
Certifying Top-Down Decision-DNNF Compilers

Florent Capelli,1 Jean-Marie Lagniez,2 Pierre Marquis2, 3
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Abstract

Certifying the output of tools solving complex problems so
as to ensure the correctness of the results they provide is of
tremendous importance. Despite being widespread for SAT-
solvers, this level of exigence has not yet percolated for
tools solving more complex tasks, such as model counting
or knowledge compilation. In this paper, the focus is laid on
a general family of top-down Decision-DNNF compilers. We
explain how those compilers can be tweaked so as to output
certifiable Decision-DNNF circuits, which are mainly stan-
dard Decision-DNNF circuits decorated by annotations serv-
ing as certificates. We describe a polynomial-time checker for
testing whether a given CNF formula is equivalent or not to a
given certifiable Decision-DNNF circuit. Finally, leveraging
a modified version of the compiler D4 for generating certifi-
able Decision-DNNF circuits and an implementation of the
checker, we present the results of an empirical evaluation that
has been conducted for assessing how large are the certifi-
able Decision-DNNF circuits that can be generated in prac-
tice, and how much time is needed to compute and to check
such circuits.

Introduction
Certifying the output of tools solving hard problems is nec-
essary to ensure the correctness of the results they provide.
Certification has proven to be fruitful to detect bugs in SAT-
solvers. In SAT competitions, since 2013, it is mandatory
that solvers output unsatisfiability certificates whenever the
instance under consideration is classified as unsatisfiable.
The widespread and quick adoption of certification tech-
niques in the SAT-solving community has been facilitated
by the fact that most SAT-solvers rely on the same architec-
ture, namely CDCL, for which the underlying proof system
is well-understood (Pipatsrisawat and Darwiche 2011) and
for which a description such as DRAT (Wetzler, Heule, and
Hunt 2014) – whose implementation follows closely the way
the software works – is available.

The picture is quite different for tools tackling instances
of more complex problems based on (possibly extended)
CNF formulae such as QBF-solving, max SAT-solving or
#SAT-solving. While many efforts have been invested into
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designing and understanding efficient and usable proof sys-
tems for QBF-solvers (Heule, Seidl, and Biere 2014; Bey-
ersdorff, Chew, and Janota 2015; Beyersdorff et al. 2018)
and max SAT-solvers (Bonet, Levy, and Manyà 2007; Bonet
et al. 2018), there is no consensus on the format to be
adopted for certifying the outputs generated by such solvers.
Furthermore, from the practical side, there have been only
few tries to adding a certification functionality to max SAT-
solvers (Morgado and Marques-Silva 2011). To the best of
our knowledge, today, no #SAT-solver is able to output a
certificate that can be used to check in polynomial time that
the result returned by the #SAT-solver is the correct one.

In order to achieve this goal, an approach consists in
compiling the input CNF formula into a specific Boolean
circuit. Indeed, it has been observed by Huang and Dar-
wiche (Huang and Darwiche 2005) that the traces of DPLL-
based #SAT-solvers on CNF formulae can be viewed as
restricted forms of Boolean circuits known as Decision-
DNNF circuits (Darwiche 2001; Oztok and Darwiche 2014)
in the knowledge compilation community. The main advan-
tage of such circuits is that they can later be used to ana-
lyze efficiently the Boolean function represented by the in-
put CNF formula. Indeed, Decision-DNNF circuits support
many tractable queries, such as model counting.

More sophisticated AI tasks leveraging propositional rea-
soning can also be targeted. Thus, in the growing body of
work about explainable and robust AI (XAI) (see among
others (Ribeiro, Singh, and Guestrin 2018; Leofante et al.
2018; Molnar, Casalicchio, and Bischl 2018; Shih, Dar-
wiche, and Choi 2019; Guidotti et al. 2019; Miller 2019;
Molnar 2019), recent works have shown how ML classifiers
of various types can be mapped to CNF formulae encoding
them in terms of input-output behaviours (see e.g., (Naro-
dytska et al. 2018; Shih, Choi, and Darwiche 2019; Shi et al.
2020). Thanks to such mappings, XAI queries about classi-
fiers (especially, verification queries) can be delegated to the
corresponding propositional representations. Though those
queries are typically NP-hard when the inputs are CNF for-
mulae, many of them become tractable once compiled into
Decision-DNNF circuits (Audemard, Koriche, and Marquis
2020). Obviously enough, within such an approach to XAI,
the certification of the results furnished by the XAI system
goes through the certification of the Decision-DNNF circuit
that has been computed.
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A first step in this direction is (Capelli 2019), where proof
systems for #SAT that are suited for existing #SAT-solvers
have been provided. The idea is to use the Decision-DNNF
circuit corresponding to the trace of a DPLL-based #SAT-
solver running on a CNF formula as a certificate witnessing
the number of models of this CNF formula. While comput-
ing the number of models of the Decision-DNNF circuit can
be done in polynomial time, no polynomial-time algorithm
is available for deciding whether the input CNF formula ac-
tually represents the same Boolean function as the Decision-
DNNF circuit (and it is unlikely that such an algorithm ex-
ists since the problem to be solved is coNP-complete). Us-
ing only the Decision-DNNF circuit makes it impossible to
check whether the solver ran correctly on the input. To cir-
cumvent this issue, it has been proposed to add labels into
the Decision-DNNF circuit. Those labels can be used (intu-
itively) to explain when the solver rejects a partial assign-
ment. This approach is enough to make tractable the prob-
lem of checking whether the Decision-DNNF circuit that is
generated is equivalent to the input CNF formula. More-
over, most DPLL-based #SAT-solvers could theoretically
be modified to output such a certificate. In practice, how-
ever, this approach may need to be adapted to accommodate
the specific optimizations of the solver such as its cache pol-
icy or oracle calls to a CDCL SAT-solver. In addition, no
implementation of the proof systems presented in (Capelli
2019) has been provided yet.

