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Abstract
We present a novel approach to cognitive planning, i.e., an
agent’s planning aimed at changing the cognitive attitudes of
another agent including her beliefs and intentions. We encode
the cognitive planning problem in an epistemic logic with a
semantics exploiting belief bases. We study a NP-fragment of
the logic whose satisfiability problem is reduced to SAT. We
provide complexity results for the cognitive planning prob-
lem. Moreover, we illustrate its potential for applications in
human-machine interaction in which an artificial agent is ex-
pected to interact with a human agent through dialogue and
to persuade the human to behave in a certain way.

Introduction
In social sciences, influence is defined as “change in an in-
dividual’s thoughts, feelings, attitudes, or behaviors that re-
sults from interaction with another individual or a group”
(Rashotte 2009). It is conceived as tightly connected with
persuasion. The latter is the intentional form of influence in
which an agent (the persuader) tries to make someone (the
persuadee) do or believe something by giving her a good
reason (Cialdini 2001; Perloff 2003).

Models of persuasion in AI are mostly based on argumen-
tation. (See (Prakken 2006) for a general introduction to the
research in this area.) Some of these models are built on
Walton & Krabbe’s notion of persuasion dialogue in which
one party seeks to persuade another party to adopt a belief
or point-of-view she does not currently hold (Walton and
Krabbe 1995). There exist models based on abstract argu-
mentation (Bench-Capon 2003; Bonzon and Maudet 2011;
Amgoud, Maudet, and Parsons 2000) as well probabilistic
models where the persuader’s uncertainty about what the
persuadee knows or believes is represented (Hunter 2015).
There exist also models based on possibility theory in which
a piece of information is represented as an argument which
can be more or less accepted depending on the trustworthi-
ness of the agent who proposes it (Da Costa Pereira, Tetta-
manzi, and Villata 2011). Persuasion has also been formal-
ized with the support of logical tools, e.g., by combining
abstract argumentation with dynamic epistemic logic (DEL)
(Proietti and Yuste-Ginel 2019) and epistemic logic with dy-
namic logic (Budzyńska and Kacprzak 2008).
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Epistemic planning is a generalization of classical plan-
ning that has been increasingly studied in AI in the last
years. The goal to be achieved is not necessarily a state of
the world but some belief states of one or more agents. This
requires a theory of mind by the planning agent (Goldman
2006). A typical goal in epistemic planning is to make a cer-
tain agent believe something. Such a belief of the persuadee
may be a higher-order belief, i.e., a belief about another
agents’ beliefs. The initial proposal was to use a standard
logic of knowledge or belief together with a representation
of actions in terms of event models of DEL (Bolander and
Andersen 2011; Löwe, Pacuit, and Witzel 2011). While the
DEL framework is very expressive, it turned out that the ex-
istence of a solution becomes quickly undecidable even for
very simple kinds of event models (Aucher and Bolander
2013; Bolander, Holm Jensen, and Schwarzentruber 2015;
Lê Cong, Pinchinat, and Schwarzentruber 2018). Kominis
and Geffner considered epistemic planning problems with
very simple event models leading to a decidable fragment
(Kominis and Geffner 2015). They distinguish three kinds
of actions: physical actions modifying the world, public up-
dates (DEL-like public announcements), and sensing actions
by means of which an agent learns whether a formula is
true. Other researchers investigated another source of com-
plexity, namely that of standard epistemic logic. There, rea-
soning is strictly more complex than in classical logic: the
satisfiability problem is at least in PSPACE (Halpern and
Moses 1992). Based on earlier work by Levesque, Muise
et al. studied epistemic planning in fragments of standard
epistemic logic (Muise et al. 2015). They considered state
descriptions in terms of conjunctions of epistemic literals:
formulas that do not contain any conjunction or disjunction.
Cooper et al. considered another fragment: boolean combi-
nations of ‘knowing-whether’ operators followed by propo-
sitional variables (Cooper et al. 2016).

Our approach pushes the envelope of the above ap-
proaches to epistemic planning. Our main contribution is its
generalization to cognitive planning: it is not only some be-
lief state of a target agent that is to be achieved, but more
generally a cognitive state. The latter could involve not only
beliefs, but also intentions. Cognitive planning makes clear
the distinction between persuasion on beliefs (i.e., inducing
someone to believe that a certain fact is true) and persua-
sion on intentions (i.e., inducing someone to form a certain
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intention) and elucidates the connection between these two
notions. Specifically, since beliefs are the input of decision-
making and provide reasons for deciding and for acting, the
persuader can indirectly change the persuadee’s intentions
by changing her beliefs, through the execution of a sequence
of speech acts. In other words, in cognitive planning, the
persuader tries to modify the persuadee’s beliefs in order to
affect persuadee’s intentions. Moreover, cognitive planning
takes resource boundedness and limited rationality of the
persuadee seriously. For this reason, it is particularly well-
suited for human-machine interaction (HMI) applications in
which an artificial agent is expected to interact with a hu-
man — who is by definition resource-bounded — through
dialogue and to persuade her to behave in a certain way.

