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Abstract
The Algebra of Modular System is a KR formalism that al-
lows for combinations of modules written in multiple lan-
guages. Informally, a module represents a piece of knowl-
edge. It can be given by a knowledge base, be an agent, an
ASP, ILP, CP program, etc. Formally, a module is a class
of structures over the same vocabulary. Modules are com-
bined declaratively, using, essentially, operations of Codd’s
relational algebra.
In this paper, we address the problem of checking modular
system containment, which we relate to a homomorphism
problem. We prove that, for a large class of modular sys-
tems, the containment problem (and thus equivalence) is in
the complexity class NP, and therefore is solvable by, e.g.,
SAT solvers. We discuss conditions under which the problem
is polynomial time solvable.

Introduction
Programming from reusable components is one of the main
attributes of good software engineering practice. Such a
practice reduces the effort, minimizes bugs, saves the cost
and time for more high-level development tasks. The the-
ory of combining conventional imperative programs and
digital circuits is relatively well developed. However, in
knowledge-intensive computing, characterized by using so-
called declarative programming, research on combining het-
erogeneous components is not as advanced. It would be very
desirable to be able to write new programs by taking, e.g., a
program written in Answer Set Programming (ASP), com-
bining it with a specification of a Constraint Satisfaction
Problem (CSP), and then also with an Integer Linear Pro-
gram (ILP), in a compound specification for solving a more
complex task. Moreover, the components should be substi-
tutable, so that parts can be replaced with an alternative de-
sign without breaking the intended functionality.

A central algorithmic problem in the modular setting is
that of modular system equivalence. Being able to solve the
equivalence problem is usually the first step toward develop-
ing optimization techniques. Moreover, this task is crucial,
for example, in system development and rapid prototyping.
A related notion is that of modular systems containment. It
asks whether one modular system is “contained” in the other.
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For example, the first expression may represent the system
and the second one the property to be satisfied. Contain-
ment then implies that the design is good, that is, it satisfies
the specification. Moreover, containment property is in the
core of the notions of abstraction-refinement and tightening-
relaxation often used in reasoning about computational pro-
cesses and operations research. Algorithms for containment
also solve equivalence, i.e., containment in both directions.

While several declarative formalisms provide their own
solutions for combining homogeneous modules, our goal is
distinctly different. We need combinations of components
specified in different languages (even legacy languages),
and those that rely on different solving technologies. For in-
stance, consider a company that provides logistics services.
It decides how to pack goods and deliver them. The sys-
tem has to solve two NP-complete tasks interactively – Mul-
tiple Knapsack and Travelling Salesman Problem. It takes
items from customers to deliver, and considers their prof-
its, weights, and the capacity of trucks available. It has to
decide how to pack the items in the trucks, and for each
truck, to solve a TSP problem. To save time and other re-
sources, the company utilizes reusable components, that we
call concrete modules. The Knapsack part can be solved,
by, e.g., a concrete module in Integer Linear Programming
(ILP), and the TSP part by a concrete module in Answer
Set Programming (ASP). The system is specified by an al-
gebraic expression that combines these and possibly other
components. The expression can be optimized using mod-
ular system equivalence and verified against a specifica-
tion of a desired behaviour. Clearly, our goal of utilizing
modules “as is” implies the need for a semantic, language-
independent approach. Moreover, a natural compositionality
principle should hold: a combination of modules is, again, a
module that can be further reused.

Early work on combining heterogeneous modules, with a
range of operators, is (Järvisalo et al. 2009) and (Tasharrofi
and Ternovska 2011). The latter paper proposed a semantic
approach to combining modules, where modules correspond
to classes of structures. However, when a module is a class
of structures over a specific vocabulary, what is the notion
of substitutability of a module by a new one, that uses a dif-
ferent but “compatible” vocabulary? The authors have not
formalized this notion. Thus, that early work, while making
an important transition to considering classes of structures,
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does not fully support programming from reusable compo-
nents. Moreover, it was not clear to us how to even approach
the problem of modular system containment in that formal-
ism. The algebra of (Ternovska 2019) is similar to ours, but
it also does not differentiate between abstract and concrete
modules. The main focus of that work is on a transition from
a static algebra to a dynamic one, and to a related modal
dynamic logic. Other heterogeneous formalisms have been
proposed, but they either use embeddings of one specific
logic into another, e.g., (Sebastiani 2007; de Bruijn et al.
2007; Eiter et al. 2008), or limit to conjunctions of modules
(Lierler and Truszczynski 2014).

The inspiration of our Algebra of Modular Systems comes
from Database theory. In 1970 Edgar (Ted) F. Codd intro-
duced a relational data model and two query languages: re-
lational algebra and relational calculus (Codd 1970). Rela-
tional algebra contains five basic operations on relational ta-
bles (sets of tuples). Relational calculus, a first-order logic
counterpart, was proven to be essentially equivalent to the
algebra (Codd 1972). The formalism is in the foundation
of thousands of relational database management systems
(RDBMS), a software industry generating tens of billions
of dollars annually.

While database queries, expressed using Codd’s relational
algebra, can be viewed as relations definable with respect to
a structure (a database), declarative problem specifications
can be understood as axiomatizations of classes of struc-
tures that constrain allowable solutions by some rules. The
two notions (in italic) are defined in two consecutive chap-
ters in the classic Enderton’s textbook on mathematical logic
(Enderton 1972). The main idea of the Algebra of Modular
Systems is to lift Codd’s algebra from operations on rela-
tional tables to operations on classes of structures. This ap-
proach inherits compositionality of classical logic. However,
by itself, the notion of a module as a class of structures, as in
the previous work, is not sufficient to formalize substitutabil-
ity of various modules into a modular system, as required by
a good software engineering practice.

