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Abstract

Robin Hirsch posed in 1996 the Really Big Complexity Prob-
lem: classify the computational complexity of the network
satisfaction problem for all finite relation algebras A. We
provide a complete classification for the case that A is sym-
metric and has a flexible atom; the problem is in this case
NP-complete or in P. If a finite integral relation algebra has a
flexible atom, then it has a normal representation B. We can
then study the computational complexity of the network satis-
faction problem of A using the universal-algebraic approach,
via an analysis of the polymorphisms of B. We also use a
Ramsey-type result of Nešetřil and Rödl and a complexity
dichotomy result of Bulatov for conservative finite-domain
constraint satisfaction problems.

Introduction
One of the earliest approaches to formalise constraint satis-
faction problems over infinite domains is based on relation
algebras (Ladkin and Maddux 1994; Hirsch 1997). We think
about the elements of a relation algebra as binary relations;
the algebra has operations for intersection, union, comple-
ment, converse, and composition of relations, and constants
for the empty relation, the full relation, and equality, and is
required to satisfy certain axioms. Important examples of re-
lation algebras are the Point Algebra, the Left Linear Point
Algebra, Allen’s Interval Algebra, RCC5, and RCC8, just to
name a few.

The so-called network satisfaction problem (NSP) for a
finite relation algebra asks whether a given finite network of
constraints is consistent with the relation algebra. NSPs can
be used to model many computational problems in temporal
and spatial reasoning (Düntsch 2005; Renz and Nebel 2007;
Bodirsky and Jonsson 2017). In 1996, Robin Hirsch (1996)
asked the Really Big Complexity Problem (RBCP): can we
classify the computational complexity of the network sat-
isfaction problem for every finite relation algebra? For ex-
ample, the complexity of the network satisfaction problem
for the Point Algebra and the Left Linear Point Algebra is
in P (Vilain, Kautz, and van Beek 1989; Bodirsky and Kutz
2007), while it is NP-complete for all of the other examples
mentioned above (Allen 1983; Renz and Nebel 1999). There
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also exist relation algebras where the complexity of the net-
work satisfaction problem is not in NP: Hirsch gave an ex-
ample of a finite relation algebra with an undecidable net-
work satisfaction problem (Hirsch 1999). This result might
be surprising at first sight; it is related to the fact that the
representation of a finite relation algebra by concrete binary
relations over some set can be quite complicated. We also
mention that not every finite relation algebra has a represen-
tation (Lyndon 1950). There are even non-representable re-
lation algebras that are symmetric (Maddux 2006); a relation
algebra is symmetric if every element is its own converse.

A simple condition that implies that a finite relation al-
gebra has a representation is the existence of a so-called
flexible atom (Comer 1984; Maddux 1982), combined with
the assumption that A is integral; formal definitions can
be found in section “Preliminaries”.Such relation algebras
have been studied intensively, for example in the context of
the so-called flexible atoms conjecture (Maddux 1994; Alm,
Maddux, and Manske 2008). We will see that integral rela-
tion algebras with a flexible atom even have a normal rep-
resentation, i.e., a representation which is fully universal,
square, and homogeneous (Hirsch 1996). The network sat-
isfaction problem for a relation algebra with a normal repre-
sentation can be seen as a constraint satisfaction problem for
an infinite structure B that is well-behaved from a model-
theoretic point of view; in particular, we may choose B to
be homogeneous and finitely bounded.

Constraint satisfaction problems over finite domains have
been studied intensively in the past two decades, and tremen-
dous progress has been made concerning systematic re-
sults about their computational complexity. In 2017, Bula-
tov (2017) and Zhuk (2017) announced proofs of the famous
Feder-Vardi dichotomy conjecture which states that every
finite-domain CSP is in P or NP-complete. Both proofs build
on an important connection between the computational com-
plexity of constraint satisfaction problems and central parts
of universal algebra.

The universal-algebraic approach can also be applied
to study the computational complexity of countably infi-
nite homogeneous structures B with finite relational signa-
ture (Bodirsky and Nešetřil 2006). If B is finitely bounded,
then CSP(B) is contained in NP; see, e.g. (Bodirsky 2012).
If B is homogeneous and finitely bounded then a complex-
ity dichotomy has been conjectured, along with a conjecture
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about the boundary between NP-completeness and contain-
ment in P (Bodirsky, Pinsker, and Pongrácz 2019). We verify
these conjectures for all normal representations of finite in-
tegral symmetric relation algebras with a flexible atom, and
thereby also solve Hirsch’s RBCP for symmetric relation al-
gebras with a flexible atom.

The exact formulation of the conjecture from (Bodirsky,
Pinsker, and Pongrácz 2019) in full generality requires con-
cepts that we do not need to prove our results. Because of
space restriction, we therefore only present the proof of the
P versus NP-complete dichotomy in the present conference
paper. The discussion why our proof also confirms the men-
tioned general conjecture about the border of NP-hardness
and containment in P (unless P=NP) in the special case for
normal representations of finite integral symmetric relation
algebras with a flexible atom will appear in a journal ver-
sion of the article. Phrased in the terminology of relation
algebras, our result is the following.

