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Abstract

Many important problems in AI, among them SAT, #SAT, and
probabilistic inference, amount to Sum-of-Products Prob-
lems, i.e. evaluating a sum of products of values from some
semiring R. While efficiently solvable cases are known, a
systematic study of the complexity of this problem is miss-
ing. We characterize the latter by NP(R), a novel generaliza-
tion of NP over semiring R, and link it to well-known com-
plexity classes. While NP(R) is unlikely to be contained in
FPSPACE(POLY) in general, for a wide range of commutative
(resp. in addition idempotent) semirings, there are reductions
to #P (resp. NP) and solutions are thus only mildly harder
to compute. We finally discuss NP(R)-complete reasoning
problems in well-known semiring formalisms, among them
Semiring-based Constraint Satisfaction Problems, obtaining
new insights into their computational properties.

Introduction
The Sum-of-Products Problem (SUMPROD) (Bacchus, Dal-
mao, and Pitassi 2009) is as follows. Given a finite domain
D and functions fi : Dji → R, i = 1, . . . , n compute∑

X1,...,Xm∈D
∏n
i=1 fi(

~Yi), (1)

where ~Yi is a vector of variables from {X1, . . . , Xm}. To
solve the problem, we need to compute the sum of the prod-
ucts of the functions fi for all assignments of the variables
Xi. The “sum” and the “product” do not need to be the
usual addition and multiplication over the reals, but can
be any addition ⊕ and multiplication ⊗ from a semiring
R = (R,⊕,⊗, e⊕, e⊗).

Sum-of-Products Problems, over different semirings, are
present in many areas. On the one hand, many well known
problems, like SAT, #SAT, MAX-SAT and Most Probable
Explanation-inference are all SUMPROD-instances, when
(⊕,⊗) are (∧,∨), (+, ·), (max,+) and (max, ·), respec-
tively (Bacchus, Dalmao, and Pitassi 2009; Friesen and
Domingos 2016). On the other hand, in many works, defini-
tions are parameterised with semirings (Bistarelli et al. 1999;
Green, Karvounarakis, and Tannen 2007; Goodman 1999;
Aji and McEliece 2000; Bistarelli and Santini 2010; Eiter
and Kiesel 2020; Kimmig, Van den Broeck, and De Raedt
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2011). Some of them, such as Semiring-based Constraint
Satisfaction Problems (SCSP) (Bistarelli et al. 1999), Alge-
braic Model Counting (AMC) (Kimmig, Van den Broeck,
and De Raedt 2017) and Weighted First-Order Formula
Evaluation (Eiter and Kiesel 2020), can be seen as instances
of SUMPROD.

Due to their widespread presence in AI, solving
SUMPROD-instances efficiently is of interest. Thus, compi-
lability classes (Kimmig, Van den Broeck, and De Raedt
2017; Friesen and Domingos 2016) and fixed parameter
tractability (Ganian et al. 2018) were considered, leading to
efficiently solvable fragments. Apart from that, generaliza-
tions of BDDs and DPLL were considered (Wilson 2005;
Dudek, Phan, and Vardi 2020; Bacchus, Dalmao, and Pitassi
2009), in order to obtain better algorithms for SUMPROD.

The computational complexity of SUMPROD, however,
remained largely unconsidered. It is known that for ev-
ery non-trivial, idempotent semiring the problem is NP-
hard (Bistarelli et al. 1999). Furthermore, there are some re-
sults for specific semirings like the natural number semir-
ing N = (N,+, ·, 0, 1) and the Boolean semiring B =
({0, 1},∨,∧, 0, 1). Here, SUMPROD is #P-complete and
NP-complete, respectively (Stearns and Hunt III 1996). We
observe that there are significant deficiencies: there is no
general lower-bound and the gap between NP and #P seems
very large, given that one oracle call to #P already suffices to
solve any problem in the polynomial hierarchy (Toda 1989).
Further, we are left without upper bounds as there are semir-
ings that are even “harder” than N, like the rational numbers
Q or polynomials N[x]. Therefore, a more detailed study of
the computational complexity of SUMPROD is necessary in
order to better understand the problem and the influence of
the semiring parameter on its complexity.

When approaching the complexity analysis of SUMPROD
over general semirings, we face a representational issue.
For semirings over an infinite set R, its elements need to
be encoded using a finite alphabet. Naturally, the time and
space required to solve SUMPROD varies with different en-
codings (cf. Knapsack, which is polynomial for the unary
encoding of the integers). In order to characterize the in-
trinsic complexity independently of the encoding, we intro-
duce Semiring Turing Machines (SRTMs) that can have un-
encoded semiring values on their tape. Based on SRTMs we
introduce NP(R), the class of problems solvable by SRTMs
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in polynomial time, as a generalization of NP over semirings
that characterizes the complexity of SUMPROD.

To connect these results to a usual setting, we relate
NP(R) to well-studied complexity classes like NP, #P,
OPTP for well behaved encodings of R. We do this both
for specific, common semirings but also for subclasses of
commutative, idempotent, and finitely generated semirings.

We then demonstrate the power of these results by us-
ing them to derive complexity results for SUMPROD over
a broad range of semirings and apply our theoretical results
to practical problems that are parameterised with semirings.