Contributions Unlike the previous work, we introduce a
version of the Algebra of Modular Systems with variables
that are distinct from constant symbols of a relational vo-
cabulary. Applying compound modules then means binding
the variables with relational symbols of the (reusable) com-
ponents. Such binding (or, equivalently, substitutions of con-
stant relational symbols for relational variables with match-
ing arities) is performed in accordance with what combina-
tions of modules are needed. Moreover, unlike Codd’s alge-
bra, unconstrained variables are implicitly cylindrified, i.e.,
interpreted arbitrarily.1

We introduce a novel distinction between abstract and
concrete modules. Formally, a (concrete) module is a class
of structures, however, such understanding is too restrictive
in the context of reusable components. Therefore we intro-
duce abstract modules that can be instantiated by a concrete

1The term comes from Tarski’s Cylindric Algebras. These al-
gebras were introduced by Tarski and others as a tool in the alge-
braization of the first-order predicate calculus. See (Van den Buss-
che 2001) for a historic context in applications to Database theory.

one by fixing a first-order vocabulary. A concrete module
can be given by a knowledge base in some logic, be a specifi-
cation of a robotic agent, be, e.g., an ASP, CSP, ILP, CP pro-
gram, etc. It can even be a human making decisions. In prac-
tice, any decision procedure, of arbitrary complexity, could
be used. In contract, abstract modules are used in compound
specifications. Such an algebraic specification can be “ap-
plied” to any matching concrete modules (i.e., equivalently,
boolean queries, classes of structures, decision procedures).

We introduce a general notion of representability of a
module in a formalism, and apply it to some examples of
ASP and CSP concrete modules.

Our main technical contribution is a study of the formal
problem of Modular System Containment. In this problem,
we are given two expressions, and ask whether the struc-
tures that satisfy the first one, also satisfy the second one. A
crucial related notion is that of homomorphism. Our study
of the Containment problem is inspired by the results of
(Chandra and Merlin 1977) on a similar containment prob-
lem for database queries. In particular, we show that Mod-
ular System Equivalence problem (and thus, the Contain-
ment problem) is undecidable in general. Then, similar to
(Chandra and Merlin 1977), we consider a restricted class
of modular systems, namely Conjunctive Compound Mod-
ules (CCM). We prove that CCMs exhibit a similar connec-
tion to homomorphisms between relational structures in fi-
nite model theory. This implies that for CCMs the modular
system containment is in the complexity class NP. This kind
of modular systems are analogous to conjunctive queries in
database theory that constitute by far the largest class of
practical queries in databases. The hope is that CCMs will
represent an equally common pattern among modular sys-
tems. Unlike database queries, CCMs exhibit a significantly
more general level of abstraction. Being abstract compound
modules, they are even more general than classes of struc-
tures. Finally, we discuss conditions under which the CCM
Containment problem becomes polynomial time solvable.

Algebra: Syntax and Semantics
We need a few preliminary notions. A first-order vo-
cabulary (denoted, e.g. τ,ε,ω) is a finite sequence
of non-logical (predicate and function) symbols, each
with an associated arity. A τ-structure, e.g. A =
(A;SA

1 , ...,SA
n , f A

1 , ..., f A
m ,cA

1 , ...,cA
l ) is a domain A to-

gether with interpretations of predicate symbols, function
and constants (0-ary functions) in τ . To simplify presenta-
tion, we view functions as particular kinds of relations and
consider relational structures only. We use B|σ to mean
structure B restricted to vocabulary σ . Symbol “:=” means
“denotes” or “is by definition”.

Syntax of the Algebra. An atomic module symbol (or sim-
ply an atom) is an expression M(X1, . . . ,Xk), where the Xi’s
are called relational variables. Each Xi has an associated ar-
ity ai. The set {X1, . . . ,Xk} is called the vocabulary of M
and is denoted vocab(M). The vocabulary of M, vocab(M),
which consists of relational variables, is not to be confused
with a first-order vocabulary defined above for structures,
e.g., τ , which consists of predicate symbols. In the former,
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we have variables, in the latter, we have constants. For a
fixed (first order) vocabulary τ an expression M(Si1 , . . . ,Sik),
where {Si1 , . . . ,Sik} ⊆ τ is called a concrete module or in-
stantiation of M in τ , provided the arity of each Si j equals
a j. We write X and S to denote tuples 〈X1, . . . ,Xk〉 and
〈Si1 , . . . ,Sik〉, respectively.

A basic compound module is built by the grammar (we
use the usual rules for such expressions)

α ::=> |Mi | (α ∩α) | (α ∪α) | (α−α) | πν(α) | σΘ(α).
(1)

Symbol > represents a tautological module, and Mi are
atomic module symbols. If α is a compound module con-
structed this way, then vocab(α) is the union of vocab(Mi)
for all atomic modules involved in α . The operations (except
>) are like in Codd’s relational algebra, but are of a higher
order, and are defined on classes of structures rather than on
relational tables. In particular, projection is onto relational
variables of vocab(α) rather than onto object variables. The
three set-theoretic operations are union (∪), intersection (∩),
set difference (−). Projection (πν(α)) is a family of unary
operations, one for each ν , where ν ⊆ vocab(α). The con-
dition Θ in selection σΘ(E) is an expression that is built up
using ∧, ∨, ¬, from equivalence operators ≡, 6≡, applied to
variables in α . Selection can be used, in particular, to con-
nect modules by equating relational symbols of equal arity.
Notice that the framework works for infinite structures.