Theorem 1. Let A be a finite integral symmetric relation
algebra with a flexible atom, and let A0 be the set of atoms
of A. Then either

• there exists an operation f : A6
0 → A0 that preserves the

allowed triples of A and satisfies the Siggers identity

∀x, y, z ∈ A0 : f(x, x, y, y, z, z) = f(y, z, x, z, x, y);

in this case the network satisfaction problem for A is in
P, or

• the network satisfaction problem for A is NP-complete.

This also implies a P versus NP-complete dichotomy the-
orem for network satisfaction problems of symmetric (not
necessarily integral) relation algebras with a flexible atom,
because for every finite relation algebra with a flexible atom
there exists an integral relation algebra with a flexible atom
and polynomial-time equivalent NSP (Proposition 22).

Proof Strategy
Every finite integral relation algebra A with a flexible atom
has a normal representation B; for completeness, and since
we are not aware of a reference for this fact, we include a
proof in section “Relation Algebras with a Flexible Atom”.It
follows that the classification question about the complexity
of the NSP of A can be translated into a question about the
complexity of the constraint satisfaction problem for the re-
lational structure B. It is well known that CSP(B) is con-
tained in NP; see, e.g. (Bodirsky 2018).

We associate a finite relational structure O to B and show
that CSP(B) can be reduced to CSP(O) in polynomial-
time (section “Polynomial-time Tractability”). If the struc-
ture O satisfies the condition of the first case in Theorem 1,
then known results about finite-domain CSPs imply that
CSP(O) can be solved in polynomial-time (Bulatov 2003,
2016; Barto 2011), and hence CSP(B) is in P, too. If the first
case in Theorem 1 does not apply, then known results about
finite-domain algebras imply that there are a, b ∈ A0 such
that the canonical polymorphisms of B act as a projection on
{a, b} (Bulatov 2003, 2016; Barto 2011). We first show NP-
hardness of CSP(B) if B does not have a binary injective

polymorphism. If B has a binary injective polymorphism,
we use results from structural Ramsey theory to show that
B must even have a binary injective polymorphism which is
canonical. This implies that none of a, b equals Id ∈ A. We
then prove that B does not have a binary {a, b}-symmetric
polymorphism; also in this step, we apply Ramsey theory.
This in turn implies that all polymorphisms of B must be
canonical on {a, b}. Finally, we show that B cannot have a
polymorphism which acts as a majority or as a minority on
{a, b}, and thus by Schaefer’s theorem all polymorphisms of
B act as a projection on {a, b}. It follows that CSP(B) is
NP-hard. This concludes the proof of Theorem 1.

Detailed proofs of all theorems, propositions, and lem-
mas had to be omitted because of the space restrictions, but
can be found in the upcoming journal version or on arXiv
(Bodirsky and Knäuer 2020b).

Preliminaries
We recall some basic definitions and results about relation
algebras, constraint satisfaction, model theory, universal al-
gebra, and structural Ramsey theory.

Relation Algebras and Network Satisfaction
Problems
For relation algebras that are not representable the set of
yes-instances of the network satisfaction problem is empty
(see Def. 5). We thus omit the definition of relation algebras
and start immediately with the simpler definition of repre-
sentable relation algebras; here we basically follow the text-
book of Maddux (2006).
Definition 2. Let D be a set and E ⊆ D2 an equivalence
relation. Let (P(E);∪,̄ , 0, 1, Id,^ , ◦) be an algebra with
the following operations:

1. a ∪ b := {(x, y) | (x, y) ∈ a ∨ (x, y) ∈ b},
2. ā := E \ a,
3. 0 := ∅,
4. 1 := E,
5. Id := {(x, x) | x ∈ D},
6. a^ := {(x, y) | (y, x) ∈ a},
7. a ◦ b := {(x, z) | ∃y ∈ D : (x, y) ∈ a and (y, z) ∈ b}.
A subalgebra of (P(E);∪,̄ , 0, 1, Id,^ , ◦) is called a proper
relation algebra.

The class of representable relation algebras, denoted by
RRA, consists of all algebras such that the tuple of the
operation-arities is (2, 1, 0, 0, 0, 1, 2) and that are isomor-
phic to some proper relation algebra. We use bold letters
(such as A) to denote algebras from RRA and the corre-
sponding roman letter (such as A) to denote the domain of
the algebra. An algebra is called finite if its domain is finite.
We call A ∈ RRA symmetric if all its elements are symmet-
ric, i.e., a^ = a for every a ∈ A.