In order to fill the gap, our main objective in this pa-
per is to show how many top-down Decision-DNNF com-
pilers can be tweaked so as to output certifiable Decision-
DNNF circuits, that are mainly standard Decision-DNNF
circuits decorated by additional pieces of information serv-
ing as certificates for addressing efficiently the verification
issue. Among them are the state-of-the-art Decision-DNNF
compilers, D4 (Lagniez and Marquis 2017a) and DSHARP
(Muise et al. 2012). We start by defining the language of
certifiable Decision-DNNF circuits and introduce a notion
of equivalence between a CNF formula and a certifiable
Decision-DNNF circuit, that we call syntactic equivalence.
Syntactic equivalence is a restriction of logical equivalence
(i.e., whenever a certifiable Decision-DNNF circuit and a
CNF formula are syntactically equivalent, they are logically
equivalent), and syntactic equivalence can be checked in
polynomial time (which contrasts with logical equivalence,
unless P = NP). This directly leads to a polynomial-time
checker for testing whether a given CNF formula is equiv-
alent or not to a given certifiable Decision-DNNF circuit.
Then we explain how to modify a top-down Decision-DNNF
compiler in order to generate certifiable Decision-DNNF cir-
cuits instead of Decision-DNNF circuits. Finally, leverag-
ing CD4, a modified version of D4 for generating certifi-
able Decision-DNNF circuits, and an implementation of the
checker, we present the results of an empirical evaluation
that has been conducted for assessing in practice the sizes of
the certifiable Decision-DNNF circuits, and the computation
times needed to generate them and to check them.

The proofs of the propositions reported in the paper and a
folder containing the code of CD4, the code of the checker,
the benchmarks used in our experiments, and a spreadsheet

containing detailed empirical results are available on www.
cril.fr/kc/.

Preliminaries
Formulae and Boolean functions. We assume the reader
familiar with Boolean functions and CNF formulae. We in-
troduce a few notations that we will be used throughout the
paper.

Given a finite set of variables X , {0, 1}X denotes the set
of all possible Boolean assignments to variables inX . Given
a literal ` on variable x and a CNF formula F , F [`] is the
CNF formula over variables var(F ) \ {x} obtained by re-
moving every clause of F containing ` and by removing ¬`
from every remaining clause. It is easy to see that there is
a one-to-one correspondence between the satisfying assign-
ments of F [`] and the set of satisfying assignments of F
whose value on ` is 1. If L = {`1, . . . , `k} is a set of lit-
erals such that var(`i) 6= var(`j) for i 6= j, then F [L] is
a short for F [`1] . . . [`k]. Observe that F [L] does not de-
pend on the order of the elements in L. For example, if
F = (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y), we have
F [¬x] = y ∨ ¬z and F [¬x,¬y] = ¬z. If F and F ′ are two
CNF formulae, we write F = F ′ if F and F ′ have exactly
the same clauses after having removed duplicated clauses
and tautological clauses (that is, clauses containing both a
literal and its negation).

Given a CNF formula F on variables X and Y ⊆ X , the
connected component of F associated with Y , denoted as
cc(F, Y ) is the smallest set S of clauses C of F such that S
contains every clause of F such that Y ∩var(C) 6= ∅ and for
every clause C ′ of F , if var(C ′) ∩ var(S) 6= ∅ then C ′ ∈ S.
It is easy to see that one can construct cc(F, Y ), starting
from the set of clauses C of F such that Y ∩ var(C) 6= ∅
and iteratively adding to this set every clause of F having a
non-empty intersection with it until no such clause remains.

If f and g are two Boolean functions, we write f |= g if
f entails g, that is, if f ∧ ¬g is not satisfiable. DRAT (Wet-
zler, Heule, and Hunt 2014) is a proof system that has been
specifically designed to certify the output of CDCL SAT-
solvers. We refer the reader to (Wetzler, Heule, and Hunt
2014) for precise definitions as we will be using DRAT
proofs as black boxes in this paper. We only need to know
that a DRAT proof R can be seen as a list of clauses
R1, . . . , RN such that for every i, R1 . . . Ri |=DRAT Ri+1,
where |=DRAT is a syntactic condition that can be checked
in polynomial time and such that if A |=DRAT B then
A |= B. Given a CNF formula F and a DRAT proof
R = R1, . . . , RN , we write F |=DRAT R if for every i < N ,
F ∪ R1 . . . Ri |=DRAT Ri+1. Observe in particular that for
every i ≤ N , F |= Ri.

The language of Decision-DNNF circuits. The language
of Decision Decomposable Negation Normal Form circuits,
Decision-DNNF for short, is a class of restricted Boolean
circuits used in knowledge compilation to represent Boolean
functions. Formally, a decision circuit D on variables X is
a DAG having one distinguished vertex v called the output
of D (v is the unique vertex in D with out-degree zero). The
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vertices ofD with in-degree 0 are called the sinks and are la-
beled by constant 0 or 1. All vertices but the sinks are either
∧-gates, labeled by ∧, or decision-gates that are of in-degree
2 and labeled by a variable x ∈ X . For every decision-gate v
labeled by variable x, the ingoing arcs (alias directed edges)
e0, e1 of v are labeled by ¬x and x, respectively. Given an
arc e of D reaching a decision-gate, we denote by `e the
literal labelling it.

Let D be a decision circuit. var(D) denotes the set of all
variables appearing on the labels of the arcs of D (observe
that var(D) ⊆ X but the inclusion may be proper). Given a
gate v of D, Dv is the Decision-DNNF circuit whose output
is v and gates are all gates w such that there is an (oriented)
path from w to v. Given a gate v of D that is not a sink, we
call the inputs of v the gates w such that (w, v) is an ingoing
arc of v.