Semantics of Atomic Modules. The semantics of an atom
M(X1, . . . ,Xk) is given in two steps. First, for a FO (first-
order) vocabulary τ = {S1,S2, . . .} we instantiate vocab-
ulary symbols X1, . . . ,Xk as predicate symbols Si1 , . . . ,Sik
from τ so that the arities of X j and Si j match. The semantics
of the resulting concrete module M(Si1 , . . . ,Sik) indicates
whether M(S) is true (notation B |= M(S)) or false on τ-
structure B (notation B 6|= M(S)). For any two τ-structures
B1, B2 which coincide on {Si1 , . . . ,Sik}, we have B1 |=
M(S) iff B2 |= M(S). Thus, for the vocabulary τ and an
instantiation Si1 , . . . ,Sik the concrete module M(Si1 , . . . ,Sik)
defines a class of structures with vocabulary τ .

As a simple example consider the module M3Col that (in-
tuitively) decides whether or not a given graph, that is, a set
of nodes and a set of edges is 3-colourable. Such a module
has a very natural semantics on the class of graphs, that is, τ-
structures with τ = {E} where E is a binary predicate sym-
bol: For a graph G = (V ;EG) it holds G |= M3Col(E) if and
only if G is 3-colourable. However, the freedom of interpre-
tations of vocabulary variables allows for more flexibility.
Let τ = {B,R}, where both B and R are binary symbols. In
other words τ is the vocabulary of bigraphs, structures with
edges of two types, say, blue and red. Then for a bigraph
G = (V ;BG,RG) the expression G |= M3Col(B) that the blue-
edged part of G is 3-colourable, while G |= M3Col(R) means
that the red-edged part of G is 3-colourable.

Modules can also be thought of in a more straightforward
way. In this way the variables of a module M(X1, . . . ,Xk) are
instantiated as predicates over some domain and the mod-
ule “evaluates” them. To define what it means that a τ-
structure A satisfies module M, we need to first select pred-

icate symbols Si1 , . . . ,Sik from τ , whose arities match those
of X1, . . . ,Xk, and then “apply” the module to SA

i1 , . . . ,S
A
ik , as

we would apply a decision procedure.
Semantics of Five Basic Operations. Satisfaction relation
|= for compound algebraic expressions is built inductively.
1. Product (α1(X)∩α2(Y )).2 For a vocabulary τ , instan-
tiations R and S of X and Y , respectively, and a structure
B with vocabulary τ , we have B |= α1(R)∩α2(S) iff both
B |= α1(R) and B |= α2(S).
2. Union (α1(X)∪α2(Y )). For a vocabulary τ , instantiations
R and S of X and Y , respectively, and a structure B with
vocabulary τ , B |= α1(R)∪α2(S) iff at least one of B |=
α1(R) and B |= α2(S) holds.3

3. Set Difference (α1(X)−α2(Y )). For a vocabulary τ , in-
stantiations R and S of X and Y , respectively, and a struc-
ture B with vocabulary τ , we have B |= α1(R)−α2(S) iff
B |=α1(R) and B 6|=α2(S). Thus, α1−α2 represents a class
of structures over the joint vocabulary that are in α1(R), but
not in α2(S).
4. Projection (πν(α(X1, . . . ,Xk))), ν ⊆ {X1, . . . ,Xk}. For a
vocabulary τ , instantiation Si of Xi ∈ ν , and a structure
B with vocabulary τ , the semantics is given by: B |=
πν(α)(Si : Xi ∈ ν) if there are instantiations Si in τ of Xi ∈
{X1, . . . ,Xk}−ν , and a τ-structure B′ such that B′ |= α(S)
and B and B′ agree on Si, Xi ∈ ν . The operation restricts
the structures of α to ν ⊆ vocab(α) leaving the instantia-
tions of other symbols open. Thus, it is more relaxed than
the original expression and increases the number of models.
5. Selection is a family of unary operations of the form
σ

Θ(X)(α(X)), where Θ is a condition that can be applied as
a test to each structure from instantiations of M.

The semantics is given by B |=σ
Θ(S)(α(S)) iff B |=α(S)

and B |=FO Θ(S), where |=FO is the satisfaction relation in
the sense of classical first-order logic. Notice that as selec-
tion imposes extra restrictions on a potential model, it de-
creases the number of models.

Example 1 Let MHC(X ,Y ) and M2Col(X ,Z,T ) be modules
“computing” a Hamiltonian Circuit, and a 2-colouring. In
other words, X ,Y are variables of arity 2, and the first mod-
ule decides if Y forms a Hamiltonian Circuit (represented
as a set of edges) in the graph given by edge set X . Vari-
able X of the second module has arity 2, and variables Z,T
are unary; the module decides if unary relations Z,T spec-
ify a proper 2-colouring of the graph with edge set X . The
following algebraic expression determines a combination of
2-Colouring and Hamiltonian Circuit, that is whether or not
there is a 2-colourable Hamiltonian Circuit.

M2Col-HC(X ,Z,T ) := πX ,Z,T (MHC(X ,Y )∩M2Col(Y,Z,T )).
(2)

2Note that variables X and Y do not have to be all different. In
this case equal variables must have equal instantiations.

3Note that in relational algebra, both arguments to the union
and the difference must be relations of the same arity. Here, tuples
S, R can be of different length because instantiations are over τ-
structures, where τ includes the vocabularies of all modules.

6237



Projection hides the instantiation of Y in MHC, since it is the
same as Y ’s in M2Col.