To link the theory of relation algebras with model theory,
it will be convenient to view representations of algebras in
RRA as relational structures.
Definition 3. Let A ∈ RRA. Then a representation of A is
a relational structure B such that
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◦ Id a b

Id Id a b
a a Id∪b a ∪ b
b b a ∪ b Id∪a ∪ b

a
∪

b

a
∪

b

a

a

Id∪
aId∪

a

x1

x2
x3

Figure 1: Multiplication table of the relation algebra #17
and an example instance.

• B is anA-structure, i.e., the elements ofA are the relation
symbols of B;

• The map a 7→ aB is an isomorphism between A and the
proper relation algebra induced by the relations of B in
(P(1B);∪,̄ , 0, 1, Id,^ , ◦).
We write ≤ for the partial order on A defined by x ≤

y :⇔ x ∪ y = y. Note that for proper relation algebras, this
ordering coincides with the set-inclusion order. The minimal
elements of this order in A \ {0} are called atoms. The set
of atoms of A is denoted by A0. A tuple (x, y, z) ∈ (A0)3

is called an allowed triple if z ≤ x ◦ y. Otherwise, (x, y, z)
is called a forbidden triple.
Definition 4. Let A ∈ RRA. An A-network (V ; f) is a
finite set V together with a function f : V 2 → A. An A-
network (V ; f) is satisfiable in a representation B of A if
there exists an assignment s : V → B such that for all x, y ∈
V 2 the following holds:

(s(x), s(y)) ∈ f(x, y)B.

An A-network (V ; f) is satisfiable if there exists a represen-
tation B of A such that (V ; f) is satisfiable in B.

We will in the following assume that for an A-network
(V ; f) it holds that f(V 2) ⊆ A \ {0}. Otherwise, (V ; f)
is not satisfiable. Note that every A-network (V ; f) can
be viewed as an A-structure C on the domain V : for all
x, y ∈ V and a ∈ A the relation aC(x, y) holds if and only
if f(x, y) = a.
Definition 5. The (general) network satisfaction problem for
a finite relation algebra A, denoted by NSP(A), is the prob-
lem of deciding whether a given A-network is satisfiable.

We give an example of how an instance of a NSP for a re-
lation algebra could look like. The numbering of the relation
algebra is from (Andréka and Maddux 1994).
Example 6 (An instance of NSP of relation algebra #17).
Let A be the relation algebra with the set of atoms {Id, a, b}
and the product rules given by Fig. 1. Note that the domain
of A is the following set:

A = {∅, Id, a, b, Id∪a, Id∪b, a ∪ b, Id∪a ∪ b}.

Let V := {x1, x2, x3} be a set. Consider the directed, edge
labelled graph in Fig. 1 which is a visualization of a map
f : V 2 → A. We skipped the three Id-labelled self-loops
for better readability. The tuple (V ; f) is an example of an
instance of NSP(A). The representation of A considered in
Ex. 28 witnesses that (V ; f) is satisfiable as an instance of
NSP(A).

Normal Representations and CSPs
In this section we consider a subclass of RRA introduced
by Hirsch in 1996. For relation algebras A from this class,
NSP(A) corresponds naturally to a constraint satisfaction
problem (CSP). In the last two decades a rich and fruitful
theory emerged to analyse the computational complexity of
CSPs. We use this theory to obtain results about the compu-
tational complexity of NSPs.

In the following let A be in RRA. An A-network (V ; f)
is called closed (transitively closed in (Hirsch 1997)) if for
all x, y, z ∈ V it holds that f(x, x) ≤ Id, f(x, y) =
f(y, x)^, and f(x, z) ≤ f(x, y)◦f(y, z). It is called atomic
if the image of f only contains atoms from A.
Definition 7 (from (Hirsch 1996)). Let B be a representa-
tion of A. Then B is called
• fully universal, if every atomic closed A-network is satis-

fiable in B;
• square, if 1B = B2;
• homogeneous, if for every isomorphism between finite

substructures of B there exists an automorphism of B
that extends this isomorphism;

• normal, if it is fully universal, square and homogeneous.
Definition 8. Let τ be a relational signature. A first-order
formula ϕ(x1, . . . , xn) is called primitive positive (pp) if it
has the form

∃xn+1, . . . , xm(ϕ1 ∧ · · · ∧ ϕs)

where ϕ1, . . . , ϕs are atomic formulas, i.e., formulas of the
formR(y1, . . . , yl) forR ∈ τ and yi ∈ {x1, . . . , xm}, of the
form y = y′ for y, y′ ∈ {x1, . . . xm}, or of the form false.

Formulas without free variables are called sentences.
Definition 9. Let τ be a finite relational signature and let B
be a τ -structure. Then the constraint satisfaction problem
of B (CSP(B)) is the computational problem of deciding
whether a given primitive positive τ -sentence holds in B.

If B is a fully universal representation of A ∈ RRA,
then NSP(A) and CSP(B) are the same problem (up to
a straightforward translation between A-networks and A-
sentences; see (Bodirsky and Jonsson 2017)).