Given a ∧-gate v of D with inputs v1, v2, v is said to be
decomposable if var(Dv1) ∩ var(Dv2) = ∅. The Decision-
DNNF circuit D is said to be read-once if on every path P
from a sink of D to the output of D, each variable of X
appears at most once in the literals labelling the arcs of P .

A Decision-DNNF circuit is a decision circuit that is read-
once and such that every ∧-gate of D is decomposable. Let
D be a Decision-DNNF circuit on variables X , P a path
from a sink of D to the output of D, and τ ∈ {0, 1}X . τ is
said to be compatible with P if for every arc e of P going
in a decision-gate, we have that τ(`e) = 1. We let lit(P )
denote the set of all literals labelling the arcs it contains.
Observe that the read-once property of decision-gates en-
sures that lit(P ) is a consistent set of literals. The size of a
Decision-DNNF circuit D, denoted as |D|, is the number of
arcs of its underlying graph.

A Decision-DNNF circuit D on variables X defines a
Boolean function on variables X defined inductively as fol-
lows. One defines first for every gate v of D the set of as-
signments τ ∈ {0, 1}X that are accepted by v. If v is a 1-
sink, then it accepts every τ ∈ {0, 1}X . If v is a 0-sink, then
it accepts no τ ∈ {0, 1}X . If v is a ∧-gate, then v accepts
τ ∈ {0, 1}X if and only if every input of v accepts τ . If v is
a decision-gate, it accepts τ ∈ {0, 1}X if and only if there
exists an input w of v such that the arc (w, v) is labeled by
` and τ(`) = 1 and that w accepts τ . The Boolean function
computed byD is the set of assignments accepted by its out-
put. Observe that if D accepts τ then every path consistent
with it from a sink to the output of D starts at a 1-sink of
D. In this paper, we assume that the underlying graph of a
Decision-DNNF circuit D is connected and that the output
is the only gate of D that is of out-degree 0.

Top-down Decision-DNNF knowledge compilers. Top-
down Decision-DNNF knowledge compilers are based on a
natural generalization of the well-known DPLL algorithm
for SAT-solving (Davis, Logemann, and Loveland 1962),
so as to count models instead of deciding “only” whether
a model exists (see e.g., (Birnbaum and Lozinskii 1999;
Bacchus, Dalmao, and Pitassi 2003)). A top-down knowl-
edge compiler works by recursively branching on a vari-
able x until either a contradiction is reached or the for-

mula is satisfied, relying on the simple observation that
F = (x ∧ F [x]) ∨ (¬x ∧ F [¬x]), which translates in
terms of model counting into #F = #F [x] + #F [¬x]
when var(F [x]) = var(F [¬x]). To avoid visiting all pos-
sible branches, the computed values are cached so that if the
algorithm is recursively called on a subformula that has al-
ready been seen during computation, the number of models
of this subformula is directly returned by the cache. An im-
provement of this algorithm has been proposed by Bayardo
and Pehoushek (Bayardo Jr and Pehoushek 2000) who ob-
served that if F = F1∧F2 with var(F1)∩var(F2) = ∅, then
#F = #F1×#F2 which allows to significantly reduce the
number of recursive calls.

Darwiche and Huang established in (Huang and Darwiche
2005) that the trace of such an algorithm on a given CNF for-
mula corresponds to a Decision-DNNF circuit where the op-
eration of branching on a variable corresponds to a decision-
gate and the operation of decomposing the formula into dis-
joint connected components corresponds to a ∧-gate. Top-
down Decision-DNNF knowledge compilers use at their
core this algorithm whose pseudocode is presented in Al-
gorithm 1. We will refer to this algorithm as a generic top-
down DPLL-based Decision-DNNFcompiler, since it does
not do anything else as propagating literals in the formula
and checking for connected components.

Many top-down Decision-DNNF knowledge compilers,
such as D4 or DSHARP, improve on this algorithm by tak-
ing advantage of a CDCL SAT-solver, used as an oracle
for generating the compiled circuit. Leveraging a CDCL
SAT-solver serves two purposes. The first purpose is to
detect unsatisfiable branches as early as possible in or-
der to avoid visiting them. The second purpose is to learn
clauses that are entailed by the input CNF formula F . In-
deed, when a conflict is reached in a CDCL SAT-solver,
a clause formed by a minimal subset of literals generat-
ing this conflict is extracted. This clause is entailed by the
CNF formula and it allows to detect further conflicts more
quickly. In CDCL SAT-solvers, learnt clauses are used to
trigger unit propagations that would have been missed when
using the original clauses, only. The CDCL SAT-solver is
configured in a way that each clause that has been learnt
during this step is entailed by the original CNF formula
F . The pseudocode of a generic top-down CDCL-based
Decision-DNNFcompiler can be simply obtained by adding
a couple of additional instructions into the pseudocode of
a generic top-down DPLL-based Decision-DNNFcompiler
(those instructions are framed in Algorithm 1). Observe that
this pseudocode does not correspond to a specific top-down
CDCL-based Decision-DNNFcompiler, but to a family of
such compilers. In order to get specific compilers, some
additional features should be specified (e.g., the branching
variable heuristics and the cache management that are used).

Certifiable Decision-DNNF Circuits
It is coNP-complete to decide, given a CNF formula F and
a Decision-DNNF circuit D, both on variables X , whether
F and D define the same Boolean function (Capelli 2019).
This can easily be seen by reducing it to the problem of
deciding whether F is unsatisfiable, which boils down to
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Algorithm 1: Pseudocode for Decision-DNNF top-
down compilers. Specific instructions for certification in
compilers based on a CDCL SAT-solver are framed.