Example 2 The following algebraic expression specifies a
new module that verifies if a given structure with a cer-
tain binary relation is a graph that is a cycle MCycle(X) :=
πX (σ(X≡Y )(MHC(X ,Y )). An alternative way to express the
same module is MCycle(X) := MHC(X ,X).

Representing Modules in CSP and ASP
We illustrate how abstract modules can be concretely rep-
resented in two broadly used formalisms, Answer Set
Programming (ASP) and Constraint Satisfaction Problem
(CSP). We use well-known combinatorial problems as ex-
amples.4 In computer science, combinatorial decision prob-
lems are encoded as sets of binary strings. In finite model
theory (Libkin 2004), they correspond to classes of struc-
tures. E.g., 3-Colouring corresponds to all graphs that are
3-colourable. We say module M represents a problem P if
each structure in M consists of an instance and a certificate
of P , e.g., a graph and its colouring.

Representing Modules in CSP
CSP in the traditional AI form:

Instance: (V,D,C) where V is a finite set of variables, D
is a set of values (also called domain), C is a finite set of
constraints {C1, . . . ,Cn}. Each constraint is a pair (xi,Ti),
where xi is the scope, a list of variables of length mi, and
Ti is a mi-ary relation over D.
Question: Is there f : V → D such that f (xi) ∈ Ti for all i?
One can also search for such f .

Let A and B be τ-structures, where τ is a relational vo-
cabulary τ := {R1, . . . ,Rl}. A homomorphism is a function
h : A →B such that ∀i∈ {1, . . . , l}

[
(a1, . . . ,ani)∈ RA

i ⇒
(h(a1), ...,h(ani)) ∈ RB

i
]
.

CSP in homomorphism form:

Instance: Two τ-structures, C1 and C2. Question: Is there
a homomorphism h : C1→ C2?

To relate to the AI form of CSP, think of domain elements
in C1 as of variables. Tuples in relations in C1 correspond to
constraint scopes, and elements in C2 to values. Relations in
C2 are constraint relations.

Structure C is a homomorphic pair if it has the form

C = (D;Rdom(C1),R
C1
1 , . . .RC1

l︸ ︷︷ ︸
C1

,Rdom(C2),R
C2
1 , . . .RC2

l︸ ︷︷ ︸
C2

,HC ),

where dom(C1),dom(C2) ⊆ D, Rdom(C1) and Rdom(C2) are
unary relations that represent the domains of τ-structures C1
and C2, respectively, and HC is a relation that represents the
homomorphism function h.

Module M(X1, . . . ,Xk,Y1, . . . ,Yk,Z) is representable in
CSP (in homomorphism form) if: (a) the arity of X1,Y1

4We give examples in ASP and CSP, but any other formalism,
of arbitrary expressiveness, e.g. Essence (Frisch et al. 2008), could
also be used.

is 1, the arity of Xi equals that of Yi, and the arity of
Z is 2, (b) for any instantiation S1, . . . ,Sk,R1, . . . ,Rk,T
of X1, . . . ,Xk,Y1, . . . ,Yk,Z in a vocabulary τ , for a τ-
structure A , it holds that A |= M(S1, . . . ,Sk,R1, . . . ,Rk,T )
iff T A encodes a homomorphism from (SA

1 ;SA
2 , . . . ,SA

k ) to
(RA

1 ;RA
2 , . . . ,RA

k ). Such a representation is clearly not pos-
sible when the complexity of checking the membership in
the module exceeds NP.

The CSP representation of modules can be sometimes
simplified using the non-uniform CSP, when the first or the
second structure in a pair is fixed. In this case a CSP repre-
sentation of a module is closer to the standard representation
of, e.g., 3-Colouring, and intuitively corresponds to the class
of structures homomorphic to a fixed structure (or admitting
a homomorphism from a fixed structure). More precisely, let
B = (B;S1, . . . ,Sk), B = {b1, . . . ,b|B|} be a structure. Then
a module M(X1, . . . ,Xk,Z1, . . . ,Z|B|) is representable in the
right non-uniform CSP(B) if following conditions hold: (a)
the arity of Z1, . . . ,Z|B| is 1, and the arity of Xi equals that of
Si; (b) for any vocabulary τ , and any instantiation R, . . . ,Rk
and T1, . . . ,T|B| of X1, . . . ,Xk and Z1, . . . ,Z|B|, respectively,
for a τ-structure A it holds A |= M(R1, . . . ,Rk,T1, . . . ,T|B|)
iff T1, . . . ,T|B| is a partition of the domain A of A , and the
mapping ϕ : A→ B given by ϕ(a) = bi where a ∈ Ti for
a ∈ A is a homomorphism from (A;RA

1 , . . . ,RA ) to B. Rep-
resentations by the left non-uniform CSP are similar.

Example 3 (Hamiltonian Circuit in CSP (hom. form))
An abstract atomic module representing Hamiltonian
Circuit problem (denoted by MHC(X ,Y ), where X and
Y are binary), is such that for any vocabulary τ and any
instantiation S,R of X ,Y , for a τ-structure B with domain
V it holds that B |= M(S,R) iff G = (V ;SB) is a graph,
RB ⊆ SB is a set of edges of G that form a Hamiltonian Cir-
cuit. It is representable by a concrete CSP instance (C ,D)
in homomorphism form where C = (V ;EC ,(6=V )

C ),
D = (V ;ED ,(6=V )

D ) and there is a homomorphism H from
C to D . This CSP instance represents a class of structures
of the form E = (V ;EC ,(6=V )

C ,ED ,(6=V )
D ,HE ). Notice

that 6=V and H are auxiliary, not a part of MHC(E,CV ), and
are specific to the CSP representation.