To meet the previous requirements of cognitive planning,
we formalize it in a recently proposed variant of epistemic
logic with operators for explicit and implicit belief (Lorini
2018, 2020). The logic allows us to represent, at the same
time: (i) the limited reasoning of the human agent (the per-
suadee), whose explicit beliefs are not necessarily closed un-
der deduction, and (ii) the unbounded inferential capability
of the artificial agent (the persuader), which is capable of
computing the logical consequences of its explicit beliefs
and of finding an optimal persuasion plan.

The paper is organized as follows. We first introduce the
language of explicit and implicit belief for the specification
of the cognitive planning problem. Given that the satisfia-
bility problem for the full language is PSPACE-hard, we
study an interesting NP-fragment of it that can be used in
the context of a real HMI application. Then, we present an
extension of the language by the notion of belief base ex-
pansion which is necessary for representing the actions of
the planning agent. The second part of the paper is devoted
to cognitive planning. We first formulate the cognitive plan-
ning problem and study its complexity. Then, we instantiate
it in a concrete example in which an artificial assistant has to
help a human user to choose a sport to practice in her leisure
time. To achieve its goal, the agent needs to have a model
of the user’s beliefs and desires. Thanks to this model, the
agent will be able to plan a sequence of speech acts aimed
at persuading the user that a certain sport is the ideal one
for her and, consequently, at inducing the user to form the
intention to practice it.

A Language for Explicit and Implicit Belief
This section is devoted to present the language which will
serve as a specification language for cognitive planning. We
start by recalling the full language and the semantics pre-
sented in (Lorini 2018, 2020). This language distinguishes
explicit belief (a fact in an agent’s belief base), from im-
plicit belief (a fact that is deducible from the agent’s explicit
beliefs). Then, we study its NP-fragment. Finally, we focus
on the extension of the latter by belief base expansion oper-
ators.

Full Language and Semantics
Assume a countably infinite set of atomic propositions Atm
and a finite set of agents Agt = {1, . . . , n}. The language

is defined in two steps. First, the language L0(Atm,Agt) is
defined by the following grammar in BNF:

α ::= p | ¬α | α1 ∧ α2 | α1 ∨ α2 | 4iα,
where p ranges over Atm and i ranges over Agt .
L0(Atm,Agt) is the language for representing agents’ ex-
plicit beliefs. The formula4iα is read “i explicitly believes
that α”. Then, the language L(Atm,Agt) extends the lan-
guage L0(Atm,Agt) by modal operators of implicit belief
and is defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �iϕ | ♦iϕ,
where α ranges over L0(Atm,Agt) and i ranges over
Agt . For notational convenience we write L0 instead of
L0(Atm,Agt) and L instead of L(Atm,Agt), when the
context is unambiguous. The formula �iϕ is read “i im-
plicitly believes that ϕ” and ♦iϕ is read “ϕ is compatible
(or consistent) with i’s explicit beliefs”. The other Boolean
constructions >, ⊥, → and ↔ are defined in the standard
way. We introduce here ∨ and ♦i as primitive and do not
define them from ∧ and �i because at a later stage we will
need them for translating formulas in negation normal form.

The interpretation of languageL exploits the notion of be-
lief base. While the notions of possible state (or world) and
epistemic alternative are primitive in the standard Kripke se-
mantics for epistemic logic, they are defined from the prim-
itive concept of belief base in this semantics. In particular,
a state is a composite object including a description of both
the agents’ belief bases and the environment.1

Definition 1 (State) A state is a tuple B =
(B1, . . . , Bn,V ) where: for every i ∈ Agt , Bi ⊆ L0

is agent i’s belief base; V ⊆ Atm is the actual environ-
ment. The set of all states is noted S.

Note that an agent’s belief base Bi can be infinite. The sub-
language L0(Atm,Agt) is interpreted w.r.t. states, as fol-
lows:

Definition 2 (Satisfaction) Let B = (B1, . . . , Bn,V ) ∈
S. Then:

B |= p ⇐⇒ p ∈ V ,

B |= ¬α ⇐⇒ B 6|= α,

B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2,

B |= α1 ∨ α2 ⇐⇒ B |= α1 or B |= α2,

B |= 4iα ⇐⇒ α ∈ Bi.

Observe in particular the set-theoretic interpretation of the
explicit belief operator: agent i explicitly believes that α if
and only if α is included in her belief base.

A multi-agent belief model (MAB) is defined to be a state
supplemented with a set of states, called context. The lat-
ter includes all states that are compatible with the common
ground (Stalnaker 2002), i.e., the body of information that
the agents commonly believe to be the case.

1This is similar to the way states are modeled in the interpreted
system semantics for multi-agent systems (Fagin et al. 1995; Lo-
muscio, Qu, and Raimondi 2017).
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Definition 3 (Multi-Agent Belief Model) A multi-agent
belief model (MAB) is a pair (B,Cxt), where B ∈ S and
Cxt ⊆ S. The class of all MABs is noted M.

Note that we do not impose that B ∈ Cxt . When Cxt = S
then (B,Cxt) is said to be complete, since S is conceiv-
able as the complete (or universal) context which contains
all possible states. We compute an agent’s set of epistemic
alternatives from the agent’s belief base, as follows.

Definition 4 (Epistemic alternatives) Let i ∈ Agt . Then
Ri is the binary relation on the set S such that, for all
B = (B1, . . . , Bn,V ), B′ = (B′1, . . . , B

′
n,V

′) ∈ S:

BRiB′ if and only if ∀α ∈ Bi : B′ |= α.