1 Algorithm COMPILE(F )
Data: A CNF formula F
Result: A Decision-DNNF circuit associated with F

2 cache← ∅;
3 return CONSTRUCT GATE(F , ∅, ∅);

4 Algorithm CONSTRUCT GATE(F , L , R )
Data:
• Input: A CNF formula F

• Input/output: A set L of literals

• Input/output: A set R of learnt clauses, entailed by F

Result: A Decision-DNNF-gate associated with F [L]

5 if F [L] has no clause then return a new 1-sink;
6 if F [L] has an empty clause then return a new 0-sink;

7 if R[L] has an empty clause then return a new 0-sink;

8 Call a SAT solver on F with literals in L blocked ;

9 Let R′ be the clauses learnt by this call ;

10 R← R ∪ R′ ;

11 if UNSAT(F ) then return a new 0-sink;

12 if cache(F [L]) 6= nil then return cache(F [L]);
13 F ′ ← {C ∈ F | C[L] is not satisfied};
14 if F ′ = F1 ∧ · · · ∧ Fk with k ≥ 2 and

var(Fi[L]) ∩ var(Fj [L]) = ∅ then
15 v ← a new ∧-gate;
16 for i ∈ {1, . . . , k} do
17 wi ← CONSTRUCT GATE(Fi, L, R);
18 connects v to wi;

19 else
20 Choose x ∈ var(F [L]);
21 v ← a new decision-gate on variable x;
22 for ` ∈ {x,¬x} do
23 w ← CONSTRUCT GATE(F , L ∪ {`}, R);
24 connect v to w with label `;

25 cache(F [L])← v;
26 return v

deciding whether F defines the same Boolean function as
the Decision-DNNF circuit that is reduced to a single 0-
sink. To be able to efficiently check whether the output of
a knowledge compiler is correct, that is, to check whether
the Boolean function represented by the output Decision-
DNNF circuit is indeed equivalent to its input CNF formula,
it is thus necessary to provide a certificate. In this paper,
we consider Decision-DNNF circuits decorated with annota-
tions that are used to efficiently check the equivalences with
the CNF formulae represented by the Decision-DNNF cir-
cuits. They are called certifiable Decision-DNNF circuits.

The language of certifiable Decision-DNNF is closely re-
lated to the language of “certified” Decision-DNNF circuits,
as introduced in (Capelli 2019). The “certified” Decision-
DNNF circuits from (Capelli 2019) only contain certificates
for 0-sinks, in the sense that each input labeled by 0 should
also be labeled by a clause of the original CNF formula F
– or, more generally, by a clause C that is entailed by F ,
with a proof of such a fact. Moreover, each path from this
0-sink to the output of D has to violate C. Intuitively, C is
the clause that is responsible for the conflict when the solver

reached it. For this reason, the syntactic cache management
that is used in implemented compilers like D4 and DSHARP
must be disabled if one wants to take advantage of them to
compute “certified” Decision-DNNF circuits. Indeed, it is
possible that two clauses, for example C1 = x ∨ y ∨ z and
C0 = x ∨ y ∨ ¬z, become equal under two distinct partial
assignments. In this case, we could have a cache hit in the
solver after having set z to 0 then to 1, but the conflict gen-
erated by later assigning x and y to 0 would not be raised by
the same clause, depending on the value of z. Thus, the ap-
proach based on “certified” Decision-DNNF circuits as de-
scribed in (Capelli 2019) is not suited for compilers using
such a cache management. This motivated the introduction
of certifiable Decision-DNNF circuits that are better suited
to certify the output of top-down CDCL-based Decision-
DNNF compilers.

Formally, a certifiable Decision-DNNF circuit (D, e,R)
is a Decision-DNNF circuit D together with a list of clauses
R and a labelling e associating with every gate v of D, but
its output, an arc e(v) going out of v. e(v) = (v, w) is called
the canonical arc of v and w is the canonical father of v.

Let e = (v, w) be an arc of D. We define F/e as follows:
if w is a decision-gate, then F/e = F [`e]; if w is a ∧-gate,
then F/e = cc(F, var(Dv)).

Let F be a CNF formula on variables X and v a gate of
D. We define Fv and lit(v) inductively as follows: if v is
the output of D, then Fv = F and lit(v) = ∅. Otherwise,
let (v, w) = e(v). We define Fv = Fw/e(v) and lit(v) =
lit(w) ∪ ` if w is a decision-gate and ` is the literal labelling
e(v). Otherwise, lit(v) = lit(w).

We can then extend this definition to any path P from a
node v to the output of D: if P is empty, then we let F/P =
F . Otherwise, let e = (v, w) be the first arc on P and P ′ be
the path from w to the output of D obtained by removing e
from P . F/P is defined as (F/P ′)/e.

As explained previously, each gate of the Decision-DNNF
circuit produced by a top-down compiler corresponds to
a recursive call of Algorithm 1. In a certifiable Decision-
DNNF circuit, the canonical arc e(v) of a gate v intuitively
corresponds to the first arc that was connected to v after
its creation. Moreover, R corresponds to the clauses that
have been learnt during the compilation through calls to
the CDCL SAT-oracle, and Fv corresponds to the state the
solver was in when v has been created.

This motivates the following definition of syntactic equiv-
alence. A certifiable Decision-DNNF circuit (D, e,R) is
syntactically equivalent to a CNF formula F , denoted as
F ≡s (D, e,R), if var(D) ⊆ var(F ) and the following con-
ditions are met:

(i) Learnt clauses entailment: F |= R.

(ii) Satisfiable gates: if R 6= ∅, then for every gate v that
is not a 0-sink of D, Dv is satisfiable.

(iii) DNNF entailment: D |= F .

