
Treewidth-Aware Complexity in ASP:
Not all Positive Cycles are Equally Hard*

Jorge Fandinno1,2 and Markus Hecher2,3

1University of Nebraska Omaha, USA
2University of Potsdam, Germany

3TU Wien, Austria
jfandinno@unomaha.edu, mhecher@gmail.com

Abstract

It is well-known that deciding consistency for normal answer
set programs (ASP) is NP-complete, thus, as hard as the satis-
faction problem for propositional logic (SAT). The exponential
time hypothesis (ETH) implies that the best algorithms to solve
these problems take exponential time in the worst case. How-
ever, accounting for the treewidth, the consistency problem for
ASP is slightly harder than SAT: while SAT can be solved by
an algorithm that runs in exponential time in the treewidth k,
normal ASP requires exponential time in k · log(k). This extra
cost is due to checking that there are no self-supported true
atoms because of positive cycles in the program. In this paper,
we refine this recent result and show that consistency for ASP
can be decided in exponential time in k · log(ι) where ι is a
novel measure, bounded by both treewidth k and the size ` of
the largest strongly-connected component of the positive de-
pendency graph of the program. We provide a treewidth-aware
reduction from ASP to SAT that adheres to the above limit.

1 Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011; Gebser et al. 2012) is a problem model-
ing and solving paradigm well-known in the area of knowl-
edge representation and reasoning that is experiencing an
increasing number of successful applications (Balduccini,
Gelfond, and Nogueira 2006; Nogueira et al. 2001; Guzi-
olowski et al. 2013). The flexibility of ASP comes with a
high computational complexity cost: its consistency prob-
lem, that is, deciding the existence of a solution (answer set)
for a given logic program is ΣP2 -complete (Eiter and Gott-
lob 1995), in general. Fragments with lower complexity are
also known. For instance, the consistency problem for nor-
mal, head-cycle-free (HCF), or tight ASP is NP-complete.
Even for solving this class of programs, the best known al-
gorithms require exponential time with respect to the size
of the program. Still, existing solvers (Gebser et al. 2012;
Alviano et al. 2017) are able to find solutions for many in-
teresting problems in reasonable time. A way to shed light

*This work has been supported by the Austrian Science Fund
(FWF), Grants Y698 and P32830, and the Vienna Science and
Technology Fund, Grant WWTF ICT19-065.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

into this discrepancy is by means of parameterized complex-
ity (Cygan et al. 2015), which conducts more fine-grained
complexity analysis in terms of parameters of a problem. For
ASP, several results were achieved in this direction (Gottlob,
Scarcello, and Sideri 2002; Lonc and Truszczynski 2003; Lin
and Zhao 2004; Fichte and Szeider 2015), some insights in-
volve even combinations (Lackner and Pfandler 2012; Fichte,
Kronegger, and Woltran 2019) of parameters. More recent
studies focus on the influence of the parameter treewidth for
solving ASP (Jakl, Pichler, and Woltran 2009; Fichte et al.
2017; Fichte and Hecher 2019; Bichler, Morak, and Woltran
2018; Bliem et al. 2020). These works utilize treewidth to
solve, e.g., the consistency problem, in polynomial time in
the program size, while being superpolynomial only in the
treewidth. Recently, it was shown that for normal ASP decid-
ing consistency is expected to be slightly superexponential
in the treewidth (Hecher 2020). More concretely, a lower
bound was established under the Exponential Time Hypothe-
sis (ETH) (Impagliazzo, Paturi, and Zane 2001), saying that
consistency for any normal logic program of treewidth k
cannot be decided in time 2o(k·log(k)) · poly(n), where n is
the number of variables (atoms) of the program. This result
matches the known upper bound (Fichte and Hecher 2019)
and renders the consistency of normal ASP slightly harder
than the satisfiability (SAT) of a propositional formula, which
under the ETH cannot be decided in time 2o(k) · poly(n).
Contributions. We address this result and consider besides
treewidth, the size ` of the largest strongly-connected compo-
nent (SCC) of the positive dependency graph as parameter.

1. First, we present a treewidth-aware reduction from head-
cycle-free ASP to tight ASP. Our reduction takes any HCF
program Π and creates a tight program, whose treewidth
is at most O(k · log(`)), where k is the treewidth of Π
and ` is the size of the largest SCC of the dependency
graph of Π. In general, the treewidth of the resulting tight
program cannot be in o(k · log(k)), unless ETH fails. Our
reduction forms a major improvement for the case `� k.
Besides, this reduction bijectively preserves answer sets
and can be used for counting and enumerating answer sets.

2. Then, we improve known results (Fichte and Hecher 2019;
Hecher 2020) for the consistency of head-cycle-free ASP.
We define a novel measure ι for the “level” tightness of pro-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6312

grams that is bounded by both treewidth k and the largest
SCC size ` such that ι=1 for tight programs only. Interest-
ingly, there are programs with large cycles (large values
of `), where we have ι=2. We present a treewidth-aware
reduction, capable of “increasing” tightness at the cost
of higher treewidth, which increases up to O(k · log(ι)).
Further, we establish an algorithm for consistency, running
in time 2O(k·log(ι)) · poly(n).

3. Finally, we show a treewidth-aware reduction that takes
any tight logic program Π and creates a propositional
formula, whose treewidth is linear in the treewidth of
the program. This reduction cannot be significantly im-
proved under ETH. Our result also establishes that for
deciding consistency of tight logic programs of bounded
treewidth k, one indeed obtains the same runtime as for
SAT, namely 2O(k) · n, which is ETH-tight.

Related Work. While the largest SCC size has already been
considered (Janhunen 2006), it has not been studied in com-
bination with treewidth. Also programs, where the number of
even and/or odd cycles is bounded, have been analyzed (Lin
and Zhao 2004), which is orthogonal to the size of the largest
cycle or largest SCC size `. Indeed, in the worst-case, each
component might have an exponential number of cycles in `.
Further, the literature distinguishes the so-called feedback
width (Gottlob, Scarcello, and Sideri 2002), depending on the
atoms required to break large SCCs (positive cycles). There
are related measures, called smallest backdoor size, where
the removal of a set of atoms from the program results in
normal or acyclic programs (Fichte and Szeider 2015).

2 Background
We assume familiarity with graph terminology. Given a di-
rected graph G = (V,E). Then, a set C ⊆ V of vertices
of G is a strongly-connected component (SCC) of G if C is
a ⊆-largest set such that for every two distinct vertices u, v
in C there is a directed path from u to v in G. An SCC C
is called non-trivial, if |C| > 1. A cycle over some vertex v
of G is a directed path from v to v.