BRiB′ means that B′ is an epistemic alternative for agent
i at B. So i’s set of epistemic alternatives at B includes ex-
actly those states that satisfy all i’s explicit beliefs.

Definition 5 extends Definition 2 to the full language L.
Its formulas are interpreted with respect to MABs. We omit
Boolean cases that are defined in the usual way.

Definition 5 (Satisfaction) Let (B,Cxt) ∈M. Then:

(B,Cxt) |= α⇐⇒B |= α,

(B,Cxt) |= �iϕ⇐⇒∀B′ ∈ Cxt ,

if BRiB′ then (B′,Cxt) |= ϕ,

(B,Cxt) |= ♦iϕ⇐⇒∃B′ ∈ Cxt such that

BRiB′ and (B′,Cxt) |= ϕ.

A formula ϕ ∈ L is valid in the class M, noted |=M ϕ,
if and only if (B,Cxt) |= ϕ for every (B,Cxt) ∈ M; it is
satisfiable in M if and only if ¬ϕ is not valid in M.

Theorem 1 Checking satisfiability of L(Atm,Agt) formu-
las in the class M is a PSPACE-hard problem.

This theorem is a consequence of the fact that our logic con-
tains the basic modal logic K whose satisfiability problem is
PSPACE-complete (Halpern and Moses 1992).

NP-Complete Fragment
In this section, we study the following fragment of the lan-
guage L, called LFrag:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �mα | ♦mα,
where α ranges over L0 and m is a special agent in Agt
called the ‘machine’. In LFrag, all agents have explicit be-
liefs but only agent m has implicit beliefs, and moreover the
latter are restricted to L0 formulas of type α. So there are
no nested implicit beliefs for agent m. Agent m is assumed
to be the unique artificial agent in the system which is en-
dowed with unbounded reasoning and planning capabilities.
The cognitive planning problem will be modeled from agent
m’s perspective.

In the rest of this section, we are going to provide a poly-
size reduction of the satisfiability problem of LFrag to SAT.
The reduction consists of three steps which are summarized
in Figure 1. As a first step, we putLFrag formulas in negation

LFrag

nnf
99K LNNF

Frag

tr1
99K LMod

tr2
99K LProp

Figure 1: Summary of reduction process

normal form (NNF) via the following function nnf :

nnf (p) = p,

nnf (4iα) = 4iα,
nnf (�mα) = �mnnf (α),

nnf (♦mα) = ♦mnnf (α),

nnf (ϕ ∧ ψ) = nnf (ϕ) ∧ nnf (ψ),

nnf (ϕ ∨ ψ) = nnf (ϕ) ∨ nnf (ψ),

nnf (¬p) = ¬p,
nnf (¬4iα) = ¬4iα,
nnf (¬¬ϕ) = nnf (ϕ),

nnf
(
¬(ϕ ∧ ψ)

)
= nnf (¬ϕ ∨ ¬ψ),

nnf
(
¬(ϕ ∨ ψ)

)
= nnf (¬ϕ ∧ ¬ψ),

nnf (¬�mα) = ♦mnnf (¬α),

nnf (¬♦mα) = �mnnf (¬α).

Let us define the NNF variant LNNF
0 of the language L0

by the following grammar:
β ::= p | ¬p | 4iα | ¬4iα | β1 ∧ β2 | β1 ∨ β2,

where p ranges over Atm , i ranges over Agt and α ranges
over L0. Furthermore, let us define the language LNNF

Frag by
the following grammar. For β ranging over LNNF

0 :
ϕ ::= β | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �mβ | ♦mβ.

Proposition 1 Let ϕ ∈ LFrag. Then, ϕ ↔ nnf (ϕ) is valid
in the class M, and nnf (ϕ) ∈ LNNF

Frag .

Note that the size of nnf (ϕ) is polynomial in the size of ϕ.
As a second step, we define the following modal language

LMod into which the language LNNF
Frag will be translated:

ω ::= q | ¬ω | ω1 ∧ ω2 | ω1 ∨ ω2 ,
ϕ ::= q | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ω | �ω ,

where q ranges over the following set of atomic formulas:

Atm+ = Atm ∪ {p4iα : i ∈ Agt and α ∈ L0(Atm,Agt)}.

So p4iα is nothing but a special propositional variable.
We interpret the language LMod w.r.t. a pair (M,w),

called pointed Kripke model, where M = (W,⇒, π), W is
a non-empty set of worlds,⇒⊆W×W and π : Atm+ −→
2W . (Boolean cases are again omitted as they are defined in
the usual way.)
Definition 6 The semantic interpretation for formulas in
LMod w.r.t. a pointed Kripke model (M,w) is as follows:

(M,w) |= q ⇐⇒w ∈ π(q);

(M,w) |= �ω ⇐⇒∀v ∈W, if w ⇒ v then (M,v) |= ω;

(M,w) |= �ω ⇐⇒∃v ∈W s.t. w ⇒ v and (M, v) |= ω.
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The class of pointed Kripke models is noted K. Satisfiability
and validity of formulas in LMod relative to the class K is
defined in the usual way.