A brief summary of our main contributions is as follows:
• We introduce Semiring Turing Machines and show that

SUMPROD, SCSPs, AMC and weighted first-order for-
mula evaluation over R are NP(R)-complete for every
semiringR, where NP(R) is an analog of NP.
• We prove that for general semirings SUMPROD is not

in FPSPACE(POLY), for any reasonable encoding, unless
NP ⊆ P/poly (which is usually assumed to be false).

• We show that for a broad subclass of commutative
(resp. additionally idempotent) semirings, SUMPROD is
counting-reducible to #P (resp. contained in FPNP

‖ ) and
derive complexity results for many specific semirings.

This work gives valuable insights into the structure of
SUMPROD problems and shows that while there are semir-
ings such that SUMPROD is unlikely to produce a polyno-
mial output, there are many semirings for which SUMPROD
can be efficiently reduced to SAT and #SAT.

More details (proofs etc.) will be given in a full version.

Preliminaries
Definition 1 (Semiring). A semiringR = (R,⊕,⊗, e⊕, e⊗)
consists of a nonempty set R equipped with two binary op-
erations⊕ and⊗, called addition and multiplication, where
• (R,⊕) is a commutative monoid with identity element e⊕,
• (R,⊗) is a monoid with identity element e⊗,
• multiplication left and right distributes over addition, and
• e⊕ annihilates R, i.e. ∀r ∈ R : r⊗e⊕ = e⊕ = e⊕⊗r.
A semiring is commutative, if (R,⊗) is commutative, and is
idempotent, if ∀r ∈ R : r⊕r = r.

Some examples of well-known semirings are
• F = (F,+, ·, 0, 1), for F ∈ {N,Z,Q,R} the semiring of

the numbers in F with addition and multiplication,
• Rmax = (N ∪ {−∞},max,+,−∞, 0),Rmin = (N ∪
{∞},min,+,∞, 0), the tropical semirings,
• B = ({0, 1},∨,∧, 0, 1), the Boolean semiring,
• R[(xi)α] = (R[(xi)α],⊕,⊗, e⊕, e⊗), for α ∈ N (resp.
α = ∞), is the semiring of polynomials with variables
x1, . . . , xα (resp. x1, x2, . . . ) over the semiringR.

For our work with semirings, morphisms are important.
Definition 2 (Homomorphism, Epimorphism). Given two
semirings Ri = (Ri,⊕i,⊗i, e⊕i

, e⊗i
), i = 1, 2 a homo-

morphism (resp. epimorphism) from R1 to R2 is a (resp.
surjective) function f : R1 → R2 s.t. for � = ⊕,⊗

f(r �1 r
′) = f(r)�2 f(r′) and f(e�1

) = e�2
.

For our complexity considerations we need reductions.
Since we are studying functional complexity, we use
Definition 3 (Metric, Counting & Karp Reduction). Let fi :
Σ∗i → Σ∗i , i = 1, 2. A metric reduction from f1 to f2 is a
pair of poly-time computable functions T1, T2 s.t. T1 :Σ∗1 →
Σ∗2, T2 : Σ∗1 × Σ∗2 → Σ∗1 and f1(x) = T2(x, f2(T1(x))) for
every x ∈ Σ∗1. A metric reduction is a counting reduction, if
T2(x, y) = T2(x′, y) for all x, x′, y, and a Karp reduction,
if T2(x, y) = y for all x, y.

Also, we use some well-known complexity classes.
• #P (Valiant 1979) (resp. GAPP (Fenner, Fortnow, and

Kurtz 1994)): the functions definable as the number of ac-
cepting paths (resp. minus the number of rejecting paths)
of a nondeterministic poly-time Turing Machine (NTM).

• OPTP (Krentel 1988): the functions definable as the max-
imum output of a polynomial time NTM.

• FP (resp. FPSPACE(POLY)): the functions computable in
poly-time (resp. poly-space with polynomial output).

• FPNP
‖ (Jenner and Torán 1993): the functions computable

in FP with parallel queries to an NP oracle.
• P/poly (Karp and Lipton 1982) (FP/poly): the (function)

problems solvable in P (FP) with polynomial advice.
Definition 4 (Hardness, Completeness). A problem P is C-
hard for a complexity class C under X-reductions, if every
problem P ′ ∈ C can be reduced to P by some X-reduction;
P is C-complete under X-reductions, if in addition P ∈ C.

Weighted Quantified Boolean Formulas
Our first goal is to characterize the functional complexity
of SUMPROD over any semiring R. Prior to that, we intro-
duce weighted Quantified Boolean Formulas (QBFs) over a
semiringR and show that the associated evaluation problem
SAT(R) is equivalent to SUMPROD overR. This makes ex-
plicit that SUMPROD-instances are not necessarily pure cal-
culations but are influenced by qualitative conditions. Fur-
thermore, it highlights how SAT, #SAT and other well-
known problems fit into the context of SUMPROD.