Model Theory
Let τ be a finite relational signature. The class of finite
τ -structures that embed into a τ -structure B is called the
age of B, denoted by Age(B). If F is a class of finite τ -
structures, then Forb(F) is the class of all finite τ -structures
A such that no structure from F embeds into A. A class C of
finite τ structures is called finitely bounded if there exists a
finite set of finite τ -structures F such that C = Forb(F). A
structure B is called finitely bounded if Age(B) is finitely
bounded. We want to mention that normal representations
are finitely bounded, by their property of being fully univer-
sal.
Definition 10. A class C of finite τ -structures has the amal-
gamation property if for all structures A,B1,B2 ∈ C with
embeddings e1 : A → B1 and e2 : A → B2 there ex-
ist a structure C ∈ C and embeddings f1 : B1 → C and
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f2 : B2 → C such that f1 ◦ e1 = f2 ◦ e2. If additionally
f1(B1) ∩ f2(B2) = f1(e1(A)) = f2(e2(A)), then we say
that C has the strong amalgamation property.

Let B1,B2 be τ -structures. Then B1 ∪ B2 is the τ -
structure on the domainB1∪B2 such thatRB1∪B2 := RB

1 ∪
RB

2 for every R ∈ τ . If Def. 10 holds with C := B1 ∪B2

then we say that C has the free amalgamation property; note
that the free amalgamation property implies the strong amal-
gamation property.

Theorem 11 (Fraı̈ssé; see, e.g., (Hodges 1997)). Let τ be
a finite relational signature and let C be a class of finite τ -
structures that is closed under taking induced substructures
and isomorphisms and has the amalgamation property. Then
there exists an up to isomorphism unique countable homo-
geneous structure B such that C = Age(B).

The Universal-Algebraic Approach
In this section we present basic notions for the so-called
universal-algebraic approach to the study of CSPs.

Definition 12. LetB be some set. We denote byO(n)
B the set

of all n-ary operations on B and by OB :=
⋃

n∈NO
(n)
B

the set of all operations on B. A set C ⊂ OB is called
an operation clone on B if it contains all projections of
all arities and if it is closed under composition, i.e., for all
f ∈ C (n) := C ∩ O(n)

B and g1, . . . , gn ∈ C ∩ O(s)
B it holds

that f(g1, . . . , gn) ∈ C , where f(g1, . . . , gn) is the s-ary
function such that f(g1, . . . , gn)(x1, . . . , xs) is defined as

f(g1(x1, . . . , xs), . . . , gn(x1, . . . , xs)).

An operation f : Bn → B is called conservative if
for all x1, . . . , xn ∈ B it holds that f(x1, . . . , xn) ∈
{x1, . . . , xn}. A clone is called conservative if all opera-
tions are conservative. We later need the following classical
result for clones over a two-element set.

Theorem 13 (Post 1941). Let C be a conservative operation
clone on {0, 1}. Then either C contains only projections, or
at least one of the following operations:

1. the binary function min,
2. the binary function max,
3. the minority function,
4. the majority function.

Operation clones occur naturally as polymorphism clones
of relational structures. If a1, . . . , an ∈ Bk and f : Bn →
B, then we write f(a1, . . . , an) for the k-tuple obtained by
applying f component-wise to the tuples a1, . . . , an.

Definition 14. Let B a structure with a finite relational sig-
nature τ and let R ∈ τ . An n-ary operation f preserves the
relation RB if for all a1, . . . , an ∈ RB it holds that

f(a1, . . . , an) ∈ RB.

If f preserves all relations from B then f is called a poly-
morphism of B.

The set of all polymorphisms (of all arities) of a relational
structure B is an operation clone on B, which is denoted by
Pol(B). A Siggers operation is an operation that satisfies
the Siggers identity (see Thm. 1).The following result can
be obtained by combining known results from the literature.

Theorem 15 (Siggers 2010; Bulatov 2003; also see (Barto
2011; Bulatov 2016)). Let B be a finite structure with a
finite relational signature such that Pol(B) is conservative.
Then either

1. there exist distinct a, b ∈ B such that for every f ∈
Pol(B)(n) the restriction of f to {a, b}n is a projection.
In this case, CSP(B) is NP-complete.

2. Pol(B) contains a Siggers operation; in this case,
CSP(B) is in P.

We now discuss fundamental results about the universal-
algebraic approach for constraint satisfaction problems of
structures with an infinite domain.

Theorem 16 (Bodirsky and Nešetřil 2006). Let B be a ho-
mogeneous structure with finite relational signature. Then a
relation is preserved by Pol(B) if and only if it is primitively
positively definable (see Def. 8) in B.

In the following let A ∈ RRA be finite and with a normal
representation B.