Let tr1 : LNNF
Frag −→ LMod be a translation such that:

tr1(p) = p,

tr1(¬p) = ¬p,
tr1(ϕ1 ∧ ϕ2) = tr1(ϕ1) ∧ tr1(ϕ2),

tr1(ϕ1 ∨ ϕ2) = tr1(ϕ1) ∨ tr1(ϕ2),

tr1(4iα) =

{
p4mα ∧�tr0(α), if i = m,

p4iα, otherwise,

tr1(¬4iα) = ¬p4iα,

tr1(�mβ) = �tr0(β),

tr1(♦mβ) = �tr0(β);

with tr0 : L0 −→ LMod such that:

tr0(p) = p,

tr0(¬α) = ¬tr0(α),

tr0(α1 ∧ α2) = tr0(α1) ∧ tr0(α2),

tr0(α1 ∨ α2) = tr0(α1) ∨ tr0(α2),

tr0(4iα) = p4iα.

As the following theorem indicates, the polynomial trans-
lation tr1 guarantees the transfer of satisfiability from model
class M to model class K.

Theorem 2 Let ϕ ∈ LNNF
Frag . Then,ϕ is satisfiable in the class

M if and only if tr1(ϕ) is satisfiable in the class K.

SKETCH OF PROOF. The proof relies on the fact that the
belief base semantics for the language LFrag is equivalent
to a “weaker” semantics exploiting pointed structures of the
form (X, s) where X = (S,B, (⇒i)i∈Agt , τ), S is a non-
empty set of states, s ∈ S is the actual state, B : Agt×S −→
2L0 is a belief base function, τ : Atm −→ 2S is valuation
function,⇒i ⊆ S×S is agent i’s epistemic accessibility re-
lation and with respect to which L-formulas are interpreted
as follows (boolean cases are omitted for simplicity): (i)
(X, s) |= p iff s ∈ τ(p), (ii) (X, s) |= 4iα iff α ∈ B(i, s),
(iii) (X, s) |= �iϕ iff ∀s′ ∈ S, if s⇒i s

′ then (X, s′) |= ϕ.
In particular, for every ϕ ∈ LFrag, we have that ϕ is satisfi-
able in M iff ϕ is satisfiable in the subclass of pointed struc-
tures (X, s) such that ⇒m(s) ⊆

⋂
α∈B(m,s) ||α||(X,s) with

||α||(X,s) = {s′ ∈ X : (X, s′) |= α}. �

As a last step, we provide a polysize reduction of LMod-
satisfiability to SAT, where the underlying propositional
logic languageLProp is built from the following set of atomic
propositions:

Atm++ ={qx : q ∈ Atm+ and x ∈ N}∪
{rx,y : x, y ∈ N}.

The set Atm++ includes two types of atomic propositions:
one of the form qx denoting the fact that q is true at world x
and the other of the form rx,y denoting the fact that world x
is related to world y.

Let tr2 : LMod×N×N −→ LProp be the following transla-
tion function:

tr2(q, x, y) = qx,

tr2(¬ϕ, x, y) = ¬tr2(ϕ, x, y),

tr2(ϕ1 ∧ ϕ2, x, y) = tr2(ϕ1, x, y) ∧ tr2(ϕ2, x, y),

tr2(ϕ1 ∨ ϕ2, x, y) = tr2(ϕ1, x, y) ∨ tr2(ϕ2, x, y),

tr2(�ω, x, y) =
∧

0≤z≤y

(
rx,z → tr2(ω, z, y)

)
,

tr2(�ω, x, y) =
∨

0≤z≤y

(
rx,z ∧ tr2(ω, z, y)

)
.

Translation tr2 is similar to the translation of modal logic S5
into propositional logic given in (Caridroit et al. 2017) and,
more generally, to the standard translation of modal logic
into FOL in which accessibility relations are encoded by
special predicates. The size of an LMod formula, size(ϕ),
is defined by:

size(p) = 1,

size(ϕ1 ∧ ϕ2) = size(ϕ1) + size(ϕ2) + 1,

size(ϕ1 ∨ ϕ2) = size(ϕ1) + size(ϕ2) + 1,

size(¬ϕ) = size(ϕ) + 1,

size(�ω) = size(�ω) = size(ω) + 1.

Note that the size of tr2

(
ϕ, 0, size(ϕ)

)
is polynomial in the

size of ϕ.

Theorem 3 Let ϕ ∈ LMod. Then, ϕ is satisfiable in the class
K if and only if tr2

(
ϕ, 0, size(ϕ)

)
is satisfiable in proposi-

tional logic.

SKETCH OF PROOF. The theorem is proved in the same
way as the standard translation of modal logic to FOL plus
a straightforward adaptation of (Ladner 1977, Lemma 6.1)
about polysize-model property for S5 to our case. �

The size of tr2

(
ϕ, 0, size(ϕ)

)
being polynomial in the

size of ϕ, thanks to Proposition 1, Theorem 2 and Theorem
3 we state the following complexity result.

Theorem 4 Checking satisfiability of formulas in LFrag in
the class M is an NP-complete problem.