Example 4 (Betweenness in CSP (AI form)) This prob-
lem was originally posed in (Opatrny 1979). An abstract
atomic module representing Betweenness problem,
MB(X ,Y ), for any instantiation N,F of X ,Y , is a class
of structures of the form B = (V ∪Q;NB,FB) where V
is a finite set, NB ⊆ V 3, mapping FB : V → Q is such
that it generates a linear ordering of V such that, for each
triple (r,b,g) ∈ MB , we have r < b < g or r > b > g, and
Rb = {(a,b,c) ∈Q3 | a < b < c or a > b > c}.

It is representable by concrete CSP instance (V,Q,C) in
the traditional AI form, where V is a set variables, Q is the
domain for those variables, and C is a set of constraints,
C = {Cm |m∈N}, Cm = ((u,v,w),Rb), and Rb = {(a,b,c)∈
Q3 | a < b < c or a > b > c}. Observe that Betweenness
admits representation by the right non-uniform CSP, as ev-
ery concrete module of this form is the class of all struc-
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tures that admit homomorphism to (Q,N), where N is the
betweenness relation on Q.

Example 5 (k-Colouring in CSP (homomorphism form))
An abstract atomic module representing k-Colouring prob-
lem, MkCol(X ,Y ), where both X ,Y are binary, is such that
for any vocabulary τ and any instantiation S,R of X ,Y , for a
τ-structure B with domain V it holds that B |= M(S,R) iff
G = (V ;SB) is a graph, RB ⊆ SB is an equivalence relation
on V with at most k equivalence classes such that each
equivalence class is an independent set of G.

Let Col refers to the relation that represents the homo-
morphism function h : G1 → G2. Consider structures of the
form:

C = (V ;V1
G1 ,EG1

1︸ ︷︷ ︸
G1

,V2
G2 ,EG2

2︸ ︷︷ ︸
G2

,ColC ),

concrete 3-Colouring CSP module, M3Col(E,Col), consists
of all the structures C as above, restricted to the vocabulary
of this module.

In general, any class of structures representable by CSP is
a (concrete) module. The converse is not true. This is due to
the well known property: if there is a homomorphism from
A to B and from B to C , there is also a homomorphism
from A to C . Any concrete module that does not satisfy this
condition cannot be represented by CSP. For example: pairs
of structures A , B such that |A|+ |B| is odd. There are A ,
B, C such that A →B and B→C , and |A|+ |B|, |B|+ |C|
are odd, so (A ,B), (B,C ) belong to the module. Then if
this module is representable by CSP, then, since A → C ,
we must have (A ,C ) in the module. But we do not because
|A|+ |C| is even.

Representing Modules in ASP
We assume familiarity of the reader with Answer Set Pro-
gramming (Niemelä 1999; Marek and Truszczynski 1999).
We separate IDB and EDB predicates, as is common in Dat-
alog. Intuitively, EDB predicates are given by a database,
and IDB predicates are definable in terms of those. For a pro-
gram Π, we use Π′ to denote an ASP program obtained by
augmenting Π with ground atoms representing the database,
the interpretations of the EDB predicates.

We say a module M is representable in ASP if there is
an ASP program Π such that the stable models of Π′, for
each interpretation of the EDB predicates, when limited to
the vocabulary of M, are precisely the structures of M.

Example 6 (Hamiltonian Circuit in ASP) The program is
from page 89 of (Hölldobler and Schweizer 2014).

1 {cycle(X ,Y ) : edge(X ,Y )} 1 :− node(X).
1 {cycle(X ,Y ) : edge(X ,Y )} 1 :− node(Y ).

reachable(Y ) :− cycle(s,Y ).
reachable(Y ) :− cycle(X ,Y ),reachable(X).

:− node(X),not reachable(X).

A node in the cycle has exactly one incoming and one out-
going edge, according to the first two rules. Since for every
node we nondeterministically pick one outgoing and incom-
ing edge, we might have generated a cycle or not. To rule out

model candidates not representing cycles, we check whether
every node can be reached by every other node and exclude
models where there is an unreachable node.

This concrete ASP module is a particular instantiation
MHC(edge,cycle) of the abstract module from Example 3,
where node, reachable and s are auxiliary and are specific
to this concrete representation.

We now give a general translation.
From ASP Programs to Atomic Modules An atomic mod-
ule representing general ASP program, MASP, where τ =
{R1, . . . ,Rl ,R1, . . . ,Rk}, is a class of structures of the form

A = (D;RA
1 , . . . ,RA

l︸ ︷︷ ︸
EDB

,RA
1 , . . . ,RA

k︸ ︷︷ ︸
IDB

),

where D is the active domain, i.e., the constants used in the
ground atoms representing the database.

Containment and Equivalence
Equivalence We say that two atomic or compound mod-
ules α,α ′ are equivalent,5 denoted α = α ′, if B |= α(S)
iff B |= α ′(S) for any τ-structure B and any instanti-
ation S of variables by relational symbols from τ . E.g.,
(M1∪M2)∩M3 = (M1∩M3)∪ (M2∩M3), for any choice of
atoms M1,M2,M3. Modular System Equivalence problem is
given two compound modules α1,α2, decide whether they
are equivalent.
Containment We say that a M1 is contained in M2, denoted
M1 v M2, if B |= M2(S) is true whenever B |= M1(S) is
true, for any structure B, for any instantiation of variables
S by relational symbols from τ . For compound modules
α1,α2 with atoms M1, . . . ,Ms, we say that α1 is contained
in α2, denoted α1 v α2, if B |= α2(S) is true whenever
B |= α1(S) is true, for any instantiations S and any choice
of atoms M1, . . . ,Ms. Thus, this is essentially the problem of
logical implication for our algebraic expressions. For exam-
ple, M1 ∩M2 vM1 vM1 ∪M2 for any choice of atoms M1,
M2. We have M1 = M2 iff M1 vM2 and M2 vM1.