We define weighted QBFs similarly to other weighted log-
ics (Droste and Gastin 2007; Mandrali and Rahonis 2015).
Definition 5 (Syntax). Let V be a set of propositional vari-
ables andR = (R,⊕,⊗, e⊕, e⊗) be a semiring. A weighted
QBF overR is of the form α given by

α ::= k | v | ¬v | α+ α | α ∗ α | Σvα | Πvα

where k ∈ R and v ∈ V . A weighted fully quantified
Boolean Formula is a weighted QBF without free variables.
Definition 6 (Semantics). A subset I of V∪{¬v | v ∈ V} is
an interpretation if ¬v ∈ I ⇔ v 6∈ I for every v ∈ V . Given
a weighted QBF α over a semiring R = (R,⊕,⊗, e⊕, e⊗)
and an interpretation I, the semantics JαKR(I) of α overR
w.r.t. I is defined as

JkKR(I) = k

JlKR(I) =

{
e⊗ l ∈ I
e⊕ otherwise. (l ∈ {v,¬v})
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Jα1 + α2KR(I) = Jα1KR(I)⊕Jα2KR(I)

Jα1 ∗ α2KR(I) = Jα1KR(I)⊗Jα2KR(I)

JΣvαKR(I) = JαKR(Iv)⊕JαKR(I¬v)
JΠvαKR(I) = JαKR(Iv)⊗JαKR(I¬v)

where Iv = I \ {¬v} ∪ {v} and I¬v = I \ {v} ∪ {¬v}.
Weighted QBFs generalize QBFs in negation normal

form, as negation is only allowed in front of variables. Here,
we further focus on ΣBFs, i.e., the weighted fully quantified
BFs that contain only sum quantifiers (i.e. only Σv) to fit into
the context of SUMPROD. As for evaluation, we introduce:

SAT(R): given a ΣBF α overR compute JαKR(∅).
Example 1. Over B, the Boolean semiring, SAT(B) is SAT,
as 0, 1,+, ∗,Σv are ⊥,>,∨,∧, ∃v, respectively.

Further, LEXMAXSAT, the problem of obtaining the lex-
icographically maximum satisfying assignment, for a propo-
sitional formula φ can be expressed over the semiringRmax

using the ΣBF Σv1 . . .Σvnφ ∗Πn
i=1(vi ∗ 2n−i + ¬vi).

When the functions fi in the expression (1) are explicit maps
from variable assignments to semiring values (represented
using some finite alphabet), we obtain:
Theorem 7. SAT(R) is Karp-reducible to SUMPROD over
semiringR and vice versa for every semiringR.

In the Boolean case, this follows simply from the fact that
3SAT is NP-complete. However, for semirings in general
it is more difficult, since the Tseitin-transformation (Tseitin
1983), which is used for this proof, cannot be lifted. Instead,
we need to implicitly exploit the distributive law during eval-
uation as in Algorithm 1.
Example 2. Consider the term 5 + 7 ∗ (3 + 9), which is not
a sum of products. Algorithm 1 would nondeterministically
return an element from {5, 7 ∗ 3, 7 ∗ 9}.

Evidently, SAT(R) is similar to #P and OPTP, where val-
ues are nondeterministically generated and aggregated:
Proposition 8. The sum, using ⊕, of the results of all exe-
cution paths for a call to EVALR(α, I) is equal to JαKR(I).

Algorithm 1 An algorithm for weighted formula evaluation.
Input A ΣBF α over semiringR and an interpretation I.
Output Nondeterministically, all summands of JαKR(I).

1: function EVALR(α, I)
2: switch α do
3: case α = k: return k
4: case α = l, l ∈ {v,¬v}:
5: if l ∈ I then: return e⊗
6: else: return e⊕
7: case α = α1 + α2:
8: Guess i ∈ {1, 2}
9: return EVALR(αi, I)

10: case α = α1 ∗ α2:
11: return EVALR(α1, I) ⊗ EVALR(α2, I)
12: case α = Σvα:
13: Guess I ′ ∈ {I\{¬v}∪{v}, I\{v}∪{¬v}}
14: return EVALR(α, I ′)

While this computation can be simulated in #P, GAPP
and OPTP when R is N,Z,Rmax, respectively, we are not
aware of such possibilities in general. Thus, a linkage is dif-
ficult. Our plan is therefore as follows. We introduce a new
abstract model of computations over semirings, which we
then connect to well-known complexity classes.

Semiring Turing Machines
We generalize NTMs to Semiring Turing Machines
(SRTMs) to characterize the complexity of SUMPROD. The
latter should thus be capable of
• semiring operations irrespective of encodings of values;
• summing up values generated by nondeterministic com-

putations; and
• using input-values in calculations.
On the other hand, too much power should be avoided; to
this end, we relegate computation to weighted transitions.
Definition 9 (SRTM). A Semiring Turing Machine is a 7-
tuple M = (R, R′, Q,Σ, ι,t, δ), where
• R is a semiring
• R′ ⊆ R is a finite set of semiring values
• Q is a finite set of states
• Σ is a finite set of symbols (the tape alphabet)
• ι ∈ Q is the initial state
• t ∈ Σ is the blank symbol
• δ ⊆ (Q× (Σ ∪R)) × (Q× (Σ ∪R)) × {−1, 1} × R is

a weighted transition relation, where the last entry of the
tuple is the weight. For each ((q1, σ1), (q2, σ2), e, r) ∈ δ :

1. σ1 ∈ R or σ2 ∈ R implies σ1 = σ2 (cannot write or
overwrite semiring values),

2. r ∈ R′ or r = σ1 ∈ R (transition only with r ∈ R′ or
value under head), and

3. σ1 ∈ R implies that for all σ′1 ∈ R we have ((q1, σ
′
1),

(q2, σ
′
1), e, r′) ∈ δ, where r′ = σ′1 if r = σ1 and r′ = r

otherwise (cannot differentiate semiring values).
As usual, −1 and 1 move the head to the left and right.