Answer Set Programming (ASP). We assume familiarity
with propositional satisfiability (SAT) and follow standard
definitions of ASP (Brewka, Eiter, and Truszczyński 2011).
Let m, n, o be non-negative integers such that m ≤ n ≤ o,
and let a1, . . ., ao be distinct propositional atoms. Moreover,
we refer by literal to an atom or the negation thereof. A
(logic) program Π is a set of rules of the form a1 ∨ · · · ∨
am ← am+1, . . . , an,¬an+1, . . . ,¬ao. For a rule r, we let
Hr := {a1, . . . , am},B+

r := {am+1, . . . , an}, andB−r :=
{an+1, . . . , ao}. We denote the sets of atoms occurring in
a rule r or in a program Π by at(r) := Hr ∪ B+

r ∪ B−r
and at(Π) :=

⋃
r∈Π at(r). For a set X ⊆ at(Π) of atoms,

we let X := {¬x | x ∈ X}. A program Π is normal,
if |Hr| ≤ 1 for every r ∈ Π. The (positive) dependency
digraph DΠ of Π is the directed graph defined on the set of
atoms from

⋃
r∈ΠHr ∪B+

r , where there is a directed edge
from vertex a to vertex b iff there is a rule r ∈ Π with a ∈ B+

r
and b ∈ Hr. A head-cycle of DΠ is a cycle containing two
distinct atoms a, b ∈ Hr for some rule r ∈ Π. A program Π

b
ae

fg c d
Figure 1: Positive dependency graph DΠ of Π of Example 1.

is head-cycle-free (HCF) if DΠ contains no head-cycle (Ben-
Eliyahu and Dechter 1994) and Π is called tight (Lin and
Zhao 2003) if DΠ contains no cycle, i.e., Π has no “positive
cycle”. The class of tight, normal, and HCF programs is
referred to by tight, normal, and HCF ASP, respectively.

An interpretation I is a set of atoms. I satisfies a rule r if
(Hr ∪ B−r) ∩ I 6= ∅ or B+

r \ I 6= ∅. I is a model of Π if it
satisfies all rules of Π. For brevity, we view propositional for-
mulas as sets of clauses and use the notion of interpretations,
models, and satisfiability analogously. Given a setA ⊆ at(Π)
of atoms, a function σ : A→ {0, . . . , |A| − 1} is called level
mapping over A. Given an interpretation I of a normal pro-
gram Π and a level mapping σ over I , an atom a ∈ I is proven
if there is a rule r ∈ Π proving a with σ, where a ∈ Hr with
(i) B+

r ⊆ I , (ii) I ∩ B−r = ∅ and I ∩ (Hr \ {a}) = ∅, and
(iii) σ(b) < σ(a) for every b ∈ B+

r . Then, I is an answer set
of Π if (i) I is a model of Π and (ii) I is proven, i.e., every
a ∈ I is proven with σ. This characterization (Lin and Zhao
2003) vacuously extends to HCF programs and allows for fur-
ther simplification when considering SCCs of DΠ (Janhunen
2006). To this end, we denote for each atom a ∈ at(Π) the
SCC of atom a in DΠ by scc(a). Then, Condition (iii) above
can be relaxed to σ(b) < σ(a) for every b ∈ B+

r ∩ scc(a).
The problem of deciding whether an ASP program has an

answer set is called consistency, which is NP-complete for
normal, HCF, and tight programs (Marek and Truszczyński
1991; Ben-Eliyahu and Dechter 1994; Lin and Zhao 2003).
In general, semantics are defined via the GL-reduct (Gelfond
and Lifschitz 1991), where for arbitrary programs the com-
plexity increases to ΣP

2-complete (Eiter and Gottlob 1995).

Example 1. Consider program Π := {r1, . . . , r7}, where
r1 := a← d, r2 := b← a, r3 := b← d, r4 := b← e,¬f,
r5 := c← b, r6 := d← b, c, and r7 := e ∨ f ∨ g ← . Ob-
serve that Π is head-cycle-free. Figure 1 shows the
positive dependency graph DΠ consisting of SCCs
scc(e), scc(f), scc(g), and scc(a)= scc(b)= scc(c)= scc(d).
Then, I :={a, b, c, d, e} is an answer set of Π,
since I is a model of Π and with level mapping
σ :={e 7→ 0, b 7→ 0, c 7→ 1, d 7→ 2, a 7→ 3}, we prove e
by rule r7, b by rule r4 since e /∈ B+

r4 ∩ scc(b), c by r5, d by
r6, and a by r1. Further answer sets are {f} and {g}.
Tree Decompositions (TDs). A tree decomposition (TD)
(Robertson and Seymour 1986) of a given graph G=(V,E)
is a pair T =(T, χ) where T is a tree rooted at root(T) and χ
assigns to each node t of T a set χ(t) ⊆ V , called bag, such
that (i) V =

⋃
t of T χ(t), (ii) E ⊆ {{u, v} | t in T, {u, v} ⊆

χ(t)}, and (iii) “connectedness”: for each r, s, t of T , such
that s lies on the path from r to t, we have χ(r)∩χ(t) ⊆ χ(s).
For every node t of T , we denote by chld(t) the set of child
nodes of t in T . Any TD can be turned into a TD with con-
stantly many child nodes (Kloks 1994) per node in linear
time. We let width(T) := maxt of T |χ(t)|−1. The treewidth
tw(G) of G is the minimum width(T) over all TDs T of G.
TDs can be approximated efficiently (Bodlaender et al. 2016).

6313

b
ae

c
dfg {a, b, d}t1 {b, c, d} t2

{b, d, e}t3 {e, f, g}
t4

{b, e, f}t5

Figure 2: Graph G (left) and a TD T of G (right).

Example 2. Figure 2 illustrates a graph G and a TD T of G
of width 2, which is also the treewidth of G, since vertices
b,c,d are completely connected with each other (Kloks 1994).

In order to use TDs, we need dedicated graph representa-
tions. The primal graph GΠ of a program Π (Jakl, Pichler,
and Woltran 2009) has the atoms of Π as vertices and an
edge {a, b} if there exists a rule r ∈ Π and a, b ∈ at(r), and
the treewidth of Π equals tw(GΠ). Similarly, GF denotes the
primal graph of a formula F and the treewidth of F equals
tw(GF). Let T = (T, χ) be a TD of primal graph GΠ, and
let t be a node of T . Then, the bag program Πt contains rules
covered by χ(t), i.e., Πt :={r | r ∈ Π, at(r) ⊆ χ(t)}.
Example 3. Recall program Π from Example 1 and observe
that graphG of Figure 2 is the primal graphGΠ of Π. Further,
we have Πt1 = {r1, r2, r3}, Πt2 = {r3, r5, r6}, Πt3 = ∅,
Πt4 = {r7}, and Πt5 = {r4}.

