYk − δXk)

= J(η(Tξ(Xk), X̄k)− η(Xk, X̄k))

= J
∂η(Tξ(Xk), X̄k)

∂ξ︸ ︷︷ ︸
NJ

ξ.
(16)

As the expression holds for arbitrary small ξ, we have

JNJ = 0, (17)

which means that changes on the column space of NJ

to variables do not affect the linearized system. Thus, the
nullspace of J, NJ corresponds to the unobservable direc-
tions of the problem. In this sense, the Jacobian matrix of
the system J is equivalent to the classic observability matrix
in revealing the unobservable directions. Indeed, the observ-
ability matrix can be obtained from J by basic row opera-
tions as shown in (Dong-Si and Mourikis 2011).

Factor Marginalization The FLS has been a popular ap-
proach to the visual inertial SLAM problem, e.g., (Rosinol
et al. 2020). Essentially, it solves the problem by repeated
linearization of factors, and gradually marginalizes old vari-
ables from the global BA problem to bound problem size.
Every marginalization step creates a linear prior factor for
variables connected to those removed variables.

6087



Consider a marginalization step where variables prior to
tm are marginalized. The objective function (9) becomes

Em =
m∑
i=1

‖rx(x̄i, x̄i|i−1) + Aiδxi+

Ai|i−1Φ(ti, ti−1)δxi−1‖2Σx,i−1:i
+∑

(i,l)∈M

‖ril(x̄i, x̄a, f̄l) + Jxi,lδxi+

Jxa,lδxa + Jflδfl‖2Σc
+

k∑
i=m+1

‖rx(xi,xi|i−1)‖2Σx,i−1:i
+∑

(i,l)∈Ck\M

‖ril(xi,xa, fl)‖2Σc
,

(18)

where M is the set of marginalized camera observations.
The first two linear terms of Em are obtained by fixing lin-
earization points for the marginalized nonlinear factors. For
convenience of analysis, none of the marginalized terms is
discarded. In implementation, the first two linear terms of
Em are equivalently represented by a marginalization factor
which is obtained by the Schur complement method.

As the optimizer iterates, Em will be relinearized. For a
variable in the marginalization factor (e.g., xm), a nonlinear
term of Em usually will be linearized at a different estimate
(x̄′m) than the one (x̄m) used in the linear terms ofEm. Thus,
the Jacobian matrix in the linearized system (13) will have
blocks evaluated at different points for the same variables
in the marginalization factor. For the traditional error def-
inition, this causes shrunk nullspace of J and inconsistent
covariances as shown in (Dong-Si and Mourikis 2011).

Right Invariant Fixed-Lag Smoother
In contrast to traditional error definitions, the right invariant
error formulation does not suffer from this inconsistency in
observable dimensions and covariances.

The Right Invariant Error The right invariant error is de-
fined relative to the navigation state πi, viewed as an ele-
ment Xi of SE2(3) (Barrau and Bonnabel 2016b), i.e.,

Xi =

[
Ri vi pi

01×3 1 0
01×3 0 1

]
∈ SE2(3). (19)

The right invariant error ξπ,i consisting of rotational error
δθi, velocity error δvi, and positional error δpi, is given by

ξπ,i = (δθi, δvi, δpi), (20)

Xi = exp(L(ξπ,i))X̄i, , (21)

L(ξπ) =

[
δθ× δv δp
01×3 1 0
01×3 0 1

]
(22)

where exp(·) is the matrix exponent, and L(ξπ) is the Lie
operator for SE2(3), computed with the skew operator (·)×.

The closed form expression for the exponential map of ξπ
is,

exp(L(ξπ)) =

[
exp(δθ×) Jl(δθ)δv Jl(δθ)δp

01×3 1 0
01×3 0 1

]
(23)

where Jl(·) is the left Jacobian for SO(3) (Barfoot and Fur-
gale 2014).

“Right invariance” is on the grounds that the error for X
is the same as that for its transformed variable, XY , ob-
tained by right multiplication with an element Y ∈ SE2(3),
as shown by XY = exp(L(ξπ))(X̄Y ). That is, the right
invariant error is independent of the system state.

Consistency Property For the right invariant errors, as-
suming ∆t = ti − ti−1 is small (e.g., 0.1s), the discrete
transition matrix Φ(ti, ti−1) is found to be

Φi|i−1 =

[
Φπ Φπ,b

0 I

]

Φπ =

 I 0 0
g×∆t I 0

g×∆t2/2 I∆t I


Φπ,b =

 −R∆t 0

−v×R∆t− g×R∆t2

2 −R∆t

−p×R∆t− v×R∆t2

2 − g×R∆t3

6 −R∆t2

2


(24)

where g is the gravity vector in {W}, and we drop the sub-
script ‘i’ of (R,v,p) for brevity. Thanks to right invariance,
Φπ is independent of the state variable πi.

Another useful finding is that the parameters of landmarks
anchored at a camera frame and sensor parameters (e.g., bi-
ases) do not interfere with nullspace of the coefficient matrix
J of the linearized system (13). Thus, their Jacobians can be
safely ignored in analyzing consistency.