The output of a computation is as follows.
Definition 10 (SRTM function). The value v(c) of an SRTM
M on a configuration c = (q, x, n), where q is a state, x is
the string on the tape and n is the head position, is recur-
sively defined by v(c) =

⊕
c

r→c′r⊗v(c′), where c r→ c′ de-
notes thatM can transit from c to c′ with weight r; the empty
sum has value e⊗. The output of M on input x is v(ι, x, 0).

With this in place, we define an analog of NP.
Definition 11 (NP(R)). NP(R) is the class of all functions
computable in polynomial time by an SRTM overR.

Intuitively, SRTMs work similarly to the functions defin-
able in OPTP. We are allowed to nondeterministically gen-
erate output values, which are then aggregated. For SRTMs
the aggregation function is the sum ⊕ of the semiring and
for OPTP it is max. However, contrary to OPTP-functions,
SRTMs cannot generate outputs using arbitrary manipula-
tions due to the restrictions on the transition function. In-
stead, they always generate a product of the semiring values
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from the input and a finite set R′, which is fixed before exe-
cution. It would be possible to allow non-recursively defined
sums and products of semiring values on the tape. How-
ever, we decided against this option as we can simulate such
more complicated features and thus avoid more “semantic”
restrictions that require program analysis to be verified.

Furthermore, SRTMs cannot make decisions based on the
semiring values in the input but must treat them as black
boxes. Otherwise, SRTMs could for example decide whether
n ∈ N is prime in constant time. This is why we need con-
dition 3. on the transition relation, which also implies that
while the transition relation may not be finite, it can always
be finitely represented.

SRTMs are well suited to characterize the complexity of
sum-of-products problems:
Theorem 12. SAT(R) is NP(R)-complete w.r.t. Karp re-
ductions for every semiringR.

Proof (sketch). Membership can be seen easily from Algo-
rithm 1. All that is needed is to change “return k” to “tran-
sition, with the weight currently on the tape” and return
e⊕/e⊗ to “transition into the next state with weight e⊕/e⊗”,
respectively. To prove the hardness, we can generalize the
Cook-Levin Theorem, cf. (Gary and Johnson 1979).

Corollary 13. SUMPROD overR is NP(R)-complete w.r.t.
Karp reductions for every semiringR.

Relation to Known Complexity Classes
These results characterize the complexities of sum-of-
products problems over different semirings, independently
of encodings. In order to gain more insight into their com-
plexity in a usual setting, we relate NP(R) to well-known
complexity classes.

For this purpose, we must encode semiring values in a
finite tape alphabet and thus introduce the following notions.
Definition 14 (Encoding Function, Encoded Semiring). Let
R = (R,⊕, ⊗, e⊕, e⊗) be a semiring. Then an injective
function e : R→ {0, 1}∗ is an encoding function.

We let e(R) = (e(R),⊕,⊗, e(e⊕), e(e⊗)) denote the en-
coded semiring given by e(R) = {e(r) | r ∈ R} and � on
e(R), s.t. e(r1)� e(r2) = e(r1 � r2) for � = ⊕,⊗.

Given an encoded value e(r) we define ‖r‖e, the size of r
w.r.t. e, as the length of the bitstring e(r), i.e. |e(r)|.

Now, we can use classical machines to solve SAT(e(R))
and consider the complexity of the problem. It depends on
the complexity of addition and multiplication. While for
N,B these operations are “easy”, i.e., feasible in polynomial
time given a binary encoding, this is not the case for arbitrary
semirings. A single multiplication may even be undecidable.
Example 3 (Arbitrary Complexity Semirings). Given M ⊆
{0, 1}∗ and �, the lexicographical order on {0, 1}∗, we de-
fine the semiring RM = ({0, 1}∗ ∪ {0,1},max�,⊗,0,1),
where 1 � m � 0 for m ∈ {0, 1}∗ and

m1 ⊗m2 : =


min�(m1,m2) m1,m2 ∈M ∪{0} = S
m1 m1 ∈S,m2 /∈S
m2 m2 ∈S,m1 /∈S
min�(m1,m2) otherwise.

Then multiplication requires deciding mi ∈ M . When M
corresponds to the halting problem, we have undecidability.

However, the difficulty stems from the encoding.
Example 4 (cont.). If the encoding e maps m ∈ {0, 1}∗ to
(m, 1) if m ∈ M and to (m, 0) if m 6∈ M , then multiplica-
tion and addition in e(RM ) are computable in linear time.

Our intuition is that there are two sources of complexity.
One seems to be the encoding and the other the amount of in-
formation that the weighted semantics gives us about the for-
mula. The latter is determined by the non-collapsing terms
in the semiring. E.g. over N[(xi)k] the coefficients c1, c2 are
retained by the sum c1x1+c2x2, over N only the sum c1+c2
is retained after addition, and over B the value c1 ∨ c2 only
tells us if at least one of the values was 1. As a consequence
SAT(N)-instances seem to be strictly harder than SAT(B)-
instances as NP ⊆ PH ⊆ P#P[1] (Toda 1989).

