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Abstract

The Test Laboratory Scheduling Problem (TLSP) and its sub-
problem TLSP-S are real-world industrial scheduling prob-
lems that are extensions of the Resource-Constrained Project
Scheduling Problem (RCPSP). Besides several additional con-
straints, TLSP includes a grouping phase where the jobs to
be scheduled have to be assembled from smaller tasks and
derive their properties from this grouping. For TLSP-S such a
grouping is already part of the input.
In this work, we show how TLSP-S can be solved by Answer-
set Programming extended with ideas from other constraint
solving paradigms. We propose a novel and efficient encoding
and apply an answer-set solver for constraint logic programs
called clingcon. Additionally, we utilize our encoding in a
Very Large Neighborhood Search framework and compare our
methods with the state of the art approaches. Our approach
provides new upper bounds and optimality proofs for several
existing benchmark instances in the literature.

Introduction
In project scheduling problems, a large number of activities
must be fit into a schedule and assigned resources, subject to
several restrictions, such as precedence constraints or time
windows. Such problems are highly relevant in practice and
different variants appear in many real-world settings.

One such setting is that of an industrial test laboratory,
where standardised tests of components have to be performed
by qualified employees using diverse equipment. The Test
Laboratory Scheduling Problem was first described in (Mis-
chek and Musliu 2018b,a). In addition to several complex
scheduling constraints, it also features a grouping phase,
where activities (jobs) need to be assembled from smaller
units (tasks) and derive their properties from them. In this
work, we deal with a subproblem of TLSP, called TLSP-S,
where the grouping of tasks into jobs is already provided as
part of the input, in order to concentrate on the scheduling
part of the problem.

TLSP(-S) is an extension to the well-known Resource-
Constrained Project Scheduling Problem (RCPSP). Besides
several additional features that are also included in many
other variants of RCPSP in the literature, TLSP(-S) also
contains new aspects that arise from the real-world situation.
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These aspects include heterogeneous resources, where only a
subset of all units may be assigned to a job for each resource,
linked jobs, which must be performed by the same employees,
and non-standard objectives.

Solution methods that have been applied to TLSP-S in-
clude Simulated Annealing (Mischek and Musliu 2019), Con-
straint Programming (CP) (Geibinger, Mischek, and Mus-
liu 2019b), and a hybrid Very Large Neighborhood Search
(VLNS) based on the CP model (Geibinger, Mischek, and
Musliu 2019a). Although these approaches provide good so-
lutions for existing benchmark instances, for many instances
the optimal solutions are still not known.

In this paper, we investigate Constraint Answer-set Pro-
gramming (CASP) for solving TLSP-S. We introduce and
describe a new CASP model for the problem and investi-
gate/evaluate different formulations for the resource overlap
constraint. Additionally, we incorporate this CASP model
into a robust framework that is based on Very Large Neigh-
borhood Search.

In our experiments, we show that CASP is very success-
ful at providing good solutions for this large-scale project
scheduling problem and even outperforms established so-
lution approaches for project scheduling problems, such as
CP, in some instances. These improvements extend to the
Very Large Neighborhood Search framework, enabling us to
find new upper bounds for multiple benchmark instances and
prove the optimality of several solutions for the first time.

The rest of the paper is organised as follows. In the next
Section we give an overview of related work, including other
(C)ASP approaches to scheduling. We then provide a sum-
mary of the TLSP-S problem. A constraint model is given in
the following section. Experimental results are presented and
discussed next and the last section gives conclusions.

Literature Overview
Numerous project scheduling problems exist in the literature.
Probably the most studied of those problems is the Resource-
Constrained Project Scheduling Problem (RCPSP) (Brucker
et al. 1999; Hartmann and Briskorn 2010; Mika, Waligóra,
and Węglarz 2015) and its variants. Of those variants the
ones of particular relevance for TLSP(-S) are the Multi-Mode
RCPSP (MRCPSP) (Elmaghraby 1977; Węglarz et al. 2011;
Hartmann and Briskorn 2010; Szeredi and Schutt 2016) and
the Multi-Skill RCPSP (MSPSP) (Bellenguez and Néron
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2005; Young, Feydy, and Schutt 2017). MRCPSP allows
for multiple execution modes just like TLSP(-S), whereas
MSPSP features similar resource availability constraints.