3 Bounding Treewidth and Positive Cycles
Recently, it was shown that under reasonable assumptions,
namely the exponential time hypothesis (ETH), the consis-
tency of normal logic programs is slightly superexponential
and one cannot significantly improve in the worst case.
Proposition 1 (Lower Bound (Hecher 2020)). Given a nor-
mal or HCF logic program Π, where k is the treewidth of
the primal graph of Π. Then, under ETH one cannot decide
consistency of Π in time 2o(k·log(k)) · poly(|at(Π)|).

While according to Proposition 1, we cannot expect to
significantly improve the runtime for normal logic programs
in the worst case, it still is worth studying the underlying
reason that makes the worst case so bad. It is well-known
that positive cycles are responsible for the hardness (Lifschitz
and Razborov 2006; Janhunen 2006) of computing answer
sets of normal logic programs. The particular issue with logic
programs Π in combination with treewidth and large cycles is
that in a TD of GΠ it might be the case that the cycle spreads
across the whole decomposition, i.e., TD bags only contain
parts of such cycles, which makes it impossible to view these
cycles (and dependencies) as a whole. This is also the reason
of the hardness given in Proposition 1 and explains why
under bounded treewidth evaluating normal logic programs
is harder than evaluating propositional formulas. However, if
a given normal program only has positive cycles of length at
most 3, and each atom appears in at most one positive cycle,
the properties of TDs ensure that the atoms of each such
positive cycle appear in at least one common bag. Indeed,
a cycle of length at most 3 forms a completely connected
subgraph and therefore it is guaranteed (Kloks 1994) that the
atoms of the cycle are in one common bag of any TD of GΠ.
Example 4. Recall program Π of Example 1. Observe that
in any TD of GΠ it is required that there are nodes t, t′

with χ(t) ⊆ {b, c, d} and χ(t′) ⊆ {a, b, d} since a cycle of
length 3 in the positive dependency graph DΠ (cf. Figure 1)
is completely connected in GΠ, cf. Figure 2 (left).

In the following, we study cycles of length at most `, where
we bound the size of these positive cycles in order to obtain
results better than the lower bound of Proposition 1 on pro-
grams of bounded positive cycle lengths. This provides a
significant improvement in the running time on programs,
where the size of positive cycles is bounded, and also shows
that indeed the case of positive cycle lengths up to 3 can be
still efficiently lifted to lengths beyond 3. Consequently, not
all positive cycles are bad assuming that the maximum size `
of the positive cycles is bounded, thereby obtaining runtimes
below the lower bound of Proposition 1 as long as ` � k,
where k is the treewidth of GΠ.

Bounding Positive Cycles. In the remainder of this work,
we assume an HCF logic program Π, whose treewidth is
given by k = tw(GΠ). We let `scc(a) ≥ 1 for each atom a be
the number of atoms (size) of the SCC of a inDΠ. Further, we
let ` := maxa∈at(Π) `scc(a) be the largest SCC size. This also
bounds the lengths of positive cycles. If each atom a appears
in at most one positive cycle, we have that `scc(a) is the cycle
length of a and then ` is the length of the largest cycle in Π.
We refer to the class of HCF logic programs, whose largest
SCC size is bounded by a parameter ` by SCC-bounded ASP.
Observe that the largest SCC size ` is orthogonal to treewidth.
Example 5. Consider program Π from Example 1.
Then, `scc(e)=`scc(f)=`scc(g)=1, `scc(a)=`scc(b)=`scc(c)=
`scc(d)=4, and `=4. Assume a program Π′, whose primal
graph equals the dependency graph, which is just one large
(positive) cycle. This program has treewidth 2 and one can
define a TD of GΠ′ , whose bags are constructed along the
cycle. However, the largest SCC size ` = |at(Π′)|. Conversely,
there are programs of large treewidth with no positive cycle.

Bounding sizes of SCCs seems similar to the non-
parameterized context, where the consistency of normal logic
programs is compiled to a propositional formula (SAT) by
a reduction based on level mappings that is applied on an
SCC-by-SCC basis (Janhunen 2006). However, this reduction
does not preserve the treewidth. On the other hand, while our
approach also uses level mappings and proceeds on an SCC-
by-SCC basis, the overall evaluation is not SCC-based, since
this might completely destroy the treewidth in the worst-case.
Instead, the evaluation is guided along a TD.

4 Treewidth-Aware Reductions for
SCC-bounded ASP

Next, we present a treewidth-aware reduction from HCF
ASP to tight ASP. More precisely, for an HCF program Π
with largest SCC size `, where k is the treewidth of GΠ, the
resulting tight program has treewidth O(k · log(`)).

Reduction to Tight ASP
The overall construction of the reduction is inspired by the
idea of treewidth-aware reductions (Hecher 2020), where in
the following, we assume an SCC-bounded program Π and
a TD T = (T, χ) of GΠ such that the construction of the

6314

resulting tight logic program Π′ is heavily guided along T .
In contrast to existing work (Hecher 2020), bounding cy-
cles with the largest SCC size additionally allows to have a
“global” level mapping (Janhunen 2006), i.e., we do not have
different levels for an atom in different bags. Then, while the
overall reduction is still guided along the TD T in order to
only slightly increase treewidth, these global level mappings
ensure that the tight program is guaranteed to bijectively
preserve all answer sets, as stated in Theorem 1.

Before we discuss the construction in detail, we require
auxiliary atoms and notation as follows. In order to guide
the evaluation of the provability of an atom x ∈ at(Π) in a
node t in T along the decomposition T , we use atoms pxt
and px≤t to indicate that x was proven in node t (with some
rule in Πt) and below t, respectively. Further, we require
level mappings similar to related work (Janhunen 2006), but
adapted to SCC-bounded programs. Formally, a level map-
ping σ : A → {0, . . . , `−1} for set of atoms A ⊆ at(Π) is
a function mapping each atom x ∈ A to a level σ(x) such
that the level does not exceed `scc(x), i.e., σ(x) < `scc(x). We
use atoms bjx, called level bits, for x ∈ at(Π) and 1 ≤ j ≤
dlog(`scc(x))e, which are used as bits in order to represent
in a level mapping the level of x in binary. To this end, we
denote for x and a number i with 0 ≤ i < `scc(x) as well as
a position number 1 ≤ j ≤ dlog(`scc(x))e, the j-th position
of i in binary by [i]j . Then, we let [[x]]i be the consistent set
of literals over level bits bjx that is used to represent level
number i for x in binary. More precisely, for each position
number j, [[x]]i contains bjx if [i]j = 1 and ¬bjx otherwise, i.e.,
if [i]j = 0. Finally, we use auxiliary atoms of the form x ≺rt i
to indicate that the level for x represented by [[x]]i is indeed
smaller than i > 0, which is used in the context of node t and
a rule r ∈ Πt for technical reasons. However, we omit r and
t in “≺rt ” if clear from the context.
Example 6. Recall program Π, level mapping σ, and largest
SCC size ` = 4 from Example 1. For representing σ in binary,
we require dlog(`)e = 2 bits per atom a ∈ at(Π) and we
assume that bits are ordered from least to most significant
bit. So [σ(e)]0 = [σ(e)]1 = 0, [σ(c)]0 = 1 and [σ(c)]1 = 0.
Then, [[e]]σ(e)={¬b0e,¬b1e}, [[b]]σ(b) = {¬b0b ,¬b1b}, [[c]]σ(c) =