We focus on the second source of complexity and address
the first by introducing the notion of an efficient encoding.
Definition 15 (Efficiently Encoded Semiring). Let e(R) be
an encoded semiring. Then e(R) is efficiently encoded, if
there exists a polynomial p(x) s.t. for all e(r1), . . . , e(rn) ∈
e(R) it holds that

1. ‖
⊗n

i=1ri‖e ≤ p(n) maxi=1,...,n‖ri‖e,
2. ‖

⊕n
i=1ri‖e ≤ p(log2(n)) maxi=1,...,n‖ri‖e, and

3. e(r), e(r′) 7→ e(r � r′) is in FP for � = ⊕,⊗.
Conditions 1) and 2) ensure that successive multiplica-

tions resp. additions do not cause space explosion, even for
sums with exponential size n. Condition 3) is obvious.
Example 5. With binary representation bin(n) = b0 . . . bm
s.t. n =

∑m
i=1 bi2

i, the semiring N of the natural numbers is
efficiently encoded. However, N[(xi)∞] is not efficiently en-
coded when for a polynomial

∑
~i∈I c~ix

ei1
i1

. . . x
ein
in

the coef-
ficients c~i are in binary while the exponents eij and variable
indices ij are in unary representation.

The conditions of Definition 15 are mild in practice, as
besides N many common semirings, e.g. Z,Q,Rmax, are ef-
ficiently encodable. They remain so under sharpenings like
p(n) = O(n), but this may lead to less ”natural” encodings.
Efficient encodings enable space-efficient ΣBF evaluation.

Proposition 16. If e(R) is an efficiently encoded semiring,
then SAT(e(R)) is in FPSPACE(POLY).

Results for Specific Semirings
We relate classical complexity classes to NP(e(R)) by
showing that they share SAT(e(R)) as a complete problem
for different specific semirings.
Theorem 17. For (R, C) = (B,NP), (N, #P), (Z,GAPP),
(Rmax,OPTP) and the binary representation bin of the in-
tegers, SAT(bin(R)) is C-complete w.r.t. Karp reductions.

Proof (sketch). Membership holds as bin(n) satisfies Defi-
nition 15. For hardness we use reductions from SAT, #SAT,
computing the permanent of an integer matrix, and LEX-
MAXSAT, respectively.
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N[(xi)∞]

Q N[(xi)k]

B[(xi)∞]

Z
B[(xi)k]

N

Zk

Rmax Rmin

B

#P-reducible

GAPP-complete

#P-complete

MODkP-hard

FPNP
‖ -complete

OPTP-complete

NP-complete

Figure 1: Epimorphisms f : R1 → R2 between semir-
ings, indicated by arrowsR1 → R2. Relation of complexity
classes C and semiringsR, indicated by dotted lines C R.

Note that there are functions in OPTP that cannot be
computed in NP(bin(Rmax)), e.g., x 7→ 2|x|. Informally,
SRTMs can only generate semiring values by multiplying
numbers from a finite setR′ or the input. Given that multipli-
cation inRmax is +, we can only generate numbers that are
polynomial in the numbers in the input and R′. For NP,#P
and GAPP this effect does not occur.

Results for Classes of Semirings
Apart from completeness results for specific semirings, we
also care about intuition on why some semirings come with a
higher complexity than others, and about results that help to
characterize new semirings based on their properties. Thus,
we consider the complexity of classes of semirings.

Our strategy is the following. We characterize the com-
plexity over semirings, whose weighted semantics preserves
the most information and that are therefore the “hardest” in
a class of semirings and derive an upper bound for the whole
class. Formally, we employ the following theorem.
Theorem 18. Let ei(Ri), i = 1, 2 be two encoded semir-
ings, such that

1. SAT(e1(R1)) is in FPSPACE(POLY),
2. there exists a polynomial time computable epimorphism
f : e1(R1)→ e2(R2), and

3. for each e2(r2) ∈ e(R2) one can compute in polynomial
time e1(r1) s.t. f(e1(r1)) = e2(r2) from e2(r2).

Then SAT(e2(R2)) is counting-reducible to SAT(e1(R1)).
Figure 1 depicts between which semirings we can hope

to apply the above theorem. N[(xi)∞] and B[(xi)∞] are the
most information preserving and therefore “hardest” com-
mutative and idempotent countable semirings, respectively.
However, we obtain negative results for condition 1.
Theorem 19. Let R = N[(xi)∞] (resp. R = B[(xi)∞]). If
there is an encoding function e forR s.t.

1) ‖JαKR(I)‖e is polynomial in the size of α, I,

2) we can extract the coefficient of xj1i1 ...x
jn
in

from e(r) in
polynomial time in ‖r‖e, and

3) ‖xi‖e is polynomial in i,

then #P ⊆ FP/poly (resp. NP ⊆ P/poly).

This would imply Σp2 = PH (Karp and Lipton 1982),
which is considered to be unlikely. Hence, for any reason-
able encoding e, SAT(e(N[(xi)∞]) and SAT(e(B[(xi)∞])
are unlikely to have polynomial output and, therefore, are
unlikely to be in FPSPACE(POLY).