Theorem 1 The Modular System Equivalence problem is
undecidable in general, even in the finite case.

Proof: (outline) The Finite Satisfiability problem asks
whether a given formula in first-order logic is satisfiable by
a structure with a finite domain. By Trakhtenbrot’s (Trakht-
enbrot 1950) theorem, this problem is undecidable. There is
a straightforward reduction of the Finite Satisfiability prob-
lem to the Modular System Equivalence problem. Observe
that finite satisfiability of first-order logic is essentially the
same problem as finite satisfiability of relational algebra,
so finite satisfiability of modular systems is undecidable.
To finish the argument, let Q be an unsatisfiable modular
system. Then “F equivalent Q” is the same problem as
checking if F is finitely satisfiable, which is undecidable. �

5We use equality symbol (=) as a meta-symbol between alge-
braic expressions, and equivalence symbol (≡) as a logical con-
nective (biconditional) in formulas.
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Thus, the problem of deciding containment of compound
modules is also undecidable. However, as we show below,
for certain broad classes of modules it is decidable and even
NP-complete, or sometimes solvable in polynomial time.

It will be convenient in this section to represent tuples or
sets of vocabulary variables and their instantiations as in-
dexed sets, e.g., {Xi : i ∈ I} for a certain (finite) set I. We
will mostly assume that I is clear from the context. A con-
junctive compound module (CCM) is a compound module
expressible by a relational algebra expression:

π{Xi:i∈J}(σΘ(M1∩·· ·∩Mn)(Xi : i ∈ I)),

where J ⊆ I are some finite sets, Θ is a conjunction of equiv-
alence (≡) atomic formulas. CCMs are also expressible in
logic form by formulas in prenex normal form built from
atomic modules M j(Xi1 , . . . ,Xin), and ∧ and ∃ (applied to
vocabulary variables) only:

∃(Xi : i ∈ J) Φ(Xi : i ∈ I),

where Φ(Xi : i∈ I) is a conjunction of atomic modules of the
form M j(Xi1 , . . . ,Xin).

We study the complexity of the following problem:
CCM Containment Problem

Input: CCMs α1,α2 over the same atomic module sym-
bols M1, . . . ,Ms.
Decide: if α1 v α2, for any choice of M1, . . . ,Ms.

Note that the CCM Containment problem makes sense
only for abstract modular systems (represented by algebraic
expressions), i.e., modular systems where atomic module
symbols have relational variables as arguments (rather than
elements of a fixed relational vocabulary τ).

Let us observe first that the selection operation in a CCM
can be eliminated. Indeed, since the only Θ allows is a con-
junction of expressions of the form X ≡ Y , Θ defines an
equivalence relation on the set of variables. Replacing ev-
ery occurrence of every variable from each equivalence class
with a fixed representative of that class, we obtain an equiv-
alent CCM containing no selection operation.

A CCM α is said to be projection-free if it has the form
M1∩·· ·∩Mn for some atoms M1, . . . ,Mn.
Canonical Structure For a projection-free CCM α(X) =
Φ(M1, . . . ,Ms), the canonical structure Aα is defined as:
• the domain of Aα is X = {Xi : i ∈ I} for some finite set I;
• the vocabulary is δ = {Ti | i ∈ {1, . . . ,s}}, where the arity

of Tj equals that of module M j;
• the instantiation of every symbol Tj is given by
(Xi1 , . . . ,Xik) ∈ T Aα

j iff M j(Xi1 , . . . ,Xik) is an atom in Φ.

Notice that, in a canonical structure, for a specific CCM
α(X̄), the variables of α become domain elements.

For a CCM α = π{Xi:i∈J}α
′ that is not projection-free and

α ′ is projection-free, Aα is defined to be Aα ′ .
As an example of a canonical structure con-

sider compound module α(X1,X2,X3,x4) =
M1(X1,X2) ∩ M2(X2,X2,X3) ∩ M1(X3,X4). Then the
domain of Aα is the set {X1,X2,X3,X4), its vocabulary
consists of two relational symbols T1 and T2 of arity 2 and 3,

respectively. These symbols are then instantiated as follows:
T Aα

1 = {(X1,X2),(X3,X4)} and T Aα

2 = {(X2,X2,X3)}.

Proposition 1 Let α1,α2 be projection-free CCMs. Then
α1 v α2 iff the identity mapping is a homomorphism from
Aα2 to Aα1 .

Proof: Indeed, if the identity is a homomorphism, it
simply means that every atom of α2 is also an atom of
α1. On the other hand, if α1 v α2 every atom of α2 must
be present in α1, as otherwise there are atomic modules,
an instantiation, and a structure that contradicts α1 v α2.
This immediately implies that the identity mapping is a
homomorphism between the two structures. �

Next we extend Proposition 1 to general CCMs, toward
obtaining Theorem 2. It will be convenient for us to rep-
resent a CCM as α = π(X j : j∈J)Φ(M1, . . . ,Ms), where J ⊆ I
and Φ(M1, . . . ,Ms) is a projection free CCM. Let M′ =
Φ(M1, . . . ,Ms). In addition to canonical structure, we will
need the notion of a power structure.