{b0c ,¬b1c}, [[d]]σ(d) = {¬b0d, b1d}, and [[a]]σ(a) = {b0a, b1a}.
Next, we are ready to discuss the treewidth-aware reduc-

tion from SCC-bounded ASP to tight ASP, which takes Π
and T and creates a tight logic program Π′. To this end, let t
be any node of T . First, truth values for each atom x ∈ χ(t)
are subject to a guess by Rules (1) and by Rules (2) it is
ensured that all rules of Πt are satisfied. Notably, by the defi-
nition of TDs, Rules (1) and Rules (2) indeed cover all the
atoms of Π and all rules of Π, respectively. Then, the next
block of rules consisting of Rules (3)–(9) is used for ensuring
provability and finally the last block of Rules (10)–(12) is
required in order to preserve answer sets, i.e., these rules
prevent duplicate answer sets of Π′ for an answer set of Π.

For the block of Rules (3)–(9) to ensure provability, we
need to guess the level bits for each atom x as given in
Rules (3). Rules (4) ensure that we correctly define x ≺rt i,
which is the case if there exists a bit [i]j that is set to 1,
but we have ¬bjx and for all larger bits [i]j

′
that are set to 0

(j′ > j), we also have ¬bj′x . Then, for Rules (5) we slightly
abuse notation x ≺rt i for a set X , where X ≺rt i denotes a
set of atoms of the form x ≺rt i for each x ∈ X . Rules (5)
make sure that whenever a rule r ∈ Πt proves x with the
level mapping given by the level bits over atoms in χ(t),
we have provability pxt for x in t. However, only for the
atoms of the positive body B+

r which are also in the same
SCC C = scc(x) as x we need to check that the levels are
smaller than the level of x, since by definition of SCCs, there
cannot be a positive cycle among atoms of different SCCs.
As a result, if there is a rule, where no atom of the positive
body is in C, satisfying the rule is enough for proving x.
If provability pxt holds, we also have px≤t by Rules (6) and
provability is propagated from node t′ to its parent node t
by setting px≤t if px≤t′ , as indicated by Rules (7). Finally,
whenever an atom x is not present above a node t, we require
provability px≤t, ensured by Rules (8) and (9).
Preserving answer sets (bijectively): The last block consisting
of Rules (10), (11), and (12) makes sure that atoms that are
false or not in the answer set of Π′ get level 0 and that we
prohibit levels for an atom x that can be decreased by one
without losing provability. This ensures that for each answer
set of Π we get exactly one answer set of Π′ and vice versa.

{x} ← for each x ∈ χ(t); see1 (1)

← B+
r , B

−
r ∪Hr for each r ∈ Πt (2)

{bjx} ← for each x ∈ χ(t),
1 ≤ j ≤ dlog(`scc(x))e; see1 (3)

x ≺rt i← ¬bjx, B for each r ∈ Πt, x ∈ Hr, C= scc(x),
1≤i<`C , 1≤j≤dlog(`C)e, [i]j=1,
B={bsx| j<s≤dlog(`C)e, [i]s=0} (4)

pxt ← x, [[x]]i, B
+
r , for each r ∈ Πt, x ∈ Hr,

B−r ∪(Hr\{x}), 1 ≤ i < `scc(x) (5)
(B+

r ∩ scc(x))≺rt i
px≤t ← pxt for each x ∈ χ(t) (6)

px≤t ← px≤t′ for each x ∈ χ(t) ∩ χ(t′),
t′ ∈ chld(t) (7)

← x,¬px≤t′ for each x ∈ χ(t′) \ χ(t),
t′ ∈ chld(t) (8)

← x,¬px≤root(T) for each x ∈ χ(root(T)) (9)

← ¬x, bjx for each x ∈ χ(t),
1 ≤ j ≤ dlog(`scc(x))e (10)

← x, [[x]]i, B
+
r , for each r ∈ Πt, x ∈ Hr, C= scc(x),

B−r ∪(Hr\{x}), 2 ≤ i < `C , B
+
r ∩ C 6= ∅ (11)

(B+
r ∩C)≺rt i−1

← x, [[x]]i, B
+
r , for each r ∈ Πt, x ∈ Hr, C= scc(x),

B−r ∪(Hr\{x}) 1 ≤ i < `C , B
+
r ∩ C = ∅ (12)

Example 7. Recall program Π of Example 1 and TD T =
(T, χ) ofGΠ as given in Figure 2. Rules (1) and Rules (2) are
constructed for each atom a ∈ at(Π) and for each rule r ∈ Π,

1We view a choice rule {a}← as a∨a′← for a fresh atom a′.

6315

respectively. Similarly, Rules (3) are constructed for each
of the dlog(`scc(a))e many bits of each atom a ∈ at(Π).
Rules (4) serve as auxiliary definition, where for, e.g., atom c
we construct c≺1 ← ¬b0c ,¬b1c; c≺2 ← ¬b1c; c≺3 ← ¬b0c;
and c≺3← ¬b1c . Next, we show Rules (5)–(12) for node t2.
No. Rules
(5) pbt2 ← b, [[b]]1, d≺1, d; pbt2 ← b, [[b]]2, d≺2, d;

pbt2 ← b, [[b]]3, d≺3, d;
pct2 ← c, [[c]]1, d≺1, d; pct2 ← c, [[c]]2, d≺2, d;
pct2 ← c, [[c]]3, d≺3, d;
pdt2 ← d, [[d]]1, b≺1, c≺1, b, c; pdt2 ← d, [[d]]2, b≺2, c≺2,
b, c; pdt2 ← d, [[d]]3, b≺3, c≺3, b, c

(6) pb≤t2 ← pbt2 ; pc≤t2 ← pct2 ; pd≤t2 ← pdt2
(10) ← ¬b, b0b;← ¬b, b1b;← ¬c, b0c;← ¬c, b1c;
← ¬d, b0d;← ¬d, b1d

(11) ← b, [[b]]2, d≺1, d;← b, [[b]]3, d≺2, d;
← c, [[c]]2, d≺1, d;← c, [[c]]3, d≺2, d;
← d, [[d]]2, b≺1, c≺1, b, c;← d, [[d]]3, b≺2, c≺2, b, c

For root node t5 of T , we obtain the following Rules (5)–(12).
(5) pbt5 ← b, e,¬f (simplified since B+

r4 ∩ scc(b) = ∅)
(6) pb≤t5 ← pbt5 ; pe≤t5 ← pet5 ; pf≤t5 ← pft5
(7) pb≤t5← pb≤t3 ; pe≤t5← pe≤t3 ; pe≤t5← pe≤t4 ; pf≤t5← pf≤t4
(8) ← d,¬pd≤t3 ;← g,¬pg≤t4
(9) ← b,¬pb≤t5 ;← e,¬pe≤t5 ;← f,¬pf≤t5
(10) ← ¬b, b0b;← ¬b, b1b;← ¬e, b0e;← ¬e, b1e;
← ¬f, b0f ;← ¬f, b1f

(12) ← b, [[b]]1, e,¬f ;← b, [[b]]2, e,¬f ;← b, [[b]]3, e,¬f
Correctness and Treewidth-Awareness. We discuss cor-
rectness and treewidth-awareness, leading then to Theorem 1.