Condition 3) of Theorem 19 allows that indices ik are en-
coded in unary and imposes no restriction on the encoding of
exponents jk. Requiring it to be in binary puts SAT(e(B[x]))
outside of FPSPACE(POLY), unless NP ⊆ P/poly.
Theorem 20. LetR = N[x] (resp.R = B[x]). If there is an
encoding function e forR s.t.

1) ‖JαKR(I)‖e is polynomial in the size of α, I,
2) we can extract the coefficient of xi from e(r) in polyno-

mial time in ‖r‖e, and
3) ‖xi‖e is polynomial in log2(i),
then #P ⊆ FP/poly (resp. NP ⊆ P/poly).

Proof (sketches) for Theorems 19 and 20. For each n ∈ N,
we can construct a ΣBF formula α of polynomial size s.t. the
solution of every #SAT (resp. SAT)-instance with n vari-
ables is obtainable from ‖JαKR(I)‖e. By the methodology
of Cadoli, Donini, and Schaerf (1996) to assess compilabil-
ity, we then infer #P ⊆ FP/poly (resp. NP ⊆ P/poly).

Notably, if #P ⊆ FP/poly (resp. NP ⊆ P/poly) holds,
then an encoding can be given that satisfies conditions 1)
- 3) of Theorem 19 (resp. 20). Thus, the existence of an en-
coding e satisfying conditions 1)-3) is equivalent to the open
problem whether #P⊆ FP/poly (resp. NP⊆ P/poly) is true.

We see that reducing SAT(e(R)) to the polynomial
semirings is not practical for encoded semirings e(R) in
general. However, we obtain positive results when restrict-
ing ourselves to polynomials with a fixed number of vari-
ables. We allow rational coefficients instead of natural num-
bers to obtain a stronger result.
Theorem 21. Let e be the encoding function that represents
exponents in unary and coefficients in binary. Then
• SAT(e(Q[(xi)k])) is counting-reducible to #SAT and

#P-hard for counting reductions.
• SAT(e(B[(xi)k])) is FPNP

‖ -complete for metric reductions.

As an immediate consequence, we see that
SAT(e(Q[(xi)k])) and SAT(e(B[(xi)k])) are not sig-
nificantly harder than #P and NP, respectively. We can
use this to obtain containment results for finitely generated
commutative (idempotent) semirings.
Definition 22 ((Finitely) Generated Semiring). Let R =
(R,⊕,⊗, e⊕, e⊗) be a semiring. For any R? ⊆ R, the
semiring generated byR?, denoted 〈R?〉R, is the least (w.r.t.
⊆) semiring (R′,⊕,⊗, e⊕, e⊗) s.t. R? ⊆ R′. We call R
finitely generated, ifR = 〈R?〉R for some finite R?.

Semirings that are finitely generated using k elements
r1, . . . rk can be seen as reduced versions of polynomials
with variables x1, . . . , xk. We thus obtain:
Theorem 23. Let e(R) be an efficiently encoded commu-
tative semiring that is generated by {r1, . . . , rk}. Suppose
every r ∈ R is of the form r =

⊕n
i=1

⊕ai
l=1

⊗mi

j=ir
ei,j
j for

some ai, ei,j ,mi ∈ N such that
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• max{ei,j , log2(ai)} is polynomial in ‖r‖e, and
• we can obtain ai, ei,j from e(r) in polynomial time.

Then SAT(e(R)) is counting-reducible to #SAT. If e(R) is
in addition idempotent, then SAT(e(R)) is in FPNP

‖ .

Note that if e(R) is idempotent, we may w.l.o.g. assume
ai = 1. The proof of Theorem 23 uses Theorems 18 and 21.

Derived Results
As a consequence of Theorems 18 and 21, or directly
from Theorem 23 for the finitely generated N,Z, we obtain:

Theorem 24. Let S = N,Z,Q. For Sn, the semiring S over
multiple dimensions and Sn×n, the semiring of matrices with
entries in S, we have that SAT(Sn) and SAT(Sn×n) are
counting-reducible to #SAT.

As an example, we consider in more detail the semiring
GRAD = (Q≥0 × Q,+,⊗, (0, 0), (1, 0)), where addition
is coordinate-wise and (a1, b1) ⊗ (a2, b2) = (a1 · a2, a2 ·
b1 + a1 · b2). It was introduced by Eisner (2002) and shown
to be useful for parameter optimization (Kimmig, Van den
Broeck, and De Raedt 2017; Manhaeve et al. 2018).

GRAD is finitely generated by {(1, 0), (0, 1)}. This
means that we can see the elements in GRAD as elements
in N[x] by identifying (1, 0) and (0, 1) with 1 and x, respec-
tively. The elements in GRAD are however only reduced
versions of the polynomials, i.e., there are additional equal-
ities between values in GRAD that do not hold in N[x]. An
example is x2, because (0, 1)⊗ (0, 1) = (0, 0) but x2 6= 0.

Corollary 25. By Theorems 18 and 23, SAT(GRAD) is
counting-reducible to #SAT and #P-hard w.r.t. counting re-
ductions, respectively.

Applications of the Results
We now apply the results from above to problems in AI.

Weighted First-Order Logic
Weighted first-order logics were introduced by Mandrali and
Rahonis (2015) for expressivity characterizations and by
Eiter and Kiesel (2020) for a quantitative extension of ASP.