Power Structure. Let A be a structure with domain A and
vocabulary τ , and let M1, . . . ,Ms be modules. The power
structure K = KM1,...,Ms(A ) is defined as follows:
• let a1, . . . ,ar be all the different arities of symbols from τ;
• the domain of K is

K = P(Aa1)∪·· ·∪P(Aar),

where P(B) denotes the power set of B;
• the vocabulary of KM1,...,Ms(A ) is R1, . . . ,Rs, and the arity

of R j is that of the module M j;
• every relational symbol R j of arity k is interpreted as fol-

lows: tuple (c1, . . . ,ck) ∈ Kk belongs to R
KM1 ,...,Ms (A )

j iff
ct ∈P(Aait ), where ait is the arity of t’th argument of M j,
for t ∈ [k], and B |= M j(Si1 , . . . ,Sik) for any τ-structure B

such that SB
it = ct for t ∈ [k].

Note that as defined, KM1,...,Ms(A ) depends only on the
modules M1, . . . ,Ms, the domain, and the vocabulary of A ,
but not on A ’s relations.

The following is an example of a simple power-structure.
Let M(X1,X2) be a module whose arguments have arities 2
and 3, respectively. Let also A be a relational structure with
domain A = {0,1} and vocabulary τ = {T1,T2} of arities 2
and 3. Then K = P({0,1}2)∪P({0,1}3) consists of sets
of pairs and sets of triples over {0,1} that correspond to all
possible binary and ternary relations. Suppose that module
M contains all the structures B with a binary and a ternary
symbols such that M(S1,S2) is true whenever

S1 ⊆ {(a,b) : (a,b,c) ∈ S2} ∩
{(b,c) : (a,b,c) ∈ S2} ∩ {(a,c) : (a,b,c) ∈ S2}. (3)

Then KM(A ) has only one relational symbol R
interpreted as the set of all pairs (S1,S2), where
S1 ⊆ {0,1}2, S2 ⊆ {0,1}3 satisfying (3). These
includes pairs ( /0, /0), ({(0,0),(1,1)},{(0,0,0),
(1,1,1)}), ({(a,b) : a ≤ b},{(a,b,c) : a ≤ b ≤ c})
among others.
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The following lemma is a generalization of the “Magic
Lemma” from (Chandra and Merlin 1977), as it is some-
times referred to, to a much higher level of abstraction. In
this lemma, we relate the satisfaction of a concrete com-
pound module, that is, a module where variables are instanti-
ated with specific symbols of a relational vocabulary, to the
question of existence of a homomorphism that maps vari-
ables to the elements of the domain of the Power Structure.
The homomorphism takes into account how variables are
instantiated by specific symbols of a relational vocabulary.
The difference with the original setting (Chandra and Merlin
1977) is substantial. Instead of queries that are formulae that
use database relations directly, we have algebraic combina-
tions of modules that are, essentially, decision procedures, as
in the previous section, that accept or reject structures. These
structures provide interpretations to second-order variables,
given their instantiations in τ . Because of this additional
level, and because the proof has to work for all instantia-
tions of variables by relational symbols, our construction of
the Power Structure is rather involved. Notice that, in the
results below, modules are treated abstractly as classes of
structures (sets if a domain is given). As a consequence, the
lemma and the subsequent theorem apply to all modules.

Lemma 1 (Magic Lemma II) Let M be a CCM with the set
of variables {Xi : i ∈ I} and the set of variables J ⊆ I in the
projection operation, M1, . . . ,Ms be atoms of M. Let A be a
structure with vocabulary τ , and {Si : i∈ J} an instantiation
of the variables of M in τ . Then

A |= M(Si : i ∈ J) iff there is a homomorphism ϕ from AM
to KM1,...,Ms(A )

such that ϕ(Xi) = SA
i for i ∈ J.

Proof: (⇒) Suppose A |= M(Si : i ∈ J), and A has a
domain A. This means that there is an instantiation {Si :
i ∈ I− J}, a structure A ′ with the same domain such that
A ′ |= M′(Si : i ∈ I) and SA ′

i = SA
i for i ∈ J. Define ϕ : {Xi :

i ∈ I} → K by ϕ(Xi) = SA ′
i . Obviously, this mapping sat-

isfies the condition ϕ(Xi) = SA
i for i ∈ J. Since for every

atom M j(Xi1 , . . . ,Xik) of Φ, A ′ |= M j(Si1 , . . . ,Sik), the tuple

(SA ′
i1 , . . . ,SA ′

ik ) belongs to R
KM1 ,...,Ms (A )

j . Thus, ϕ is a homo-
morphism.

(⇐) Suppose there is a homomorphism ϕ from AM
to KM1,...,Ms(A ) such that ϕ(Xi) = SA

i for i ∈ J.
Define A ′ on the same domain A as that of A
by setting, for every Si, i ∈ I, SA ′

i = ϕ(Xi). Note
that if i ∈ J then by assumption SA ′

i = SA
i . Also,

since for every atom M j(Xi1 , . . . ,Xik) of Φ, we have

(SA ′
i1 , . . . ,SA ′

ik ) ∈ R
KM1 ,...,Ms (A )

j , A ′ |= M j(Si1 , . . . ,Sik). Thus,
A ′ |= M′(Si : i ∈ I), and so A |= M(Si : i ∈ J). �

Theorem 2 (Homomorphism Theorem) Let α1 =
π(Xi:i∈J) Φ1(M1, . . . ,Ms) and α2 = π(Xi:i∈J) Φ2(M1, . . . ,Ms)

be two CCMs for J ⊆ I. Then α1 v α2 iff there is a
homomorphism ϕ : Aα2 →Aα1 such that ϕ(Xi) = Xi for all
i ∈ J.