(iv) Cache consistency: for every gate v of D that is not a
sink and arc e = (v, w) of D, Fw/e = Fv .

(v) 0-sinks consistency: for every 0-sink v and arc e =
(v, w), either Fw/e contains the empty clause or w is
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a decision-gate and R[lit(w) ∪ `e] contains the empty
clause.

Clearly enough, syntactic equivalence is a restriction
of equivalence in the sense that whenever a certifiable
Decision-DNNF circuit is syntactically equivalent to a CNF
formula, it is logically equivalent to it, but the converse
does not hold. Indeed, consider the CNF formula F =
(x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y) and a certi-
fiable Decision-DNNF circuit (D, e,R) where D is reduced
to a single decision-gate w on variable x connected only
to the 0-sink v (so that e is reduced to {(v, w)}) and R is
empty (there are no learnt clauses). (D, e,R) is a certifi-
able Decision-DNNF circuit logically equivalent to F but
not syntactically equivalent to F as Condition v is not satis-
fied.

Example of certifiable Decision-DNNF circuit. To illus-
trate the notion of certifiable Decision-DNNF circuit and the
previous definition of syntactic equivalence, we now provide
a full example. Let us consider the following CNF formula:

F =(¬x ∨ ¬y) ∧ (x ∨ z)∧
(x ∨ a ∨ w) ∧ (x ∨ ¬a ∨ w)∧
(¬x ∨ y ∨ a ∨ w) ∧ (¬x ∨ y ∨ ¬a ∨ w)

Let us also consider the Decision-DNNF circuit D rep-
resented on Figure 1. Some arcs of this Decision-DNNF
circuit have been represented in bold. They correspond to
the canonical arcs: a bold arc going out of a vertex v is the
canonical arc e(v) of v.R = {¬x∨y∨w} is the set of learnt
clauses.

We claim that the certifiable Decision-DNNF circuit
(D, e,R) is syntactically equivalent to F . It is clear that
Condition (i) is satisfied as F |= R holds (it can be shown
by applying the resolution rule to the last two clauses of F ).
Condition (ii) can also be readily verified. Condition (iii) can
be checked by tested that for every clause C of F , the cir-
cuit D conditioned by the negation of C is not satisfiable.
For example, focusing on the clause x ∨ z of F , the path of
D associated with ¬x ∧ ¬z in D starts from a 0-sink.

We now turn to checking Condition (iv) and (v). To this
end, we observe the following:

• Fv1 =def F [x] = ¬y ∧ (y ∨ a ∨ w) ∧ (y ∨ ¬a ∨ w),
• Fv2 =def F [¬x] = (a ∨ w) ∧ (¬a ∨ w) ∧ z,
• Fv3

=def (Fv1
)[¬y] = (a ∨ w) ∧ (¬a ∨ w),

• Fv4
= z, as var(Dv4

) = {z} and the connected compo-
nent corresponding to z in Fv3

consists only of the unit
clause z.

Condition (iv) is trivially verified at nodes having exactly
one outgoing arc. We just have to check it at gate v3. That is,
we have to verify that Fv3

= Fv2
/e where e = (v2, v3). By

definition, Fv2
/e consists of all clauses of Fv2

that are in the
connected component of var(Dv3

) = {w}. Thus, Fv2
/e =

(a∨w)∧ (¬a∨w) which is indeed Fv3
from what precedes.

Finally, we have to check Condition (v) for every 0-sink
ofD. We start with the arc f from the 0-sink going in v1. We

xv0

yv1 ∧v2

wv3 zv4

0
10

1

0

x ¬x

¬yy

w¬w z¬z

Figure 1: A certifiable Decision-DNNF circuit.

have to show that Fv1
/f contains the empty clause. By def-

inition, Fv1
/f = Fv1

[y], which indeed contains the empty
clause. A similar check can be done with the arc going in v4.

The case of the arc g between the 0-sink and v3 is more in-
teresting. Indeed, by definition Fv3

/g = Fv3
[¬w] = a∧¬a.

It does not contain the empty clause. However, it can be
checked that lit(v3) = {x,¬y} and R[lit(v3) ∪ ¬w] =
R[x,¬y,¬w] contains the empty clause, that is, Condi-
tion (v) holds. Observe that in this case, the learnt clause
helped to detect a conflict that was not direct in Fv3

/g. In-
deed, if the canonical path to v3 was P = {v3, v2, v0}, then
since lit(P ) = {¬x,¬w}, we would have R[¬x,¬w] = ∅,
which does not contain the empty clause. In this case, Con-
dition (v) would not be verified. This example highlights
the importance of registering canonical arcs in the certifi-
able Decision-DNNF circuit to check for unit propagations
entailed by learnt clauses.

Syntactic equivalence of a certifiable Decision-DNNF cir-
cuit with a CNF formula. We can now describe easily
how to implement a verification algorithm CHECKER for de-
ciding whether or not a given certifiable Decision-DNNF
circuit D is syntactically equivalent to a given CNF for-
mula F . The verification algorithm just consists in verify-
ing all the conditions for syntactic equivalence in a succes-
sive way. Our actual implementation, presented in the fol-
lowing, contains some optimizations to better scale up for
large CNF formulae and certifiable Decision-DNNF circuits.
A key property is that the verification step is tractable:

Theorem 1 Let F be a CNF formula and (D, e,R) be a
certifiable Decision-DNNF circuit on variables X . Under
the assumption that F |= R, we can check whether F ≡s

(D, e,R) in polynomial time.