They are defined over a signature σ = 〈D,P,X〉 with
predicates p ∈ P that have a fixed arity r(p) ∈ N over a
domain D and variables in X .

Definition 26 (Syntax). Let σ = 〈D,P,X〉 be a signature
and R = (R,⊕,⊗, e⊕, e⊗) be a semiring. The weighted
σ-formulas overR are of the form α given by

α ::= k | p(~x) | ¬p(~x) | α+ α | α ∗ α | Σxα | Πxα.

Here k ∈ R, p ∈ P , ~x ∈ (D ∪ X )r(p) and x ∈ X . A
weighted σ-sentence is a weighted σ-formula that does not
contain free variables.

Note that we again only allow negation in front of p(~x).

Definition 27 (Semantics). A σ-interpretation is a subset I
of {p(~x),¬p(~x) | p ∈ P , ~x ∈ Dr(p)} s.t. ¬p(~x) ∈ I ⇔

p(~x) 6∈ I for all p ∈ P, ~x ∈ Dr(p). Given a weighted σ-
sentence β and a σ-interpretation I the semantics JβKσR(I)
of β overR w.r.t. I is defined as

JΣxβKσR(I) =
⊕

d∈DJβ{x 7→ d}KσR(I)

JΠxβKσR(I) =
⊗

d∈DJβ{x 7→ d}KσR(I)

The rest of the cases are as in Definition 6, where we identify
p(~x) with a propositional variable vp(~x).

We consider the evaluation of ΣFO σ-formulas, which
only use sum quantifiers (i.e. Σx):

ΣFO-EVAL(R): Given a weighted ΣFO σ-sentence α over
the semiringR and a σ-interpretation I, compute JαKσR(I).

Probabilistic inference in Bayesian networks corresponds
to ΣFO-EVAL(N) (Van den Broeck, Meert, and Darwiche
2014); further, Eiter and Kiesel (2020) showed that aggrega-
tion and other extensions of Answer Set Programming can
be modeled as ΣFO-EVAL(R) over different semiringsR.

The problem is very similar to SAT(R). Indeed, under the
assumption that I is given as a bitmap, we obtain:

Theorem 28. Problem ΣFO-EVAL(R) is Karp-reducible
to SAT(R) and vice versa, and thus NP(R)-complete w.r.t.
Karp reductions for every semiringR.

Proof (sketch). ⇒: Let α be a ΣBF overR. We choose σ =
〈{⊥,>}, {t(.)}, {xv1 , . . . , xvn}〉 and I = {t(>),¬t(⊥)}
and replace every propositional variable v in α by t(xv).
⇐: We replace p(~x) by Σp(~d)∈IΠxi∈~xvxi,di , where ~x =

x1, . . . , xr(p), ~d = d1, . . . , dr(p), and vx,d means that vari-
able x has value d. We add constraints s.t. when both vxi,di
and vxi,d′i

are true, then di = d′i and add a quantifier Σvxi,di

for each pair (xi, di).

Semiring-based Constraint Satisfaction Problems
Bistarelli et al. (1999) introduced a generalization of con-
straint satisfaction problems parameterised with c-semirings
R, which are idempotent commutative semirings such that
the axiom ∀r ∈ R : r⊕e⊗ = e⊗ holds.

Definition 29 (Constraint System, Constraint Problem). A
constraint system is a tuple CS = 〈R, D, V 〉, where R is a
c-semiring, D is a finite domain, and V is an ordered set of
variables. A constraint over CS is a pair 〈def, con〉, where
con ⊆ V , and def : Dcon → R is the value of the con-
straint.

A constraint problem P over CS is a pair P = 〈C, con〉,
where C is a multiset of constraints over CS and con ⊆ V .

SCSPs correspond to classical CSP, probabilistic CSP,
weighted CSP and fuzzy CSP when the chosen c-semiring
is B, ([0, 1],max, ·, 0, 1),Rmax and ([0, 1],max,min, 0, 1),
respectively (Bistarelli et al. 1999). The two main operations
on constraints are combination ∗ and projection ⇓.

Definition 30 (Combination, Projection). The combination
c1 ∗ c2 of two constraints ci = 〈defi, coni〉, i = 1, 2 is the
constraint c = 〈def1⊗def2, con1 ∪ con2〉. The projection
c ⇓con′ of a constraint c = 〈def, con〉 to con′ ⊆ con is
〈def ′, con′〉 with def ′(t′) =

⊕
{t|t↓con

con′=t
′}def(t).
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Intuitively, combination ∗ is the product (⊗) of constraint
values and projection ⇓con′ is the sum (⊕) over all as-
signments to the variables in con \ con′. Using ∗,⇓, the
consistency-level of an SCSP is defined as follows.

Definition 31 (Consistency-Level). Given an SCSP problem
P = 〈C, con〉, we define the best level of consistency of P
as blevel(P ) = (Πc∈Cc) ⇓∅.

We see that the computation of blevel(P ) is a sum of the
products of the values of the constraints in P over all possi-
ble variable assignments. If def is given as a map of variable
assignments to semiring values, we obtain:

Theorem 32. Computing blevel(.) over R is Karp-redu-
cible to SUMPROD overR and vice versa, and thus NP(R)-
complete w.r.t. Karp reductions for every semiringR.