Dynamic Extension
In this section, we extend the language LFrag by belief ex-
pansion operations. Such an extension will allow us to rep-
resent the actions of the planning agent in the cognitive plan-
ning problem. Specifically, we introduce the following lan-
guage L+

Frag:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �mα | ♦mα | [+iα]ϕ,

where α ranges over L0 and i ranges over Agt . The formula
[+iα]ϕ is read “ϕ holds after agent i has privately expanded
her belief base with α”. Events of type +iα are generically
called informative actions.

Our extension has the following semantics relative to a
MAB:
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Definition 7 (Satisfaction relation, cont.) Let B =
(B1, . . . , Bn,V ) ∈ S and let (B,Cxt) ∈M. Then:

(B,Cxt) |= [+iα]ϕ ⇐⇒ (B+iα,Cxt) |= ϕ

with V +iα = V , B+iα
i = Bi ∪{α} and B+iα

j = Bj for all
j 6= i.
Intuitively speaking, the private expansion of i’s belief base
by α simply consists in agent i adding the information that
α to her belief base, while all other agents keep their belief
bases unchanged.

The following equivalences are valid in the class ∈M:

[+iα]α′ ↔
{
>, if α′ = 4iα,
α′, otherwise;

[+iα]¬ϕ↔ ¬[+iα]ϕ;

[+iα](ϕ1 ∧ ϕ2)↔ [+iα]ϕ1 ∧ [+iα]ϕ2;

[+iα](ϕ1 ∨ ϕ2)↔ [+iα]ϕ1 ∨ [+iα]ϕ2;

[+iα]�mα
′ ↔

{
�m(α→ α′), if i = m,

�mα
′, otherwise;

[+iα]♦mα
′ ↔

{
♦m(α ∧ α′), if i = m,

♦mα′, otherwise.

Thanks to these equivalences we can define the following
reduction red transforming every L+

Frag formula ϕ into an
equivalent LFrag formula red (ϕ):

red (p) = p,

red (4iα) = 4iα,
red (¬ϕ) = ¬red (ϕ),

red (ϕ1 ∧ ϕ2) = red (ϕ1) ∧ red (ϕ2),

red (ϕ1 ∨ ϕ2) = red (ϕ1) ∨ red (ϕ2),

red (�mϕ) = �mred (ϕ),

red (♦mϕ) = ♦mred (ϕ),

red ([+iα]α′) =

{
>, if α′ = 4iα,
red (α′), otherwise;

red ([+iα]¬ϕ) = red (¬[+iα]ϕ),

red
(
[+iα](ϕ1 ∧ ϕ2)

)
= red ([+iα]ϕ1 ∧ [+iα]ϕ2),

red
(
[+iα](ϕ1 ∨ ϕ2)

)
= red ([+iα]ϕ1 ∨ [+iα]ϕ2),

red ([+iα]�mα
′) =

{
red
(
�m(α→ α′)

)
, if i = m,

red (�mα
′) otherwise;

red ([+iα]♦mα
′) =

{
red
(
♦m(α ∧ α′)

)
if i = m,

red (♦mα′) otherwise;

red ([+iα1][+jα2]ϕ) = red
(
[+iα1]red ([+jα2]ϕ)

)
.

Proposition 2 Let ϕ ∈ L+
Frag. Then, ϕ↔ red (ϕ) is valid in

the class M, and red (ϕ) ∈ LFrag.

The following theorem is a consequence of Theorem 4,
Proposition 2 and the fact that the size of red (ϕ) is polyno-
mial in the size of ϕ.

Theorem 5 Checking satisfiability of formulas in L+
Frag in

the class M is an NP-complete problem.

Before concluding this section, we define the concept of
logical consequence for the language L+

Frag which will be
used in the formulation of the cognitive planning problem at
a later stage. Let Σ be a finite subset of L0 and let ϕ ∈ L+

Frag.
We say that ϕ is a logical consequence of Σ in the class M,
noted Σ |=M ϕ, if and only if, for every (B,Cxt) ∈ M
such that Cxt ⊆ S(Σ) we have (B,Cxt) |= ϕ, with S(Σ) =
{B ∈ S : ∀α ∈ Σ, B |= α}. We say that ϕ is Σ-satisfiable in
the class M if and only if, ¬ϕ is not a logical consequence
of Σ in M. Clearly, ϕ is valid if and only if ϕ is a logical
consequence of ∅, and ϕ is satisfiable if and only if ϕ is ∅-
satisfiable.

As the following deduction theorem indicates, the logical
consequence problem with a finite set of premises can be
reduced to the satisfiability problem.

Theorem 6 Let ϕ ∈ L+
Frag and let Σ ⊂ L0 be finite. Then,

Σ |=M ϕ if and only if |=M

∧
α∈Σ�mα→ ϕ.

Cognitive Planning
This section is devoted to the formal specification of cogni-
tive planning by way of the language L+

Frag and to its illus-
tration with an example of HMI.

Problem
The planning problem in the context of the logic L+

Frag con-
sists in finding a sequence of informative actions for agent
m of type +mα which guarantees that it believes that its
goal αG is satisfied. As we emphasized above, agent m is
assumed to be an artificial agent which interacts with other
resource-bounded human agents.