Lemma 1 (Correctness). Let Π be an HCF program, where k
is the treewidth of GΠ and every SCC C satisfies |C| ≤ `.
Then, tight program Π′ obtained by Rules (1)–(12) on Π and
a TD T = (T, χ) of GΠ is correct. Formally, for any answer
set I of Π there is exactly one answer set I ′ of Π′ (vice versa).

Proof. “=⇒”: Let I be an answer set of Π. Then, there ex-
ists a unique (Janhunen 2006), minimal2 level mapping σ
proving each x ∈ I with 0 ≤ σ(x) < `scc(x). Let P :=
{pxt , px≤t | r ∈ Πt proves x with σ, x ∈ I, t in T}. From this
we construct an interpretation I ′ := I ∪ {bjx | [σ(x)]j =
1, 1 ≤ j ≤ dlog(`scc(x))e, x ∈ I} ∪ P ∪ {px≤t | x∈ I, t′ ∈
T, t′ is below t in T, px≤t′ ∈ P} ∪ {x ≺rt i | t ∈ T, r ∈
Πt, x ∈ Hr, i < `scc(x), σ(x) < i}, which sets atoms as I ,
encodes σ in binary and sets provability accordingly. It is
easy to see that I ′ is an answer set of Π′. “⇐=”: Let I ′ be
an answer set of Π′. From this we construct I := I ′ ∩ at(Π)
as well as level mapping σ := {x 7→ fI′(x) | x ∈ at(Π)},
where we define function fI′(x) : at(Π) → {0, . . . , `−1}
for atom x ∈ at(Π) to return 0 ≤ i < `scc(x) if {bjx | 1 ≤
j ≤ dlog(`scc(x))e, [i]j = 1} = {bjx ∈ I ′ | 1 ≤ j ≤
dlog(`scc(x))e}, i.e., I ′ binary-encodes i for x. Assume to-
wards a contradiction that I 6|= Π. But then I ′ does not satisfy
at least one instance of Rules (1) and (2), contradicting that I ′
is an answer set of Π′. Again, towards a contradiction assume

2σ is minimal if no level can be decreased s.t. I is proven with σ.

that I is not an answer set of Π, i.e., at least one x ∈ at(Π)
cannot be proven with σ. We still have px≤root(T) ∈ I ′, by
Rules (8) and (9). However, then we either have that px≤t ∈ I ′
or pxroot(T) ∈ I ′ by Rules (6) and (7) for at least one child
node t of root(T). Finally, by connectedness property (iii) of
TDs, there has to be a node t′ that is either root(T) or a de-
scendant of root(T) where we have pxt′ ∈ I ′. Consequently,
by Rules (5) as well as Rules (3) and (4) we have a rule r ∈ Π
that proves x with σ, contradicting the assumption. Similarly,
Rules (10), (11), and (12) ensure minimality of σ.
Lemma 2 (Treewidth-Awareness). Let Π be an HCF pro-
gram s.t. every SCC C satisfies |C| ≤ `. Then, the treewidth
of tight program Π′ obtained by the reduction above on Π
and a TD T = (T, χ) of GΠ of width k, is in O(k · log(`)).
Proof (Sketch). We take T =(T, χ) and construct a TD
T ′ :=(T ′, χ′) ofGΠ′ , where T ′ is obtained by replacing each
node t of T by a sequence of nodes. The sequence for t con-
sists for each r ∈ Πt of ` many nodes tr1, . . . , tr` , where χ′
is defined as follows. For each node tri s.t. the parent of t
in T is t∗, we let χ′(tri) := χ(t) ∪ {bjx | x ∈ χ(t), 1 ≤ j ≤
dlog(`scc(x))e} ∪ {pxt , px≤t, p≤t∗ | x ∈ χ(t)} ∪ {y ≺rt i′ |
y ∈ B+

r ∩ scc(x), x ∈ Hr, i
′ ∈ {i−1, i}, 1 ≤ i′ < `scc(x)}.

Indeed, all atoms of every instance of Rules (1)–(12) appear
in at least one common bag of χ′. Further, T ′ is connected,
i.e., T ′ is a TD of GΠ′ and |χ′(t)| in O(k · log(`)).
Theorem 1 (Removing Cyclicity of SCC-bounded ASP).
Let Π be an HCF program, where the treewidth of GΠ is at
most k and every SCC C satisfies |C| ≤ `. Then, there is a
tight program Π′ with treewidth in O(k · log(`)) such that
for each answer set M of Π there is exactly one answer set
of Π′ that is equal to M over atoms at(Π), and vice versa.
Proof. First, we compute a TD T = (T, χ) of GΠ of width
below 5 · k (“5-approximation”), where k = tw(GΠ), in
time 2O(k) · poly(|at(Π)|). Observe that the reduction con-
sisting of Rules (1)–(12) on Π and T runs in time O(k · ` ·
log(`)2 · (|at(Π)|+ |Π|)). The claim follows by correctness
(Lemma 1) and by treewidth-awareness of Lemma 2.

Having established Theorem 1, the reduction above al-
lows to define an algorithm for computing answer sets of Π,
running in time 2O(k·log(λ)) · poly(|at(Π)|), where λ =
min({k, `}). This can be achieved by compiling the result-
ing tight program of the reduction above to a propositional
formula (SAT), which runs in single-exponential time in k,
cf. Section 4. Then, we use an algorithm for SAT running in
time single-exponential in the treewidth (Samer and Szeider
2010). In contrast to existing work (Fichte and Hecher 2019)
the overall approach bijectively preserves the answer sets
of Π, which enables counting or enumeration of all answer
sets with linear delay. Notably, if largest SCC size `� k we
improve known runtimes (cf. Proposition 1).