Definition 17. Let a1, . . . , an ∈ A0 be atoms of A. Then
a tuple (x1, . . . , xn, y1, . . . , yn) is in the 2n-ary relation
(a1, . . . , an)B iff aBi (xi, yi) holds for all i ∈ {1, . . . , n}.

An operation f : Bn → B is called edge-conservative if
it satisfies for all x, y ∈ Bn and all a1, . . . , an ∈ A0

(a1, . . . , an)B(x, y)⇒ (f(x), f(y)) ∈
⋃

i∈{1,...,n}

aBi .

Note that for every D ⊆ A0 the structure B contains the
relation

⋃
ai∈D a

B
i . Therefore the next proposition follows

immediately since polymorphisms of B preserve all rela-
tions of B.

Proposition 18. All polymorphisms of B are edge-
conservative.

Definition 19. Let X ⊆ A0. An operation f : Bn → B
is called X-canonical if there exists a function f̄ : Xn →
A0 such that for all x, y ∈ Bn and a1, . . . , an ∈ X , if
(xi, yi) ∈ aBi for all i ∈ {1, . . . , n} then (f(x), f(y)) ∈
f̄(a1, . . . , an)B. An operation is called canonical if it isA0-
canonical. The function f̄ is called the behaviour of f onX .
If X = A0 then f̄ is just called the behaviour of f .

It will always be clear from the context what the domain
of a behaviour f̄ is. An operation f : S2 → S is called sym-
metric if for all x, y ∈ S it holds that f(x, y) = f(y, x).
An X-canonical function f is called X-symmetric if the be-
haviour of f on X is symmetric.

Ramsey Theory and Canonisation
We avoid giving an introduction to Ramsey theory, since the
only usage of the Ramsey property is via Thm. 21, and rather
refer to (Bodirsky 2015) for an introduction.
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Let A be a homogeneous τ -structure such that Age(A)
has the strong amalgamation property. Then the class of all
(τ ∪ {<})-structures A such that <A is a linear order and
whose τ -reduct (i.e. the structure on the same domain, but
only with the relations that are denoted by symbols from τ ,
see e.g. (Hodges 1997)) is from Age(A) is a strong amal-
gamation class, too (see for example (Bodirsky 2015)). By
Thm. 11 there exists an up to isomorphism unique count-
able homogeneous structure of that age, which we denote
by A<. It can be shown by a straightforward back-and-forth
argument that A< is isomorphic to an expansion of A, so we
identify the domain of A and of A< along this isomorphism,
and call A< the expansion of A by a generic linear order.

Theorem 20 (Nešetřil and Rödl 1989; Hubička and Nešetřil
2019). Let A be a relational τ -structure such that Age(A)
has the free amalgamation property. Then the expansion of
A by a generic linear order has the Ramsey property.

The following theorem gives a connection of the Ramsey
property with the existence of canonical functions and plays
a key role in our analysis.

Theorem 21 (Bodirsky and Pinsker 2016). Let B be a
countable homogeneous structure with finite relational sig-
nature and the Ramsey property. Let h : Bk → B be
an operation and let L be the set of all k-ary operations
α(h(β1, . . . , βk)) where α, β1 . . . , βk are automorphisms of
B. Then there exists a canonical operation g : Bk → B
such that for every finite F ⊂ B there exists g′ ∈ L such
that g′|Fk = g|Fk .

Relation Algebras with a Flexible Atom
In this section we define relation algebras with a flexible
atom and show how to reduce the classification problem
for their network satisfaction problem to the situation where
they are additionally integral. Then we show that integral
relation algebras with a flexible atom have a normal rep-
resentation. Therefore, the universal-algebraic approach is
applicable; in particular, we make heavy use of Thm. 16 in
the subsequent sections. Finally, we prove that every normal
representation of a finite relation algebra with a flexible atom
has a Ramsey expansion. Therefore, the tools from section
“Ramsey Theory and Canonisation” can be applied, too.

Let A ∈ RRA and let I := {a ∈ A | a ≤ Id}. An atom
s ∈ A0 \I is called flexible if for all a, b ∈ A\I it holds that
s ≤ a ◦ b. A finite representable relation algebra A is called
integral if the element Id is an atom of A.

Proposition 22. Let A ∈ RRA be finite and with a flexi-
ble atom s. Then there exists a finite integral A′ ∈ RRA
with a flexible atom such that NSP(A) and NSP(A′) are
polynomial-time equivalent.

We assume for the rest of the section that A ∈ RRA is
finite, integral, and with a flexible atom s.

We consider the setA−s := {a ∈ A | s 6≤ a}. Let (V ; f)
be an A-network and let C be the correspondingA-structure.
Let C− s be the (A− s)-structure on the same domain V as
C such that for all x, y ∈ V and a ∈ (A− s) \ {0} we have

aC−s(x, y) if and only if (aC(x, y) ∨ (a ∪ s)C(x, y)).