Let Actm = {+mα : α ∈ L0} be agent m’s set
of informative actions and let elements of Actm be noted
ε, ε′, . . . Agent m’s informative actions have executability
preconditions that are specified by the following function:
P : Actm −→ LFrag. So, we can define the following oper-
ator of successful occurrence of an informative action:

〈〈ε〉〉ϕ def
= P(ε) ∧ [ε]ϕ

with ε ∈ Actm. The formula 〈〈ε〉〉ϕ has to be read “agent
m’s informative action ε can take place and ϕ holds after its
occurrence”.

Informative actions of type ‘speech act’ are of interest
here. In particular, we consider speech acts of type ‘to in-
form’, where m is assumed to be the speaker and j ∈ Agt
such that j 6= m is assumed to be the hearer. We identify
the speech act “agent m informs agent j that α” with the
perlocutionary effect (Searle 1969, Sect. 6.2) of the speaker
learning that the hearer has learnt that α:2

inform(m,j,α)
def
= +m 4jα.

2We implicitly assume that, by default, m believes that j trusts
its judgment, so that j will believe what it says.
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The previous abbreviation and, more generally, the idea of
describing actions of a plan with agent m’s private belief ex-
pansion operations is justified by the fact that we model cog-
nitive planning from the perspective of the planning agent m.
Therefore, we only need to represent the effects of actions on
agent m’s beliefs.

Definition 8 (L+
Frag-planning problem) A L+

Frag-planning
problem is a tuple 〈Σ,Op, αG〉 where:

• Σ ⊂ L0 is a finite set of agent m’s available information,
• Op ⊂ Actm is a finite set of agent m’s operators,
• αG ∈ L0 is agent m’s goal.

A solution plan to a L+
Frag-planning problem 〈Σ,Op, αG〉 is

a sequence of operators ε1, . . . , εk from Op for some k such
that Σ |=M 〈〈ε1〉〉 . . . 〈〈εk〉〉�mαG.

Theorem 7 Checking plan existence for a L+
Frag-planning

problem is in NPNP = ΣP
2 .

SKETCH OF PROOF. A L+
Frag-planning problem

〈Σ,Op, αG〉 has a solution plan if and only if it has a
poly-size solution plan ε1, . . . , εk with k ≤ |Op|. Indeed,
it is easily seen that if an operator has been executed in a
plan, another future occurrence of the same operator will
not change the planning state due to the monotonicity of
private belief expansion:((

...
(
B+iα
i

)+iα1...)+iαh
)+iα

=
(
...
(
B+iα
i

)+iα1...)+iαh .

Consider a poly-time non-deterministic Turing machine
with an NP-oracle (ΣP

2 -Turing machine). It begins with an
empty plan and branches over all poly-size plans of length
k ≤ |Op| choosing non deterministically operators to add to
the plan. It accepts if Σ |=M 〈〈ε1〉〉 . . . 〈〈εk〉〉�mαG i.e., using
Theorem 6, if ¬

((∧
α∈Σ�mα

)
→ 〈〈ε1〉〉 . . . 〈〈εk〉〉�mαG

)
is

unsatisfiable in the class M. Thanks to Theorem 5, unsatis-
fiability of this L+

Frag formula can be checked by the NP-
oracle. When k = |Op| and the formula is satisfiable, the
Turing machine rejects. �

Example: Artificial Assistant
We consider a HMI scenario in which agent m is the artifi-
cial assistant of the human agent h. Agent h has to choose
a sport to practice since her doctor recommended her to do
a regular physical activity to be in good health. Agent m’s
aim is to help agent h to make the right choice, given her
actual beliefs and desires. The finite set of sport activities
from which h can choose is noted Opt . Elements of Opt are
noted o, o′, . . . Each option in Opt is identified with a finite
set of variables Var . Each variable x in Var takes a value
from its corresponding finite set of values Valx.

In this example, we suppose that Opt is composed of
the following eight elements: swimming (sw), running (ru),
horse riding (hr), tennis (te), soccer (so), yoga (yo), diving
(di) and squash (sq). Moreover, there are exactly six vari-
ables in Var which are used to classify the available op-
tions: environment (env), location (loc), sociality (soc),

cost (cost), dangerousness (dan) and intensity (intens).
The set of values for the variables are:

Valenv = {land ,water},
Val loc = {indoor , outdoor ,mixed},
Valsoc = {single, team,mixed},
Valcost = {low ,med , high},
Valdan = {low ,med , high},
Val intens = {low ,med , high}.

The set of assignments for variable x is defined as follows:
Assignx = {x 7→ v : v ∈ Valx}.

The set of variable assignments is

Assign =
⋃

x∈Var

Assignx.

Elements of Assign are noted a, a′, . . .
We assume that the content of an atomic desire is a vari-

able assignment or its negation. That is, agent h’s atomic
desire can be any element from the following set:

Des0 = Assign ∪ {∼a : a ∈ Assign}.
Elements of Des0 are noted d, d′, . . .. For example, the fact
that h has loc 7→ indoor as a desire means that h would like
to practice an indoor activity, while if h’s desire is∼cost 7→
high , then h would like to practice an activity whose cost
is not high. Agent h’s desires are either atomic desires or
conditional desires. That is, h’s desire can be any element
from the following set:
Des = Des0 ∪

{
[d1, . . . , dk] d : d1, . . . , dk, d ∈ Des0

}
.