The right invariance property together with the above
finding lead to the proof that the right invariant error for-
mulation can ensure consistency of the FLS as detailed in
the supplementary material.

One point worth noting is that the proof approximates two
component Jacobians for the IMU residual error (12), Ai

and Ai|i−1, by identities,

Ai ≈ I15 Ai|i−1 ≈ −I15. (25)

This approximation is also used in (Dong-Si and Mourikis
2011) for proving consistency of the FEJ technique. It is
reasonable when the IMU residual error rx is small, and we
found that using the exact Ai and Ai|i−1 led to slight incon-
sistency (see Fig. 4).

Simulation Results
This section presents the simulation results, validating that
the FLS formulated with right invariant errors has consistent
covariances.
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Σ Gyroscope Accelerometer

Bias White
Noise

σ2
bg/fI3 with
σbg = 2 · 10−5

rad/s2/
√
Hz

σ2
ba/fI3 with
σba = 5.5 · 10−5

m/s3/
√
Hz

White Noise
σ2
gfI3 with
σg = 1.2 · 10−3

rad/s/
√
Hz

σ2
afI3 with
σa = 8 · 10−3

m/s2/
√
Hz

Table 1: Covariances of the zero-mean Gaussian distribu-
tions from which discrete noise samples are drawn. f is the
IMU sampling rate.

Error Metrics The consistency of a FLS is measured by
the Normalized Estimation Error Squared (NEES) of com-
ponents of the navigation state variable. The expected value
of NEES for a variable is its degrees of freedom, hence 3
for positional error δpWB , 3 for orientation error δθWB ,
and 6 for pose error δTWB = (δpWB , δθWB). An incon-
sistent estimator will optimistically estimate the covariance,
thus the computed NEES is greater than its expected value.
Following (Bar-Shalom, Li, and Kirubarajan 2004, (3.7.6-
1)), with ns successful runs of an estimator, the NEES ε for
position, orientation, and pose at epoch t is given by

εX(t) =
1

ns
Σns
i=1δX(t)ᵀΣ−1

X (t)δX(t) (26)

where X = pWB ,θWB ,TWB , and ΣX is its covariance.
The accuracy of the estimated state is measured by Root

Mean Square Error (RMSE) for components of the state vec-
tor. A component X’s RMSE rX at t is given by

rX(t) =

√
1

ns
Σns
i=1δX(t)ᵀδX(t) (27)

Simulation Setup A scene with point landmarks dis-
tributed on four walls was simulated. A monocular camera-
IMU platform traversed the scene for five minutes with a
torus trajectory (Fig. 1). The platform moved at an average
velocity 2.30 m/s.

The camera captured images of size 752 × 480 at 10Hz.
The image observations were corrupted by white Gaussian
noise of 1 pixel standard deviation at each direction. The
simulated inertial measurements were sampled at f=100 Hz,
corrupted by random walk biases and additive white noise.
Discrete noise samples were drawn from Gaussian distribu-
tions tabulated in Table 1. These noise parameters were cho-
sen to be realistic for a consumer-grade IMU.

Estimator Setup The proposed FLS was implemented
with the IncrementalFixedLagSmoother in GT-
SAM (Dellaert 2012) which wraps the iSAM2 (Kaess et al.
2012) method. By setting the time horizon to a large value,
it turns into the iSAM2 which gives results very close to a
batch solution (Forster et al. 2017). Also, GTSAM provides
a BatchFixedLagSmoother wrapping a Levenberg-
Marquardt solver which ensures consistency by locking vari-
ables in the marginalization factor.

We compared several estimators, the incremental FLS
(Inc. FLS), the batch FLS, iSAM2, and the proposed FLS

-2

-1

5

0

z
 (

m
)

1

5

y (m)

0

x (m)

0

-5 -5

Figure 1: Simulated scene with general torus motion lasting
for five minutes. A sample camera view frustum is shown by
the red wireframe on the black trajectory.

with the right invariant error (RI-FLS). The first three esti-
mators used the error state defined in (Forster et al. 2017).
Except for iSAM2, the other estimators adopted a time hori-
zon of 1 second.

A simulation frontend was created to provide feature
tracks to an estimator. It associated observations of a land-
mark between consecutive frames and between current
frame and a selected earlier reference frame. For the torus
motion, the average feature track length was 5.8, and the av-
erage number of observed landmarks in an image was 40.5.

All estimators were initialized with the true pose but a
noisy velocity estimate affected by noise of Gaussian distri-
bution N(0, 0.052I3 m

2/s4). Each estimator ran 100 times,
and only successful runs (with the error in position≤ 100 m
at the end), were used to compute the error metrics.