Proof (sketch). The variables of the constraint problem cor-
respond to the ones of SUMPROD and for each constraint
〈defi, coni〉 the function defi corresponds to a function fi
in SUMPROD; blevel(.) is the solution of SUMPROD.

Algebraic Model Counting
Algebraic Model Counting (AMC) was introduced by Kim-
mig, Van den Broeck, and De Raedt (2017) as a generaliza-
tion of weighted model counting.

Definition 33 (AMC). Given a propositional theory T over
variables V , a commutative semiring R, and a labeling
function α : L → R that maps the literals L over V to
R, AMC is to compute the value

A(T ) =
⊕
I⊆V, s.t. I|=T

⊗
v∈I α(v)⊗

⊗
v 6∈I α(¬v).

Besides the standard applications in SAT, #SAT and
probabilistic inference, the authors showed that AMC can
be used to perform sensitivity analysis of probabilistic infer-
ence w.r.t. a parameter by using the semiring of the polyno-
mials with coefficients in [0, 1]. Further, AMC over GRAD
can be employed in the context of parameter learning (Man-
haeve et al. 2018), as it can produce the gradient w.r.t. a pa-
rameter. More applications and details can be found in (Kim-
mig, Van den Broeck, and De Raedt 2017).

Theorem 34. AMC over R is Karp reducible to SAT(R)
and vice versa, and thus NP(R)-complete w.r.t. Karp reduc-
tions for every semiringR.

Proof (sketch). ⇒: We can translate T into a ΣBF β and
weight it with α using (vi∗α(vi)+¬vi∗α(¬vi)) for vi ∈ V .
⇐: SAT(R) is a sum of products of the semiring values r
that occur in the input ΣBF. We add for each occurrence ri
of r a variable vir with α(vir) = r, α(¬vir) = e⊗. Then we
use T to specify which products are included in the sum.

In combination with the relation of NP(R) to classical
complexity classes these completeness results give us a bet-
ter insight into the complexity of ΣFO-EVAL(R), SCSPs
and AMC. Specifically, as SCSPs are only defined over c-
semirings (which are idempotent), we see that over appropri-
ately encoded, finitely generated semirings we stay in FPNP

‖ .

Conclusion & Outlook
On the one hand, the characterization of SUMPROD over R
as NP(R)-complete shows that it is hard to solve, in most
cases even significantly harder than SAT, as SRTMs work
analogously to NTMs but retain more information via semir-
ing values. Over N this is “only” the number of solutions,
whereas over N[(xi)∞] we can even obtain the number of
solutions of all propositional formulas in n variables with
one ΣBF of polynomial size. This explains why SUMPROD
over N[(xi)∞] is unlikely to be in FPSPACE(POLY).

On the other hand, the fact that we can use SRTMs to
solve SUMPROD also provides upper-bounds on the hard-
ness. We cannot compute the sum of arbitrarily generated
semiring values but are restricted to sums of products of
semiring values from a finite set or the input.

The investigation of the relation between the semiring
classes NP(R) and classical complexity classes showed that
NP(B), NP(N), NP(Rmax) correspond naturally to NP, #P,
OPTP, respectively. We thus can see NP(R) as a possi-
ble generalization of NP to an algebraic setting. Alternative
such generalizations would be of interest.

While SUMPROD is likely to be very hard (i.e., not in
FPSPACE(POLY)) for some semirings, e.g. N[(xi)∞], our
results show that it can be solved using algorithms for #P
(resp. NP) in a wide range of cases; viz. for many commuta-
tive, finitely generated (and resp. idempotent) semirings. We
further demonstrated how our theorems facilitate the com-
plexity analysis of specific semirings.

We characterized the complexity of multiple practically
relevant problems: ΣFO-EVAL(R), computing the maxi-
mum achievable consistency of an SCSP over R, and AMC
over R are all NP(R)-complete. Together with our results
that relate NP(R) to known complexity classes, this pro-
vides complexity results for a wide range of settings. Since
the translations we used in the complexity proofs are quite
natural, their benefit may even go beyond that. Although
we have not considered this in detail, one may suspect that
they allow to transfer the results for tractable fragments of
AMC, SUMPROD etc., in (Bacchus, Dalmao, and Pitassi
2009; Kimmig, Van den Broeck, and De Raedt 2017; Friesen
and Domingos 2016), from one framework to the other.

Outlook There are other formalisms, like semiring-
induced propositional logic (Larrosa, Oliveras, and
Rodrı́guez-Carbonell 2010) and Algebraic Derivation
Counting (Green, Karvounarakis, and Tannen 2007) that
are related to SUMPROD but do not seem to fall into this
category of problems immediately. It would be interesting
to see what the exact relationship is and what this means for
their complexity. Extending our study to more semirings,
e.g. to ones with SAT(R) in OPTP like the most probable
explanation semiring ([0, 1],max, ·, 0, 1), is another issue.

Also, SUMPROD problems can be naturally generalized
to arbitrary stacks of sums and products using the Π quan-
tifier of weighted QBFs. The extension of the definition
of SRTMs seems feasible by using the approach of Lad-
ner (1989) who introduced a counting version of the poly-
nomial hierarchy based on alternating Turing Machines.
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