◦ Id a b

Id Id a b
a a {Id, a, b, } {a, b}
b b {a, b} {Id, a, b}

Figure 2: Multiplication table of relation algebras #18

We call C−s the s-free companion of an A-network (V ; f).
The next lemma follows directly from the definitions of

flexible atoms and s-free companions.

Lemma 23. Let C be the class of s-free companions of
atomic closed A-networks. Then C has the free amalgama-
tion property.

As a direct consequence we obtain the following.

Proposition 24. A has a normal representation B.

The next theorem follows by Thm. 20 and Lem. 23.

Theorem 25. Let B be a normal representation of A. Let
B< be the expansion of B by a generic linear order. Then
B< has the Ramsey property.

Remark 26. The binary first-order definable relations of
B< build a proper relation algebra since B< has quantifier-
elimination (see (Hodges 1997)). By the definition of the
generic order the atoms of this proper relation algebra are
the relations

{aB<∩ <B< | a ∈ A0 \ {Id}}
∪ {aB<∩ >B< | a ∈ A0 \ {Id}}
∪ {Id}.

We give two concrete examples of finite, integral, sym-
metric relation algebras with a flexible atom (Ex. 27 and 28).
The numbering of the relation algebras in the examples is
from (Andréka and Maddux 1994).

Example 27 (Relation algebra #18). The relation algebra
#18 has three atoms, namely the identity atom Id and two
symmetric atoms a and b. The multiplication table for the
atoms is given in Fig. 2. In this relation algebra the atoms
a and b are flexible. Consider the countable, homogeneous,
undirected graph R = (V ;ER), whose age is the class of
all finite undirected graphs (see, e.g., (Hodges 1997)), also
called the Random graph. The expansion of R by all binary
first-order definable relations is a normal representation of
the relation algebra #18. In this representation the atoms
a and b are interpreted as the relation ER and the relation
NR, where NR is defined as ¬E(x, y) ∧ x 6= y.

Example 28 (Relation algebra #17). The relation algebra
#17 also consists of three symmetric atoms. The multiplica-
tion table in Fig. 1 shows that in this relation algebra b is a
flexible atom. To see that a is not a flexible atom, note that
a 6≤ a ◦ a = {Id, b}. Let N = (V ;EN) be the countable,
homogeneous, undirected graph, whose age is the class of
all finite undirected graphs that do not embed the complete
graph on three vertices (see, e.g., (Hodges 1997)). If we ex-
pand N by all binary first-order definable relations we get
a normal representation of the relation algebra #17. To see
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this note that we interpret a as the relationEN. That N is tri-
angle free, i.e. triangles of EN are forbidden, matches with
the fact that a 6≤ a ◦ a holds in the relation algebra.

Polynomial-time Tractability
In this section we introduce for every finite A ∈ RRA an
associated finite structure, called the atom structure of A.
Note that it is closely related, but not the same, as the type
structure introduced in (Bodirsky and Mottet 2016). In the
context of relation algebras the atom structure has the ad-
vantage that its domain is the set of atoms of A, rather than
the set of 3-types, which would be the domain of the type
structure in (Bodirsky and Mottet 2016); hence, our domain
is smaller and has some advantages that we discuss at the
end of the section. Up to a minor difference of the signature,
our atom structure is the same as the atom structure intro-
duced in (Lyndon 1950) (which was used there for different
purposes; also see (Maddux 1982; Hirsch and Hodkinson
2001; Hirsch, Jackson, and Kowalski 2019)).

We will reduce CSP(B) to the CSP of the atom struc-
ture. This means that if the CSP of the atom structure is in
P, then so are CSP(B) and NSP(A). For our main result
we will show later that every network satisfaction problem
for a finite integral symmetric relation algebra with a flex-
ible atom that cannot be solved in polynomial time by this
method is NP-complete. Let B be throughout this section a
normal representation of a finite A ∈ RRA.

Definition 29. The atom structure of A is the finite rela-
tional structure O with domain A0 and the following rela-
tions:

• for all x ∈ A the unary relation xO := {a ∈ A0 | a ≤ x}
• the binary relation EO := {(a1, a2) ∈ A2

0 | a^1 = a2}
• the ternary relation

HO := {(a1, a2, a3) ∈ A3
0 | a3 ≤ a1 ◦ a2}.

Proposition 30. There is a polynomial-time reduction from
CSP(B) to CSP(O).

Proof (Sketch). We state the reduction explicitly and skip
the correctness proof.

Let Ψ be an instance of CSP(B) with variable set X =
{x1, . . . , xn}. We construct an instance Φ of CSP(O) as fol-
lows. The variable set Y of Φ is given by Y := {(xi, xj) ∈
X2 | i ≤ j}. The constraints of Φ are of the two kinds:

1. Let a ∈ A be an element of the relation algebra and let
a(xi, yj) be an atomic formula of Ψ. If i < j holds, then
we add the atomic (unary) formula a((xi, xj)) to Φ; oth-
erwise we add the atomic formula a^((xi, xj)).