Estimator Consistency For the above estimators, the evo-
lution of NEES is visualized in Fig. 2. The NEES values
averaged over the last 10 seconds to smooth out jitters are
tabulated in Table 2. From the NEES curves and their fi-
nal values, we see that both incremental FLS and batch
FLS did not output consistent covariances, and incremental
FLS performed better than batch FLS in terms of orientation
NEES. On the other hand, the proposed RI-FLS and iSAM2
achieved NEES values very close to the reference. It is ex-
pected that iSAM2 exhibits consistency as it does not drop
out variables. It is a bit surprising that RI-FLS achieved even
better NEES than iSAM2, indicating that the right invariant
formulation is effective for ensuring consistency.

To assess the state estimation accuracy, the RMSE values
for each dimension of position, orientation, and IMU biases,
are drawn in Fig. 3. Unsurprisingly, iSAM2 achieved best
accuracy for all these variables. Incremental FLS and batch
FLS had an issue in constraining errors on one horizontal
direction of the gyro bias. All estimators estimated well the
accelerometer bias. RI-FLS outperformed other FLSs in po-
sition accuracy, and achieved good orientation accuracy.

RI-FLS variants We also examine the effect of approxi-
mating the IMU residual Jacobians, and evaluate a RI-FLS
variant with smart factors (Forster et al. 2017).
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Figure 2: The history of NEES for pose of estimators includ-
ing incremental FLS, batch FLS, iSAM2, and right invariant
FLS. The expected value of NEES for pose is 6.

NEES averaged over last 10 seconds
Position (1) Orientation (1) Pose (1)

Reference 3 3 6
Inc. FLS 644.3 5.0 657.3
Batch FLS 693.6 102.3 800.3
iSAM2 5.4 4.1 9.3
RI-FLS 3.3 3.4 6.6

Table 2: NEES computed over 100 runs for estimators in-
cluding incremental FLS, batch FLS, iSAM2, and right in-
variant FLS.

The consistency analysis approximates IMU residual Ja-
cobians components Ai and Ai|i−1 with identities (25).
When the exact expressions for Ai and Ai|i−1 are used, the
observability property JNJ = 0 may not hold.

The RI-FLS with smart factors is motivated by the fact
that the GTSAM optimizer often throws the indeterminant
system exception because of landmarks with low disparity
that are common for real data. Smart factors fix this issue
by removing landmarks from the optimizer. We think this
technique will not adversely impact estimator consistency.

To confirm these thoughts, three variants of RI-FLS were
tested in the above simulation setup: RI-FLS with approx-
imated IMU Jacobians (baseline), RI-FLS with exact IMU
Jacobians (RI-FLS exact), and RI-FLS with smart factors
and approximated IMU Jacobians (RI-FLS smart). The his-
tory of the NEES for the three methods shown in Fig. 4 con-
firm that exact IMU Jacobians lead to worse NEES values,
and that smart factors do not worsen NEES values.

Results on Real Data
To show practicality, we tested the incremental FLS with
errors defined in (Forster et al. 2017), RI-FLS, and RI-FLS
with exact Jacobians on the EuRoC benchmark. All methods
were implemented with smart factors to handle degenerate
landmarks and state variables were associated with consec-
utive camera frames in a time horizon of 1 second. The ab-
solute translation error RMS (Zhang and Scaramuzza 2018)
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Figure 3: RMSE of position (a), orientation (b), gyro bias
(c), and accelerometer bias (d), computed over 100 runs for
estimators including incremental FLS, batch FLS, iSAM2,
and right invariant FLS.
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Figure 4: The history of NEES for pose of estimators includ-
ing the baseline RI-FLS, RI-FLS with exact IMU Jacobians,
and RI-FLS with smart factors.

Mean ATE
RMS (m) MH 01 MH 05 V1 02 V2 02

Inc. FLS 0.88 0.68 0.28 0.24
RI-FLS 0.53 0.89 0.28 0.29
RI-FLS with
exact Jacobians 0.82 1.26 0.39 0.23

Table 3: Absolute translation error RMS averaged over 3
runs on several EuRoC sessions for incremental fixed-lag
smoother (FLS), right invariant FLS (RI-FLS, the proposed),
RI-FLS with exact IMU factor Jacobians. All methods use
smart factors to deal with degenerate landmarks.

averaged over 3 runs on several EuRoC sequences are tab-
ulated in Table 3 which shows that the proposed RI-FLS
achieved comparable accuracy to the established method,
incremental FLS with a traditional error formulation. The
odometry accuracy could be improved by using the concept
of keyframes as in (Forster et al. 2017).

Conclusion
To fix the inconsistent covariances output by traditional
FLSs, we introduce the right invariant error formulation into
the FLS framework. We analyze its observability directly
with the linearized system, which has much lower analysis
complexity than observability matrices. As a byproduct, we
find that landmarks parameterized in a local camera frame
and sensor parameters like biases do not affect the estima-
tor consistency. In the end, we prove that the right invari-
ant error formulation ensures the observability property of
a FLS without artificially correcting Jacobians like the first
estimate Jacobian method. The proposed right invariant FLS
is applied to a monocular visual inertial SLAM problem. Its
consistency is confirmed by simulation, and its practicality
is verified with the EuRoC benchmark.

In the future, we will examine the consistency of ob-
servable parameters after marginalization, and look into the
properties of the left invariant error formulation.
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