Reduction to Almost Tight ASP– Balancing
Treewidth and Tightness Width
Now, we focus on the consistency problem for SCC-bounded
ASP, since relaxing the (bijective) preservation of answer
sets allows us to further improve our reduction. Intuitively,

6316

with “local” level mappings which provide level numbers
only locally for each TD bag, but ensure compatibility among
different bags, one might obtain duplicate answer sets. While
these local mappings for TD bags were already used (Hecher
2020), applying local mappings for SCC-bounded ASP en-
ables significant improvements which motivate a new mea-
sure for (relaxed variants) of tightness for ASP and treewidth.
Towards Tightness Width and Almost Tightness. To
this end, let Π be an SCC-bounded program, T = (T, χ)
be a TD of GΠ of width k, t be a node of T , and ` be the
largest SCC size of Π. Then, we let `scc(x)

t for each atom x
of Π be the size of the SCC of x restricted to χ(t) in DΠ,
i.e., `scc(x)

t := |χ(t) ∩ scc(x)|. Further, we define the local
SCC size `t for a node t as follows `t := maxx∈χ(t) `

scc(x)
t

and the tightness width ι by ι := maxt of T `t. Intuitively,
the local SCC sizes are bounded by the bag sizes (k + 1) as
well as the largest SCC size `, but can be even significantly
smaller, especially if SCCs are spread across T and if TD
bags contain parts of many SCCs. This observation motivates
a new (relaxed) measure for almost tightness of ASP and
treewidth, where even non-tight ASP programs with large
cycles are considered almost tight on T , as long as ι is small
(constant). We say program Π is ι-tight on T , i.e., “almost”
tight, if ι ≥ 2. Notably, if ι = 1, Π is tight and vice versa.
Example 8. Recall program Π of Example 1 and TD T =
(T, χ) of GΠ of Figure 2. Observe that Π is 3-tight on T .
Consider program Π′ from Example 5. While ` is large (` =
|at(Π′)|), we have that ι = 3 for any TD of GΠ′ of width 2.

Increasing Almost Tightness (Decreasing ι). Below, we
provide a reduction that reduces the tightness width of al-
most tight programs. To this end, we assume a program Π
being ι-tight on a TD T = (T, χ) of GΠ, whose width k
coincides with the treewidth of GΠ, and a node t of T . The
reduction indirectly relies on local level mappings σt : A→
{0, . . . , `t−1} for set of atoms A ⊆ at(Π), which is a func-
tion mapping each atom x ∈ A to a level σ(x) such that the
level does not exceed `scc(x)

t , i.e., σ(x) < `
scc(x)
t . However,

we require atoms bjt,x, called local level bits, for x ∈ χ(t) and

1 ≤ j ≤ dlog(`
scc(x)
t)e, for representing level σt(x) of x for

node t in binary. Analogously to above, we denote the j-th
position of i for t in binary with 0 ≤ i < `

scc(x)
t by [i]jt , as

well as the consistent literals over local level bits bjt,x for
representing level i of x for t by [[x]]t,i. As before, we use
auxiliary atoms of the form x ≺rt i to indicate σt(x) < i for
x ∈ Hr with r ∈ Πt, as well as provability atoms pxt , px≤t.

We are ready to discuss the treewidth-aware reduction
from program Π being ι-tight on T to a program Π′ that
is ι′-tight on a TD T ′ with ι′ ≤ ι, where T ′ is constructed
as in Lemma 2. To this end, let C be the union of those non-
trivial SCCs of DΠ that shall be eliminated. If C = ∅, we
obtain the program Π as result, and if C are all vertices of any
non-trivial SCC of DΠ, we obtain a tight program, whose
treewidth is bounded byO(k · log(ι)). Consequently, if C are
the vertices of those non-trivial SCCs that are responsible for
large local SCC sizes, one can increase the level of tightness
(decrease ι) at the cost of a slight increase of treewidth. The

reduction consists of Rules (13)–(23). First, truth values for
each atom x ∈ χ(t) ∩ C are guessed by Rules (13) and by
Rules (14) it is ensured that Πt is satisfied and that those
atoms in the head Hr of a rule r ∈ Πt but not in C still
appear in the head. The next block of Rules (15)–(18) is
used for guessing local level bits for atoms x ∈ χ(t) ∩ C, cf.
Rules (15) and defining auxiliary atom x ≺rt i by Rules (16).
Further, by Rules (17) and (18) it is ensured that the different
local level mappings for different nodes are compatible. More
concretely, two neighboring nodes of T do not order two
atoms of the same SCC differently. Finally, Rules (19)–(23)
ensure provability similar to Rules (5)–(9), but only for atoms
in C as well as rules, whose heads contain atoms of C.
{x} ← for each x ∈ χ(t) ∩ C; see1 (13)
Hr\C ← B+

r , for each r ∈ Πt (14)
B−r ∪ (Hr ∩ C)

{bjt,x} ← for each r ∈ Πt, x ∈ Hr ∩ C,
1 ≤ j ≤ dlog(`

scc(x)
t)e; see1 (15)

x ≺rt i← ¬bjt,x, B for each r∈Πt, x∈Hr∩C, C= scc(x),

1≤i<`Ct , 1≤j≤dlog(`Ct)e, [i]jt=1, B
={bst,x|j<s≤dlog(`Ct)e, [i]st=0} (16)

← b1t,x=b1t,y, . . . , for each x, y ∈ χ(t) ∩ C, C= scc(x),

blt,x=blt,y y ∈ C, x 6= y, l = dlog(`Ct)e (17)

← (x ≺̇jt y), for each x, y ∈ χ(t) ∩ χ(t′) ∩ C, t′∈
(y ≺̇j

′

t′ x) chld(t), C= scc(x), 1≤j≤dlog(`Ct)e,
y ∈ C, 1≤j′≤dlog(`Ct′)e; see3 (18)

pxt ← x,B+
r , [[x]]t,i for each r ∈ Πt, x ∈ Hr ∩ C,

B−r ∪(Hr\{x}), C = scc(x), 1 ≤ i < `Ct (19)
(B+

r ∩C) ≺rt i
px≤t ← pxt for each x ∈ χ(t) ∩ C (20)

px≤t ← px≤t′ for each x ∈ χ(t) ∩ χ(t′) ∩ C,
t′ ∈ chld(t) (21)

← x,¬px≤t′ for each x ∈ (χ(t′) ∩ C) \ χ(t),
t′ ∈ chld(t) (22)

← x,¬px≤root(T) for each x ∈ χ(root(T)) ∩ C (23)
Treewidth-Awareness and Consequences. The reduction
above allows us to show Lemma 3 and Theorem 2, whose
proofs are similar to Lemma 2 and Theorem 1, respectively.
Lemma 3 (Treewidth-Awareness). Let Π be a program that
is ι-tight on a TD T of width k. Then, the treewidth of tight
program Π′ obtained by Rules (13)–(23) on Π, T , and set C
of vertices of all non-trivial SCCs of DΠ, is in O(k · log(ι)).
Theorem 2 (Removing Cyclicity of ι-tight ASP). Let Π be
a program being ι-tight on a TD T of width k. Then, there is
a tight program Π′ with treewidth in O(k · log(ι)) such that
the answer sets of Π and Π′ projected to at(Π) coincide.