2. Let xi, xj , xl ∈ X be such that i ≤ j ≤ l. Then we add
the atomic formula H((xi, xj), (xj , xl), (xi, xl)) to Φ.

One can show that the reduction from Ψ to Φ is correct.

We obtain another property of the atom structure which is
fundamental for our result. Recall that every canonical poly-
morphism f induces a behaviour f̄ : An

0 → A0. One can
observe that f̄ is a polymorphism of O. Moreover the other

direction also holds. Every g ∈ Pol(O) is the behaviour of
a canonical polymorphism of B.

Recall from Prop. 18 that polymorphisms of B are edge-
conservative. Note that this implies that polymorphisms of
O are conservative. In fact, Thm. 15 and the previous propo-
sition imply the following.
Proposition 31. If Pol(B) contains a canonical polymor-
phism s such that its behaviour s is a Siggers operation in
Pol(O) then CSP(B) is polynomial-time solvable.

We demonstrate how this result can be used to prove
polynomial-time tractability of NSP(A) for a symmetric,
integral A ∈ RRA with a flexible atom.
Example 32 (Polynomial-time tractability of relation alge-
bra #18, see (Cristiani and Hirsch 2004), see also Section
8.4 in (Bodirsky and Pinsker 2015)). We consider the fol-
lowing function s̄ : {Id, a, b}6 → {Id, a, b}.

s̄(x1, . . . , x6) :=


a if a ∈ {x1, . . . , x6},
b if b ∈ {x1, . . . , x6} and

a 6∈ {x1, . . . , x6},
Id otherwise.

Let R′ be the normal representation of the relation algebra
#18 given in Ex. 27. Note that s̄ is the behaviour of an injec-
tive, canonical polymorphism of R. The injectivity follows
from the last line of the definition; if s̄(x1, . . . , x6) = Id
then {x1, . . . , x6} = {Id}. Therefore s̄ preserves all al-
lowed triples, since in the relation algebra #18 the only for-
bidden triples involve Id. One can check that s̄ is a Siggers
operation and therefore we get by Prop. 31 that NSP(#18)
is polynomial-time solvable.

NP-Hardness
Let B be a normal representation of a finite integral sym-
metric A ∈ RRA with a flexible atom s. The goal of this
section is to sketch a proof of the remaining part of Thm. 1.
We want to point out that the technical details of this proof
will appear in the journal version of the present article. We
want to show that if B does not have a canonical polymor-
phism with a behaviour that satisfies the Siggers identity,
then CSP(B) is NP-hard. Let us start by stating the next
lemma which is central in our proof. A lemma of a simi-
lar type appeared for example as Lem. 42 in (Bodirsky and
Pinsker 2014) (see also (Bodirsky, Jonsson, and von Oertzen
2011)).
Lemma 33. Let a and b be atoms of A. Then the following
are equivalent:

1. B has an {a, b}-symmetric polymorphism g with
g(a, b) = g(b, a) = a.

2. For every primitive positive formula ϕ such that ϕ ∧
a(x1, x2) ∧ b(y1, y2) and ϕ ∧ b(x1, x2) ∧ a(y1, y2) are
satisfiable over B, the formula ϕ ∧ a(x1, x2) ∧ a(y1, y2)
is also satisfiable over B.

We use this lemma to obtain the following statement:
Proposition 34. Let f be a binary injective polymorphism of
B and let a 6≤ Id and b 6≤ Id be two atoms such that B has
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no {a, b}-symmetric polymorphism. Then all polymorphisms
are canonical on {a, b}.

The next step is to obtain a condition for NP-hardness.

Proposition 35. If B does not have a binary injective poly-
morphism, then CSP(B) is NP-complete.

In order to prove Prop. 35 we show the following lemma.

Lemma 36. If B does not have an injective binary polymor-
phism, then B does not have an {s, Id}-symmetric polymor-
phism.

By a similar lemma to Lem. 34 (without assuming the
existence of a binary polymorphism and without assuming
a 6≤ Id and b 6≤ Id) it follows that all polymorphisms are
{s, Id}-canonical. This means that Pol(B) induces an op-
eration clone C on a two-element set. Note that C cannot
have a majority or a minority operation since one of the two
atoms is Id (this can be proved by an analogous argument
as in the proof of Lem. 36). We also know that C does not
contain a symmetric operation and therefore by Thm. 13,
C contains only projections. By a well-known result (see,
e.g., (Bodirsky 2008)) this implies NP-hardness of CSP(B)
and proves Prop. 35.

Our assumption that B does not have a canonical poly-
morphism with a behaviour that satisfies the Siggers identity
implies by Thm. 15 and the connection of canonical poly-
morphisms and polymorphisms of the atom structure (see
section “Polynomial-time Tractability”) the existence of two
distinct atoms a, b ∈ A0 such that all canonical polymor-
phisms behave like projections on {a, b}. This means that
on these atoms there exists no canonical {a, b}-symmetric
polymorphism. In order to apply Prop. 34 on these atoms
we show that there exists also no {a, b}-symmetric (and not
necessarily canonical) polymorphism.