The modified version of Algorithm 1 outputs a set of
clauses R that have been learnt via oracle calls to a CDCL
SAT-solver.R is such that F |=DRAT R (Wetzler, Heule, and
Hunt 2014) (meaning that every clause from R has a DRAT
proof from F ) and this implication can be checked in poly-
nomial time.
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Moreover, the syntactic equivalence of a CNF formula
and a certifiable Decision-DNNF circuit ensures that they
are logically equivalent:

Theorem 2 LetF be a CNF formula and (D, e,R) be a cer-
tifiable Decision-DNNF circuit such that F ≡s (D, e,R). It
holds that F ≡ D.

The intuition behind Theorem 2 is the following. Con-
ditions (iv) and (v) check that the hypothesis made by the
solver when caching, decomposing or deciding for a con-
flict were legit, the state of the solver when it took the deci-
sion corresponding to Fv . Condition (iii) ensures one way
of the equivalence. It is tractable even without the addi-
tional decoration of certifiable Decision-DNNF as it boils
down to checking D |= C for every clause C of F , and
this query (known as clause entailment) is tractable for the
Decision-DNNF language (Darwiche and Marquis 2002).
Finally, Conditions (ii) and (i) ensure that conflicts derived
from learnt clauses of R are also conflicts of F .

Condition (ii) may seem surprising and unnecessary but it
is actually essential to ensure that, when checking for Con-
dition (v) if R[lit(v)]/e contains a conflict for some gate v
of D, then this conflict is also a logical consequence of Fv ,
that is the only formula for which the cache consistency has
been checked. The potentially incorrect interaction between
the caching policy and the use of learnt clauses was already
known to be problematic in parallel model counter (Bur-
chard, Schubert, and Becker 2015) and in CACHET (Sang
et al. 2004) where it has been resolved thanks to a method
known as sibling pruning, that consists in cleaning the cache
of unsatisfiable gates and that corresponds to Condition (ii).
In Algorithm 1, this condition is guaranteed by the fact that
oracle calls to CDCL SAT-solvers are done at each recur-
sion, ensuring that unsatisfiable branches are never explored.
Note that for DPLL-based compilers, there are no conflicts
involving learnt clauses, so that R is empty and Condi-
tion (ii) also holds.

Finally, observe that the labelling e in the (D, e,R) triple
is necessary to certify the circuit as it allows to recover the
partial assignment L that the solver was considering when
creating a new gate. It is crucial as it may be that some unit
propagation triggered by learnt clauses under partial assign-
ment L is not triggered under another partial assignment L′,
even if F [L] = F [L′]. By recording the canonical father of
every gate ofD (but its output), we can reconstruct L during
the certification and thus certify the unit propagations that
were triggered by learnt clauses at this point.

Turning top-down Decision-DNNF compilers into certi-
fiable Decision-DNNF compilers. In this section, we ex-
plain how top-down knowledge compilers of the family pre-
sented in Algorithm 1 can be tweaked so as to generate cer-
tifiable Decision-DNNF circuits that are syntactically equiv-
alent to the input CNF formula.

The only change that has to be performed is that each time
a new gate w is created by Algorithm 1, we define e(w) to
be the first arc going out of w that is created by the solver.
To do so, we only have to modify the CONSTRUCT GATE
procedure in such a way that instead of returning a gate, it

returns a gate and a Boolean flag telling whether the gate has
been obtained from a cache hit or by constructing it from
scratch. Then, in Lines 18 and 24 of Algorithm 1, if one
detects that the returned gatew has not resulted from a cache
hit, then one registers e(w) to be (w, v).

Accordingly, the DAG D generated by CD4 is the same
as the one generated by D4, which shows that certification
does not change the size of the Decision-DNNF circuit that
is produced: only the certification labellings may increase
its size (of course, they can be left aside afterwards, when
leveraging the circuit for reasoning purposes).

Finally, the COMPILE procedure returns (D, e,R) where
D is the Decision-DNNF circuit that has been constructed
by the algorithm, where e is the labelling that has been de-
fined above, and R is the set of all clauses learnt during the
compilation. For any instance of Algorithm 1 that is not us-
ing a CDCL SAT-solver, R is empty so that (D, e, ∅) is re-
turned.

Interestingly, compared to the pseudocode of the generic
compiler targeting Decision-DNNF as given by Algorithm
1, only a few additional instructions must be inserted to
derive certifiable Decision-DNNF circuits. We denote by
C COMP (“certifiable compiler”) the generic compiler given
by Algorithm 1 when expanded with those instructions. The
correctness of C COMP is established by the next theorem:

Theorem 3 Let F be a CNF formula and (D, e,R) be the
output of C COMP on input F . It holds that (D, e,R) is a
certifiable Decision-DNNF circuit such that F ≡s (D, e,R)
and F |=DRAT R.

From Theorem 3, 1, 2 and the fact that F |=DRAT R can
be checked in polynomial time, one gets that the output of
C COMP can be verified in polynomial time.

Experimental Results
Empirical setting. We have implemented the CD4 com-
piler, obtained by tweaking the state-of-the-art Decision-
DNNF compiler D4 (Lagniez and Marquis 2017a), follow-
ing the approach described in the previous sections, so as
to generate certifiable Decision-DNNF circuits. CD4 is thus
the instance of C COMP associated with D4. We have also
implemented the checker CHECKER described previously.

The objective of our experiments was twofold. A first
goal was to assess the difficulty of computing certifiable
Decision-DNNF circuits in comparison to (unconstrained)
Decision-DNNF circuits. From the theory side, it can be eas-
ily established that the full language of Decision-DNNF cir-
cuits is strictly more succinct than the language of certifi-
able Decision-DNNF circuits unless NP = coNP. Indeed,
any unsatisfiable CNF formula, whatever its size, is equiv-
alent to the Decision-DNNF circuit that reduces to a single
0-sink, but there is no polynomial-size certificates for unsat-
isfiable CNF formulae unless NP = coNP. In the worst case,
the size of a certifiable Decision-DNNF circuit for a given
unsatisfiable CNF formula must thus be super-polynomial
in the size of the CNF formula, hence in practice, arbitrar-
ily larger than the size of the Decision-DNNF circuit that
reduces to a single 0-sink. For this reason, it is important to
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evaluate from the practical side the extra effort needed to de-
rive certifiable Decision-DNNF circuits in comparison to the
one required by the generation of (unconstrained) Decision-
DNNF circuits.