Reduction to SAT
Next, we present a treewidth-aware reduction from tight ASP
to SAT, which together with the previous reduction allows

3Let (x ≺̇j
t y) be ¬bjt,x, b

j
t,y, b

j+1
t,x ≤b

j+1
t,y , . . . , b

`scc(x)

t,x ≤b`scc(x)

t,y .

6317

us to reduce from SCC-bounded ASP to SAT. While the
step from tight ASP to SAT might seem straightforward for
the program obtained by one of the reductions above, in gen-
eral it is not guaranteed that existing reductions, e.g., (Fages
1994; Lin and Zhao 2003; Janhunen 2006), do not cause a
significant blowup in the treewidth.

Let Π be any given tight logic program and T = (T, χ) be
a tree decomposition of GΠ. Similar to the reductions from
SCC-bounded ASP to tight ASP, we use as variables besides
the original atoms of Π also auxiliary variables. In order to
preserve treewidth, we still need to guide the evaluation of the
provability of an atom x ∈ at(Π) in a node t in T along the
TD T , whereby we use atoms pxt and px≤t to indicate that x
was proven in node t and below t, respectively. However, we
do not need any level mappings, since there is no positive
cycle in Π, but we still guide provability, cf. Clark’s comple-
tion (Clark 1977), along TD T . Consequently, we construct
the following propositional formula, where for each node t
of T we add Formulas (24)–(28). Intuitively, Formulas (24)
ensure that all rules are satisfied, cf. Rules (2). Formulas (25)
and (26) take care that ultimately an atom that is set to true
must be proven, similar to Rules (8) and (9). Finally, For-
mulas (27) and (28) provide the definition for an atom to be
proven in a node and below a node, respectively, which is
similar to Rules (5)–(7), but without the level mappings.
Preserving answer sets: We obtain exactly one model of the
resulting formula for each answer set of Π. This can be weak-
ened by turning equivalences (↔) into implications (→).∨
a∈B+

r

¬a ∨
∨

a∈B−r ∪Hr

a for each r ∈ Πt
(24)

x→ px≤t′ for each t′∈ chld(t),
x ∈ χ(t′)\χ(t) (25)

x→ px≤root(T) for each x ∈
χ(root(T)) (26)

pxt ↔
∨

r∈Πt,x∈Hr

(
∧

a∈B+
r

a ∧ x ∧
∧

b∈B−r ∪(Hr\{x})

¬b) for each x ∈ χ(t)
(27)

px≤t ↔ pxt ∨ (
∨

t′∈chld(t),x∈χ(t′)

px≤t′) for each x ∈ χ(t)
(28)

Correctness and Treewidth-Awareness. Conceptually
the proofs of Lemmas 4 and 5 proceed similar to the proofs
of Lemmas 1 and 2, but without level mappings, respectively.
Lemma 4 (Correctness). Let Π be a tight logic program,
where the treewidth of GΠ is at most k. Then, the proposi-
tional formula F obtained by the reduction above on Π and a
TD T of primal graph GΠ, consisting of Formulas (24)–(28),
is correct. Formally, for any answer set I of Π there is exactly
one satisfying assignment of F and vice versa.
Lemma 5 (Treewidth-Awareness). Let Π be a tight logic
program. Then, the treewidth of propositional formula F
obtained by the reduction above, consisting of Formulas (24)–
(28), by using Π and a TD T of GΠ of width k is in O(k).

However, we cannot do much better, as shown next.
Proposition 2 (ETH-Tightness). Let Π be a tight logic pro-
gram, where the treewidth of GΠ is at most k. Then, under
ETH, one cannot reduce Π to propositional formula F in
time 2o(k) · poly(|at(Π)|) such that tw(GF) is in o(k).

Proof. First, we reduce SAT to tight ASP, i.e., capture all
models of a given formula F in a tight program Π. Thereby Π
consists of a choice rule for each variable of F and a con-
straint for each clause. Towards a contradiction assume the
contrary of this proposition. Then, we reduce Π back to a
propositional formulaF ′, running in time 2o(k)·poly(|at(Π)|)
with tw(GF ′) being in o(k). Hence, we use an algorithm for
SAT (Samer and Szeider 2010) on F ′ to solve F with n vari-
ables in time 2o(k) · poly(|n|), which contradicts ETH.

Knowing that under ETH tight ASP has about the same
complexity for treewidth as SAT, cf. Proposition 2, we can de-
rive the following corollary, which completes Proposition 1.
Corollary 1. Let Π be any normal logic program, where the
treewidth of GΠ is at most k. Then, under ETH, one cannot
reduce Π to a tight logic program Π′ in time 2o(k·log(k)) ·
poly(|at(Π)|) such that tw(GΠ′) is in o(k · log(k)).

The consistency of a program Π that is ι-tight on T can be
decided in a runtime that is similar to the runtime of SAT for
small ι, which improves Proposition 1 as follows.
Theorem 3 (Runtime of ι-tight ASP). Assume a program Π
that is ι-tight on a TD T of width k, whose number of nodes is
linear in |at(Π)|. Then, there is an algorithm for deciding the
consistency of Π, running in time 2O(k·log(ι)) · poly(|at(Π)|).
Proof. First, we apply the reduction of Section 4 on Π and T
on the set C of all non-trivial SCCs of DΠ. This results in a
tight program, which is reduced by the reduction of Section 4
to obtain a propositional formula F . Both reductions run in
time O(k2 · ι2 · log(ι) · (|at(Π)|+ |Π|)). Finally, formula F ,
whose treewidth is in O(k · log(ι)) by Lemmas 3 and 5, are
solved by an algorithm (Samer and Szeider 2010) for SAT in
time 2O(k·log(ι)) · (|at(Π)|+ |Π|).

Theorem 3 assumes a given TD, efficiently computable
by means of heuristics (Abseher, Musliu, and Woltran 2017).
Alternatively, one can compute (Bodlaender et al. 2016) a TD
of GΠ of width below 5 · tw(GΠ) (5-approximation) that has
a number of nodes linear in |at(Π)|, in time 2O(k) · |at(Π)|.

5 Conclusion and Future Work
This paper deals with improving algorithms for deciding con-
sistency of head-cycle-free (HCF) ASP of bounded treewidth.
Existing works imply that under the exponential time hypoth-
esis (ETH), one cannot solve an HCF program with n atoms
and treewidth k in time 2o(k·log(k)) · poly(n).