Elements of Des are noted γ, γ′, . . . For example, if agent
h has [cost 7→ high]  dan 7→ low as a desire, then she
would like to practice a sport whose dangerousness level is
low, if its cost is high. We define 2Des∗ = 2Des \ ∅.

Let us assume that the set Atm includes four types of
atomic formulas, for every x 7→ v ∈ Assign , o, o′ ∈ Opt
and Γ ∈ 2Des∗: (i) val(o, x 7→ v) standing for “option o
has value v for variable x”, (ii) ideal(h, o) standing for “o
is an ideal option for agent h”, (iii) justif(h, o) standing for
“agent h has a justification for choosing option o”, and (iv)
des(h,Γ) standing for “Γ is agent h’s set of desires”.

The following function fcomp specifies, for every option
o ∈ Opt and possible desire γ ∈ Des , the condition guaran-
teeing that o satisfies (or, complies with) γ:
fcomp(o, a) = val(o, a),

fcomp(o,∼a) = ¬val(o, a),

fcomp

(
o, [d1, . . . , dk] d

)
= ¬fcomp(o, d1) ∨ . . .∨
¬fcomp(o, dk) ∨ fcomp(o, d).

The following function fhcomp specifies, for every option
o ∈ Opt and possible desire γ ∈ Des , the condition guaran-
teeing that agent h believes that o satisfies γ:
fhcomp(o, a) = 4hfcomp(o, a),

fhcomp(o,∼a) = 4hfcomp(o,∼a),

fhcomp

(
o, [d1, . . . , dk] d

)
= 4h¬fcomp(o, d1) ∨ . . .∨

4h¬fcomp(o, dk) ∨4hfcomp(o, d).
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The previous formulation of fhcomp

(
o, [d1, . . . , dk]  d

)
presupposes an understanding of conditional (goal) sen-
tences by agent h. In particular, agent m does not need to
provide information to agent h about the antecedent of the
conditional, if the consequent is true.

We assume that the artificial agent m has the following
pieces of information in its belief base:

α1
def
=

∧
o∈Opt
x∈Var

v,v′∈Valx:v 6=v′

(
val(o, x 7→ v)→ ¬val(o, x 7→ v′)

)
,

α2
def
=

∧
o∈Opt
x∈Var

v,v′∈Valx:v 6=v′

(
4hval(o, x 7→ v)→

4h¬val(o, x 7→ v′)

)
,

α3
def
=

∧
Γ,Γ′∈2Des∗:Γ 6=Γ′

(
des(h,Γ)→ ¬des(h,Γ′)

)
,

α4
def
=

∨
Γ∈2Des∗

des(h,Γ),

α5
def
=

∧
o∈Opt

(
ideal(h, o)↔

∨
Γ∈2Des∗

(
des(h,Γ)∧∧

γ∈Γ fcomp(o, γ)
)) ,

α6
def
=

∧
o∈Opt

(
justif(h, o)↔

∨
Γ∈2Des∗

(
des(h,Γ)∧∧

γ∈Γ f
h
comp(o, γ)

)) .
Formula α1 captures the fact that a sport cannot have two
different values for a given variable. Formula α2 is its sub-
jective version for agent h. Formulas α3 and α4 capture to-
gether the fact that agent h has exactly one non-empty set
of desires. According to formula α5, an option o is ideal for
agent h if and only if it satisfies all agent h’s desires. Finally,
according to formula α6, agent h has a reasonable justifica-
tion for choosing option o if and only if she has all necessary
information to conclude that option o satisfies all her desires.

We also assume that agent m has in its belief base a com-
plete representation of Table 1, which specifies the variable
assignments for all options:

αo,x7
def
= val(o, x 7→ vo,x).

env loc soc cost dan intens
sw water mixed single med low high
ru land outdoor single low med high
hr land outdoor single high high low
te land mixed mixed high med med
so land mixed team med med med
yo land mixed single med low low
di water mixed single high high low
sq land indoor mixed high med med

Table 1: Variable assignments. For every option o ∈ Opt
and variable x ∈ Var , we denote by vo,x the corresponding
entry in the table. For instance, we have vsw,env = water .

In order to help agent h to select an activity, agent m also
needs information about h’s set of actual desires. The latter

is captured by the following formula:

α8
def
= des(h,Γh), with

Γh ={env 7→ land , intens 7→ med ,∼ loc 7→ indoor ,

[cost 7→ high] soc 7→ mixed}.

This means that, according to agent m, agent h would like
to practice a land activity, with medium intensity, which is
not exclusively indoor, and which can be practiced both in
single and team mode, if its cost is high.

Let us now turn to the cognitive planning problem. We
suppose agent m’s set of operators Op is:

Op =
{
inform

(
m,h,val(o, a)

)
: o ∈ Opt and a ∈ Assign

}
∪{

inform
(
m,h,ideal(h, o)

)
: o ∈ Opt

}
.

In other words, agent m can only inform agent h about an
option’s value for a certain variable or about the ideality of
an option for her. We suppose the following executability
precondition for every o ∈ Opt and a ∈ Assign:

P
(
inform

(
m,h,val(o, a)

))
=�m

(
val(o, a) ∧

∧
v∈Valdan(

val(o,dan 7→ v)→

4hval(o,dan 7→ v)
))

if a 6∈ Assigndan,

P
(
inform

(
m,h,val(o, a)

))
=�mval(o, a)

if a ∈ Assigndan,

P
(
inform

(
m,h,ideal(h, o)

))
=�m

(
ideal(h, o) ∧ justif(h, o)

)
.