A second goal was to assess the difficulty of computing
a certified Decision-DNNF circuit associated with a given
CNF formula. To do the job, the computation time aggre-
gates the one needed to derive first a certifiable Decision-
DNNF circuit for the CNF formula, and then to verify that
this certifiable Decision-DNNF circuit is equivalent to the
CNF formula, using the above-mentioned checker. Indeed,
though the checker runs in time polynomial in its input size,
the sizes of the certifiable Decision-DNNF circuits and the
sizes of the DRAT proofs that are generated can be very large
in comparison to the one of the CNF formula, rendering pro-
hibitive in practice the time required by the verification step.
Experiments are required to determine the extent to which
the verification step can be done.

In our experiments, we have considered 703 CNF in-
stances from the SATLIB1 and other repositories (for in-
stance, the benchmarks from the BN family (Bayesian net-
works) come from http://reasoning.cs.ucla.edu/ace/). They
are gathered into 8 data sets, as follows: BN (192), BMC
(Bounded Model Checking) (18), Circuit (41), Configura-
tion (35), Handmade (58), Planning (248), Random (104),
Qif (7) (Quantitative Information Flow analysis - security).

All the experiments have been conducted on a cluster
equipped with quadcore bi-processors Intel XEON E5-5637
v4 (3.5 GHz) and 128 GiB of memory. The kernel used was
CentOS 7, Linux version 3.10.0-514.16.1.el7.x86 64. The
compiler used was gcc version 5.3.1. Hyperthreading was
disabled, and no cache share between cores was allowed.
A time-out of 1h for the generation of certifiable Decision-
DNNF circuits plus 1h for the verification step has been con-
sidered per instance. A memory-out of 7.6 GiB has been
considered per instance.

Results. We have first measured the number of instances
(out of 703) for which a certifiable Decision-DNNF circuit
has been computed by CD4 in due time given the allocated
ressources and compared it with the number of instances for
which a Decision-DNNF circuit has been computed by D4
using the same time and memory ressources. It turns out
that 584 instances over 703 have been solved by D4, and
that among them, CD4 has been able to solve 580 instances,
hence more than 99% of the instances solved by D4.

Then we focused on the generation of certified Decision-
DNNF circuits (taking account for the verification time
within a time limit of 1h). For 69 out of the 580 certifiable
Decision-DNNF circuits generated by CD4, the verification
of the DRAT proofs involved in the certificates using the
DRAT-trim proof checker2 (Wetzler, Heule, and Hunt 2014)
crashed with a segmentation fault, and for 42 additional in-
stances a time-out has been reached before the checker ter-
minated. Thus, 469 circuits out of 580 have been certified.

1www.cs.ubc.ca/∼hoos/SATLIB/index-ubc.html
2The DRAT-trim proof checker is available at https://github.

com/marijnheule/drat-trim.

Assuming that the DRAT proofs are ok for the 69 instances
for which the DRAT-trim proof checker crashed, a propor-
tion of more than 92% of the Decision-DNNF circuits that
have been computed would have been certified.

The resulting values clearly show that in practice, the ex-
tra effort needed by the certification requirement does not
drastically reduce the set of instances that can be addressed
within a reasonable time. This observation highly contrasts
with what is predicted from the theory side, suggesting that
the worst scenario is not encountered very often in practice.

We have performed more fine-grained measurements at
the instance level, in order to determine for each CNF in-
stance (out of 580) the size of the (possibly decorated) cir-
cuits that have been generated by CD4 and by D4. We have
considered a new output format for representing Decision-
DNNF circuits and certifiable Decision-DNNF circuits (see
www.cril.fr/kc/ for details); unlike the previous format used
(which was suited to the representation of (general) DNNF
circuits (Darwiche 2001)), decision-gates are now repre-
sented natively and literals obtained via unit propagation
once a decision has been made label the corresponding arc).
For the sake of homogeneity, sizes are measured in bytes
(the size of a certifiable Decision-DNNF circuit includes
the arcs that are generated, the extra-information labelling
the arcs, as well as the sizes of the DRAT proofs of the
clauses that have been learnt). We also measured for each
CNF instance (out of 469) the time needed to get a certified
Decision-DNNF circuit equivalent to it, by generating first a
certifiable Decision-DNNF circuit and adding to this genera-
tion time the time required by the checker to ensure that this
certifiable Decision-DNNF circuit is a certified Decision-
DNNF circuit equivalent to the CNF formula as input. Then
we were able to compare it with the the time needed by D4
to derive a Decision-DNNF circuit equivalent to the input
CNF formula.

Interestingly, our approach to certification was able to
handle large benchmarks, like the blockmap 22 03.net
instance from the BN family (the formula has 119003 vari-
ables and 247486 clauses). Indeed, a certifiable Decision-
DNNF circuit for it has been computed in 275s, and its
size is approximately twice the size of the corresponding
Decision-DNNF circuit.