Proof: (⇐) Suppose there is a homomorphism ϕ : Aα2→
Aα1 such that ϕ(Xi) = Xi for i ∈ J. Fix atomic modules
M1, . . . ,Ms. Now if A |= α1(Si : i ∈ J) for some instantia-
tion {Si : i ∈ J}, by the Magic Lemma II there is a homo-
morphism from Aα1 to KM1,...,Ms(A ). Composing it with
ϕ we obtain a homomorphism from Aα2 to KM1,...,Ms(A ).
Therefore, A |= α2(Si : i ∈ J).

(⇒) Since α1 v α2, we can choose any kind of modules
and structures to guarantee that a required homomorphism
exists, and we will use this freedom to the fullest.

Given a vocabulary τ we define a specialized structure
that only depends on τ . Fix some τ = {Si : i ∈ I} so that its
symbols correspond to the variables of α1,α2 and have the
same arities. Let Aτ be a structure with domain A = τ and
vocabulary τ . For every Si ∈ τ , its interpretation is given by
SAτ

i = {(Si, . . . ,Si)}, where the length of the tuple is the arity
of Si. It is valid because Si also belongs to the domain of Aτ .

Second, we define modules M1, . . . ,Ms in such a way that
the structure KM1,...,Ms(Aτ) contains a substructure isomor-
phic to Aα for some CCM α . Let M j be such that under any
instantiation {Si : i ∈ I} it satisfies the following condition:

(*) if B |= M j(Si1 , . . . ,Sik) where B is a τ-structure with
domain τ , Si1 , . . . ,Sik ∈ τ , then SB

it = (Sit , . . . ,Sit ), t ∈ [k].

It does not matter how M j behaves with other vocabularies
and domains. Let α be a CCM with variables Xi, i ∈ I, and
atomic modules M1, . . . ,Ms. Later modules α1 and α2 will
be used as α here. For α we define modules M1, . . . ,Ms with
property (*) and such that for some instantiation {Si : i ∈ I}
it holds Aτ |= M j(Si1 , . . . ,Sik) iff M j(Xi1 , . . . ,Xik) is an atom
in M. We denote the structure KM1,...,Ms(Aτ) by Kα(Aτ).

Recall that a1, . . . ,ar are all the different arities of sym-
bols from τ . We consider a substructure of Kα(Aτ) induced
by the set K′(Aτ) ⊆ K = P(Aa1)∪ ·· · ∪P(Aar), the do-
main of Kα(Aτ) consisting of all singleton sets of the form
{(S, . . . ,S)} ∈P(Aa j), S ∈ τ and a j is the arty of S. Note
that the domain of this structure does not depend on specific
modules M1, . . . ,Ms). It is not difficult to see that Kα(Aτ)
restricted to K′(Aτ) is isomorphic to AM . By Magic Lemma
II, Aτ |= M(Si : i ∈ J) for any instantiation {Si : i ∈ J}.

Now we are ready to define a homomorphism from Aα2

to Aα1 . By the premise of Theorem 2, for any choice of
modules M1, . . . ,Ms, vocabulary τ , instantiation {Si : i ∈ J},
and τ-structure A , if A |= α1(Si : i ∈ J) then also
A |= α2(Si : i ∈ J). Choose M1, . . . ,Ms as above for module
α1. Then Aτ |= α1(Si : i ∈ J), and so Aτ |= α2(Si : i ∈ J).
By Magic Lemma II there is a homomorphism ψ of Aα2 to
Kα1(Aτ). As is easily seen, we may assume that the range
of ψ is a subset of K′(Aτ). Indeed, if ψ(Xi) 6∈ K′(Aτ) for
some i ∈ I, then by condition (*) no tuple in no relation of
Aα2 contains Xi, and its image can be chosen arbitrarily.
Since Kα1(Aτ) restricted to K′(Aτ) is isomorphic to Aα1 ,
we get the result. �

Theorem 2 reduces the CCM Containment problem to the
Homomorphism problem of two relational structures. As the
latter belongs to NP, we obtain the following corollary.
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Corollary 1 (Membership in NP) The CCM Containment
problem belongs to NP.

The complexity of the Homomorphism problem can be
reduced if we restrict the class of allowed structures. The
list of useful restrictions is long and includes bounded tree
and hypertree width, various forms of acyclicity (see e.g.
(Gottlob, Leone, and Scarcello 1999b,a; Gyssens, Jeavons,
and Cohen 1994)), and fractional hyper tree width (Grohe
and Marx 2006; Marx 2013). By Theorem 2 if we con-
sider CCMs satisfying any of these conditions, the respec-
tive CCM Containment problem becomes polynomial time
solvable.

Conclusion and Future Work
In this paper, we addressed the problem of checking modular
system equivalence and containment. This problem is im-
portant, for example, in hierarchical and component-based
development, in rapid prototyping and system verification.
We proved that, for a large class of modular systems, namely
for Conjunctive Compound Modules, system containment
(and thus equivalence) problem is in the complexity class
NP. This is a typical class of modular systems, conveniently
described using an expressive subset of the operations. We
discussed cases where the containment problem is solvable
in polynomial time. We also introduced the notion of repre-
sentability of modules in specific formalisms and provided
examples of such representations.

An important future extension of our work would be
to the Unions of Conjunctive Compound Modules, using
Sagiv-Yannakakis theorem (Sagiv and Yannakakis 1980).
We would also like to prove a Containment property for
an efficient restriction of a dynamic version of the algebra
(Ternovska 2019), where inputs and outputs of modules are
specified, similarly to (Aamer et al. 2020a) and (Aamer et al.
2020b).
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