In this work, we also consider the size ` of the largest SCC
of the positive dependency graph, yielding a more precise
characterization of the runtime: 2O(k·log(ι)) ·poly(n), where ι
is a novel measure bounded by both k and ` for measuring
the tightness of a program (ι = 1 for tight programs only).
Further, we provide a treewidth-aware reduction from HCF
ASP to tight ASP, where the treewidth increases from k
to O(k · log(ι)). Finally, under ETH, tight ASP has similar
complexity as SAT: There is no reduction from HCF ASP to
tight ASP, increasing treewidth from k to only o(k · log(k)).

Currently, we are performing practical analysis of our pro-
vided reductions. For future work we suggest to investigate
lower bounds for both parameters k, ι, or under extensions
of ETH like strong ETH (Impagliazzo and Paturi 2001).

6318

References
Abseher, M.; Musliu, N.; and Woltran, S. 2017. htd - A Free,
Open-Source Framework for (Customized) Tree Decomposi-
tions and Beyond. In CPAIOR’17, volume 10335 of LNCS,
376–386. Springer.

Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.;
Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The
ASP System DLV2. In LPNMR’17, volume 10377 of LNAI,
215–221. Springer.

Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. An-
swer set based design of knowledge systems. Ann. Math.
Artif. Intell. 47(1-2): 183–219.

Ben-Eliyahu, R.; and Dechter, R. 1994. Propositional Seman-
tics for Disjunctive Logic Programs. Ann. Math. Artif. Intell.
12(1): 53–87. ISSN 1012-2443. doi:10.1007/BF01530761.

Bichler, M.; Morak, M.; and Woltran, S. 2018. Single-Shot
Epistemic Logic Program Solving. In IJCAI’18, 1714–1720.
ijcai.org.

Bliem, B.; Morak, M.; Moldovan, M.; and Woltran, S. 2020.
The Impact of Treewidth on Grounding and Solving of An-
swer Set Programs. J. Artif. Intell. Res. 67: 35–80.

Bodlaender, H. L.; Drange, P. G.; Dregi, M. S.; Fomin,
F. V.; Lokshtanov, D.; and Pilipczuk, M. 2016. A ck n 5-
Approximation Algorithm for Treewidth. SIAM J. Comput.
45(2): 317–378.

Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12): 92–103. ISSN 0001-0782. doi:10.1145/2043174.
2043195.

Clark, K. L. 1977. Negation as Failure. In Logic and Data
Bases, Advances in Data Base Theory, 293–322. Plemum
Press.

Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.;
Dániel Marx, M. P.; Pilipczuk, M.; and Saurabh, S. 2015. Pa-
rameterized Algorithms. Springer. ISBN 978-3-319-21274-6.

Eiter, T.; and Gottlob, G. 1995. On the computational
cost of disjunctive logic programming: Propositional case.
Ann. Math. Artif. Intell. 15(3–4): 289–323. doi:10.1007/
BF01536399.

Fages, F. 1994. Consistency of Clark’s completion and ex-
istence of stable models. Methods Log. Comput. Sci. 1(1):
51–60.

Fichte, J. K.; and Hecher, M. 2019. Treewidth and Counting
Projected Answer Sets. In LPNMR’19, volume 11481 of
LNCS, 105–119. Springer.

Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017.
Answer Set Solving with Bounded Treewidth Revisited. In
LPNMR’17, volume 10377 of LNCS, 132–145. Springer.
ISBN 978-3-319-61660-5. doi:10.1007/978-3-319-61660-
5 13.

Fichte, J. K.; Kronegger, M.; and Woltran, S. 2019. A mul-
tiparametric view on answer set programming. Ann. Math.
Artif. Intell. 86(1-3): 121–147.

Fichte, J. K.; and Szeider, S. 2015. Backdoors to Tractable
Answer-Set Programming. Artificial Intelligence 220(0): 64–
103. ISSN 0004-3702. doi:10.1016/j.artint.2014.12.001.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool.
doi:10.2200/S00457ED1V01Y201211AIM019.

Gelfond, M.; and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Comput. 9(3/4): 365–386. doi:10.1007/BF03037169.

Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
parameter complexity in AI and nonmonotonic reasoning.
Artif. Intell. 138(1-2): 55–86.

Guziolowski, C.; Videla, S.; Eduati, F.; Thiele, S.; Cokelaer,
T.; Siegel, A.; and Saez-Rodriguez, J. 2013. Exhaustively
characterizing feasible logic models of a signaling network
using Answer Set Programming. Bioinformatics 29(18):
2320–2326. doi:10.1093/bioinformatics/btt393. Erratum
see Bioinformatics 30, 13, 1942.

Hecher, M. 2020. Treewidth-Aware Reductions of normal
ASP to SAT – Is Normal ASP harder than SAT After All? In
KR’20, 485–495.

Impagliazzo, R.; and Paturi, R. 2001. On the Complexity of
k-SAT. J. Comput. Syst. Sci. 62(2): 367–375.

Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which Prob-
lems Have Strongly Exponential Complexity? J. of Computer
and System Sciences 63(4): 512–530. ISSN 0022-0000. doi:
10.1006/jcss.2001.1774.

Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-Set Pro-
gramming with Bounded Treewidth. In IJCAI’09, volume 2,
816–822.

Janhunen, T. 2006. Some (in)translatability results for normal
logic programs and propositional theories. Journal of Applied
Non-Classical Logics 16(1-2): 35–86.

Kloks, T. 1994. Treewidth. Computations and Approxima-
tions, volume 842 of LNCS. Springer. ISBN 3-540-58356-4.

Lackner, M.; and Pfandler, A. 2012. Fixed-Parameter Al-
gorithms for Finding Minimal Models. In KR’12. AAAI
Press.

Lifschitz, V.; and Razborov, A. A. 2006. Why are there
so many loop formulas? ACM Trans. Comput. Log. 7(2):
261–268.

Lin, F.; and Zhao, J. 2003. On tight logic programs and yet an-
other translation from normal logic programs to propositional
logic. In IJCAI’03, 853–858. Morgan Kaufmann.

Lin, F.; and Zhao, X. 2004. On Odd and Even Cycles in
Normal Logic Programs. In AAAI, 80–85. AAAI Press / MIT
Press.

Lonc, Z.; and Truszczynski, M. 2003. Fixed-parameter com-
plexity of semantics for logic programs. ACM Trans. Comput.
Log. 4(1): 91–119.

Marek, W.; and Truszczyński, M. 1991. Autoepistemic logic.
J. of the ACM 38(3): 588–619. ISSN 0004-5411. doi:10.
1145/116825.116836.

6319

Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog Decision Support System
for the Space Shuttle. In PADL’01, volume 1990 of LNCS,
169–183. Springer. ISBN 978-3-540-45241-6.
Robertson, N.; and Seymour, P. D. 1986. Graph minors II:
Algorithmic aspects of tree-width. J. Algorithms 7: 309–322.
Samer, M.; and Szeider, S. 2010. Algorithms for proposi-
tional model counting. J. Discrete Algorithms 8(1): 50–64.
doi:10.1016/j.jda.2009.06.002.

6320