Our experiments have also shown that the time needed
to certify a certifiable Decision-DNNF circuit in light of
the CNF formula used to generate it typically depends on
the size of the circuit, but not solely of it. For instance,
the benchmark lang12 from the Handmade family led
to a certifiable Decision-DNNF circuit represented using
1518068287 bytes and the certification of the latter using
the checker required 263s (242s being spent in verifying
the DRAT part of the certificate). This contrasts with the
instance emptyroom d20 g10 corners p t8 from the
Planning domain which has been associated with a certifi-
able Decision-DNNF circuit that is more than twice larger
(3351189294 bytes), but has been certified in 141s only
(using less than 2s in the verification of the DRAT part
of the certificate). This can be explained by the fact that
emptyroom d20 g10 corners p t8 contains less than
half clauses as lang12.
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Figure 2: Figure 2a compares the sizes of the compiled forms that are obtained when certifiable Decision-DNNF and Decision-
DNNF are targeted. Figures 2b and 2c give respectively the distribution of the size ratios and a comparison of the times needed
to get certified Decision-DNNF circuits with the times needed to get Decision-DNNF circuits.

Some results are synthesized in the scatter plot depicted
at Figure 2a. Each dot in the figure corresponds to one of
the instances. The y-axis indicates the size (in bytes) of the
Decision-DNNF circuit computed by D4, while the x-axis
gives the size (in bytes) of the certifiable Decision-DNNF
circuit computed by CD4. Logarithmic scales are used for
the two axes in the figure.

For each of the 580 instances for which both D4 and CD4
terminated in due time, we have also computed the size ratio
sc
s , where sc (resp. s) is the size of the certifiable Decision-

DNNF circuit (resp. Decision-DNNF circuit) generated by
CD4 (resp. D4). Figure 2b gives a boxplot picture that is
helpful to figure out how much spread the distribution of
the size ratios is. Though the median size ratio is quite small
(1.94) and the upper whisker is reasonable enough (19.31),
the distribution has a number of outliers, corresponding to
values that are really far from the values usually encountered
(the maximum size ratio is equal to 88409).

Accordingly, it turns out that the additional space needed
to represent the information used for the certification task
remains reasonable enough for many instances (as reflected
by the fact that the certifiable Decision-DNNF compilations
succeeded most of the time – hence without leading to an
error-of-memory).

Finally, Figure 2c is similar to Figure 2a, but it focuses on
the times needed to derive certified Decision-DNNF circuits
in comparison to the times needed to derive Decision-DNNF
circuits. Thus, the x-axis represents the cumulated time (in
seconds) needed to get a certified Decision-DNNF circuit
of the instance, by using CD4 first to generate a certifiable
Decision-DNNF circuit and the checker next to verify that
it is equivalent to the instance. This figure shows that when
the certification step succeeds, this extra time remains rea-
sonable enough. Thus, for a large majority of instances out
of 469, the cumulated time required first by CD4 to generate
a certifiable Decision-DNNF circuit, then by the checker to
verify it, is less than twice the time required by D4 to gen-
erate a Decision-DNNF circuit (the median cumulated time
is equal to 1.69s). In the global verification time, the part of
the time spent for verifying the DRAT proofs highly depends

on the instance under consideration. For instance, as already
mentioned, it took almost all the verification time for the
benchmark lang12. Contrastingly, though the global veri-
fication time used for the instance sat-grid-pbl-0030
from the BN family was significant (159s), the amount of it
taken by the verification of the DRAT proofs was negligible
(less than 1s).

Conclusion
In this paper, we have introduced the language of certifi-
able Decision-DNNF circuits for the certification purpose.
A key feature of certifiable Decision-DNNF circuits is that a
strong notion of equivalence to CNF formulae can be tested
in polynomial time (while the problem is coNP-complete
when Decision-DNNF circuits are considered instead).

We have explained how compilers from a general fam-
ily of top-down Decision-DNNF compilers (including D4
and DSHARP) can be modified so as to output certifiable
Decision-DNNF circuits. Using a modified version of D4 for
generating certifiable Decision-DNNF circuits and an imple-
mentation of the checker, we have presented the results of an
empirical evaluation showing that the sizes of the certifiable
Decision-DNNF circuits, and the times needed to compute
them and to check them, remain in general small enough to
ensure the feasibility of the approach from the practical side.

A final remark is that since the model counts of certifi-
able Decision-DNNF circuits can be computed in polyno-
mial time, one can obviously take advantage of certifiable
Decision-DNNF circuits to derive certified numbers of mod-
els for CNF formulae.

This paper opens a number of perspectives for further re-
search. One of them will consist in analyzing the language
of certifiable Decision-DNNF circuits in a more systematic
way so as to determine the queries and transformations it
offers and to insert it into the knowledge compilation map.

It would be also valuable to compare in practice the
performances of our approach to certification with other
techniques. For instance, when dealing with CNF instances
which are known to have (relatively) “few models”, an ap-
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proach to certifying their numbers consists in enumerating
those models – a polynomial-time model enumeration al-
gorithm exists for Decision-DNNF circuits – and once the
enumeration is done, to test that every model of the CNF
instance has been enumerated – this requires to consider
a DRAT proof of the fact that the formula entails the dis-
junction of all the models found. Another approach would
consist in building a Miter to test the equivalence of the
input CNF formula and the output Decision-DNNF circuit.
Checking the equivalence of both representations would re-
quire to leverage a SAT-oracle. A valuable feature of this ap-
proach is that it may be less space demanding than comput-
ing a certifiable Decision-DNNF circuit. On the other hand,
the equivalence check boils down to solving an instance of a
coNP-complete problem, so that one cannot get any guaran-
tee on the execution time of the checker. This contrasts with
our approach where the complexity of the certification step
is directly related to the size of the certificate.

Finally, since the performances of D4 over many CNF in-
stances are typically boosted when those instances have been
first preprocessed using pmc (Lagniez and Marquis 2017b)
(or B+E (Lagniez, Lonca, and Marquis 2020) when D4 is
used as a model counter), it would be useful to develop
and evaluate certification techniques for such preprocessors.
This would permit to take advantage of them upstream to
CD4, while maintaining the certification requirement.
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