According to the first definition, agent m can inform agent
h about an option’s value for a certain variable, if and only
if this information is believed by m and m believes that h
has been already informed about the dangerousness level of
the option. Indeed, we assume that, before being presented
with an option’s features, agent h must be informed about its
the dangerousness level and agent m complies with this rule.
The second definition simply stipulates that m can inform h
about the dangerousness level of an option if and only if it
believes what it says. Finally, according to the third defini-
tion, m can inform h about the ideality of an option only if
it believes that h has a reasonable justification for choosing
it. Indeed, we assume m will inform h about the ideality of
an option only after having explained why the option is ideal
for her. The three definitions presuppose that agent m cannot
spread fake news (i.e., something that it does not implicitly
believe).

We moreover suppose that, for agent h to have a potential
intention to choose option o, denoted by potIntend(h, o), she
must have a justified belief that o is an ideal option for her:3

potIntend(h, o)
def
= 4hideal(h, o) ∧ justif(h, o).

3Our account of potential intention is reminiscent of the JTB
(‘justified true belief’) account to knowledge (Goldman 1979).
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This abbreviation together with the abbreviation α6 given
above relate intention with belief and desire, in line with ex-
isting theories of intention (Audi 1973; Davidson 1980).

It turns out that the sequence of speech acts
ε1, ε2, ε3, ε4, ε5, ε6 with

ε1
def
= inform

(
m,h,val(te,dan 7→ med)

)
,

ε2
def
= inform

(
m,h,val(te, env 7→ land)

)
,

ε3
def
= inform

(
m,h,val(te, intens 7→ med)

)
,

ε4
def
= inform

(
m,h,val(te, loc 7→ mixed)

)
,

ε5
def
= inform

(
m,h,val(te, soc 7→ mixed)

)
,

ε6
def
= inform

(
m,h,ideal(h, te)

)
.

provides a solution for the planning problem 〈Σ,Op, αG〉,
where

Σ ={α1, α2, α3, α4, α5, α6, α8}∪
{αo,x7 : o ∈ Opt and x ∈ Var},

Op has the previous specifications and agent h’s persuasive
goal αG is defined as follows:

αG
def
=

∨
o∈Opt

potIntend(h, o).

This means that, by performing the sequence of operators
ε1, ε2, ε3, ε4, ε5, ε6, agent m will induce agent h to form a po-
tential intention to choose an activity. In other words, agent
m will provide an effective recommendation to agent h.

We conclude this section with a general observation about
the formulation of the planning problem for our example.
Let 〈Σ,Op, αG〉 be the planning problem we want to solve.
Let m’s set of operators Op(o) for option o ∈ Opt relative
to 〈Σ,Op, αG〉 be defined as follows:

Op〈Σ,Op,αG〉
o =

{
inform

(
m,h,val(o, a)

)
: val(o, a) ∈ Σ

}
∪{

inform
(
m,h,ideal(h, o)

)}
.

It is easy to verify that the planning problem 〈Σ,Op, αG〉
has a solution if and only if there exists o ∈ Opt such
that the planning problem 〈Σ,Op〈Σ,Op,αG〉

o , αG〉 has a so-
lution. Therefore, in order to solve the planning problem
〈Σ,Op, αG〉, we simply need to linearly order the options in
Opt and solve the planning problems 〈Σ,Op〈Σ,Op,αG〉

o , αG〉
in sequence one after the other according to the ordering.

Conclusion
We have presented a simple logic-based framework for cog-
nitive planning which can be used to endow an artificial
agent with the capability of influencing a human agent’s be-
liefs and intentions. We have studied both complexity of sat-
isfiability for the logic and complexity of the cognitive plan-
ning problem. Our approach relies on SAT, given the NP-
completeness of the satisfiability problem for the epistemic
language we consider. We believe that this aspect opens up
interesting perspectives of application in HCI based on the

exploitation of existing SAT techniques. We are currently
implementing a cognitive planning algorithm using a SAT-
solver as well as the HMI scenario we presented in the paper.

Directions of future work are manifold. The dynamic ex-
tension L+

Frag considers belief expansion only. We plan to
extend our approach by belief revision operators. This will
allow the artificial planning agent to revise its belief base,
in the light of new information received from the human
agent that contradicts its explicit beliefs. We also plan to en-
rich our analysis of speech acts by taking ‘yes-no’ questions
into consideration. To this aim, we plan to extend the lan-
guage L+

Frag by program constructions of propositional dy-
namic logic (PDL) including non-deterministic choice (∪).
Last but not least, we plan to combine our cognitive planning
approach with inductive logic programming (ILP) (Muggle-
ton and de Raedt 1994), in order to construct an agent’s prior
information Σ, as used in the formulation of the cognitive
planning problem, through inductive methods. This will al-
low the persuader to predict the persuadee’s beliefs, like in
models of theory of mind based on neural networks (Rabi-
nowitz et al. 2018).
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