Assume for contradiction that there exists an {a, b}-
symmetric polymorphism f with f(a, b) = a = f(b, a).
We first show that f is injective. Assume there exist c ∈ A0

and x, y ∈ B2 with (c, Id)(x, y) such that Id(f(x), f(y))
holds in B. Consider the case that s 6∈ {a, b} holds. Then
we choose z ∈ B2 such that (a, b)(z, x) and (s, b)(z, y)
hold. This is possible since s is a flexible atom. By the
assumption on the polymorphism f we get a(f(z), f(x))
and (s∪ b)(f(z), f(y)). Therefore, the substructure induced
on f(x), f(y), and f(z) would either imply that the triple
(Id, s, a) holds or that the triple (Id, b, a) holds, which are
both forbidden triples in A since s 6= a and b 6= a. This
is a contradiction because f is a polymorphism of B. The
cases where s ∈ {a, b} holds can be shown by an analo-
gous argument. Therefore, Id(f(x), f(y)) is not possible for
our choice of x and y. Since c ∈ A0 was arbitrary and we
showed that f(c, Id) = c = f(Id, c) this implies that f is
injective.

For an injective polymorphism f there exists a polymor-
phism f< of the generic combination B< such that there
exists an injective endomorphism e of B with f = e ◦ f<
as mappings from B2 → B. Note that B< is by Thm. 25
an ordered Ramsey structure. Let g< be the canonical (with
respect to B<) operation that exists if we apply Thm. 21 on

f<. Note that g< is an {a, b}-canonical polymorphism of B
(but not canonical).

Consider the proper relation algebra induced by the bi-
nary first-oder definable relations of B< (see Rem. 26).
Let X be the subset of atoms with the following definition:
X := {aB<∩ <B< | a ∈ A0 \ {Id}} ∪ {Id}. The behaviour
of g on X induces a function A2

0 → A0. This function is
well-defined since all of the atoms of A are symmetric by
our assumption. One can observe that this function is the be-
haviour of some canonical polymorphism of B. This poly-
morphism is also {a, b}-symmetric. Therefore we get that if
no canonical {a, b}-symmetric polymorphism exists then no
{a, b}-symmetric polymorphism exists.

By Prop. 34 we obtain that all polymorphisms of B are
{a, b}-canonical. This means again that Pol(B) induces an
operation clone on a two-element set. To complete our hard-
ness proof one step is missing. Pol(B) could possibly in-
duce a majority or a minority operation f on {a, b}. To prove
that this is impossible we again “extend” a partial canoni-
cal behaviour to a global one. This yields a contradiction,
since our assumption was that all canonical polymorphism
are like projection on {a, b}. Therefore, Pol(B) induces by
Thm. 13 a projection clone on {a, b}. We use the result from
(Bodirsky 2008) and obtain NP-hardness of CSP(B).

The following shows how to apply our hardness result to
a concrete A ∈ RRA.
Example 37 (Hardness of relation algebra #17,
see (Bodirsky et al. 2019; Bodirsky and Knäuer 2020a)).
To prove the NP-hardness of the NSP for the relation
algebra from Ex. 28 we do not need the full power of our
classification result. It is enough and easier to see that
the hardness condition given in Prop. 35 applies. Let N′
be the normal representation of the relation algebra #17
mentioned in Ex. 28. The structure N′ does not have a
binary injective polymorphism. To see this, consider a
substructure of N′2 on elements x, y, z ∈ V 2 such that
(E,=)(x, y), (=, E)(y, x), and (E,E)(x, z) hold in N′.
Assume there exists an injective binary polymorphism f .
This means that f(E, Id) = E = f(Id, E) holds. Then we
get that E(f(x), f(y)), E(f(y), f(z)) and E(f(x), f(z)
hold in N′, which is a contradiction, since in N′ triangles
of this form are forbidden. Therefore, Prop. 35 implies
NP-hardness of NSP(#17).

Conclusion
We classified the computational complexity of the network
satisfaction problem for a finite symmetric A ∈ RRA with
a flexible atom and obtained a P versus NP-complete di-
chotomy. We gave decidable criteria for A that character-
ize both the containment in P and NP-hardness. We want to
mention that if we drop the assumptions on A to be sym-
metric and to have a flexible atom the statement of Thm. 1
is false. An example for this is the Point Algebra; although
the NSP of this relation algebra is in P, the first condition of
Thm. 1 does not apply. On the other hand, if we only drop the
symmetry assumption we conjecture that Thm. 1 still holds.
Similarly, if we only drop the flexible atom assumption we
conjecture that the statement also remains true.
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