TLSP-S was investigated by (Mischek and Musliu 2019),
(Geibinger, Mischek, and Musliu 2019b) and (Geibinger, Mis-
chek, and Musliu 2019a). Furthermore, a solution approach
for the full TLSP was provided in (Danzinger et al. 2020).
All these approaches have been evaluated on publicly avail-
able real-life and randomly generated instances. Furthermore,
according to the authors these methods have been deployed
successfully to solve test laboratory scheduling problems on
a daily basis. Although the reported results are good, many
instances are still not solved to optimality. Therefore, the
investigation of new solving paradigms for this challenging
problem is an important research question.

Although other solving paradigms such as CP, SAT and
SMT (Satisfiability Modulo Theories) have been used for re-
lated project scheduling problems (Young, Feydy, and Schutt
2017; Schutt et al. 2013; Bofill et al. 2020), to the best of
our knowledge, neither Answer-set Programming nor hybrid
extensions of ASP have been utilized for project scheduling
problems. However, there are examples in the literature of
those paradigms being used for other scheduling problems.
In (Dodaro and Maratea 2017) and (Alviano, Dodaro, and
Maratea 2017) the authors present ASP encodings for the
Nurse Scheduling Problem. ASP solution methods for the
Operation Room Scheduling Problem can be found in (Do-
daro et al. 2018). Abseher et al. (Abseher et al. 2016) provide
an ASP formulation for the Shift Design Problem. In the
case of hybrid systems, (Balduccini 2011) and (Friedrich
et al. 2016) employ an ASP and CP hybrid approach to solve
industrial machine scheduling problems. An application of
ASP combined with difference logic for a real-world train
scheduling problem can be found in (Abels et al. 2020).

Constraint Answer-set Programming
First, we give a short introduction into Answer-set Program-
ming (ASP) (Eiter, Ianni, and Krennwallner 2009).

Answer-set programs are defined over a vocabulary V =
(P,D), where P is a set of predicates and D is a set of con-
stants (also referred to as the domain of V). Each predicate in
P has an arity n ≥ 0. We also assume a set A of variables.1

An atom is defined as p(t1, . . . , tn), where p ∈ P and
ti ∈ D ∪ A, for 1 ≤ i ≤ n. We call an atom ground if no
variable occurs in it.

A (disjunctive) rule, r, is an ordered pair of form

a1 ∨ · · · ∨ an ← b1, . . . , bk,∼ bk+1, . . . ,∼ bm, (1)

where a1, . . . , an, b1, . . . , bm are atoms, n,m, k ≥ 0, and
n+m > 0. Furthermore, “∼” denotes default negation i.e.
∼ p is true if p is not derivable. The left-hand side of r
is the head and the right-hand side is the body of r. For a
program P , we define H(P ) =

⋃
r∈P H(r) and B(P ) =⋃

r∈P B(r).
A rule r of form (1) is called (i) a fact, if m = 0 and n = 1;

(ii) a constraint, if n = 0; (iii) safe, if each variable occurring
1In our encodings, all variables are denoted by arbitrary upper-

case letters.

in H(r) ∪B−(r) also occurs in B+(r); and (iv) ground, if
all atoms in r are ground.

A program is a set of safe rules. We call a program ground
if all of its rules are ground.

The set of all constants appearing in a program P is called
the Herbrand universe of P , symbolically HU P . If no con-
stant appears in P , then HU P contains an arbitrary constant.

Given a rule r and a set C of constants, we define grd(r, C)
as the set of all rules generated by replacing all variables of r
with elements of C. For any program P , the grounding of P
with respect to C is given by grd(P,C) :=

⋃
r∈P grd(r, C).

If P is a ground program, then P = grd(P,C) for any C.
A set of ground atoms is called an interpretation. Follow-

ing the answer-set semantics for logic programs as defined by
Gelfond and Lifschitz (Gelfond and Lifschitz 1991), a ground
rule r is satisfied by an interpretation I , denoted by I |= r, iff
H(r)∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r)∩ I = ∅. For
a ground program P , I |= P iff each r ∈ P is satisfied by I .
The Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1988)
of a ground program P with respect to the interpretation I is
given by

P I := {H(r)← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

An interpretation I is an answer set of a non-ground program
P iff I is a subset-minimal set satisfying grd(P,HU P )

I .
Also, some ASP systems, for example clingo (Gebser

et al. 2014), support choice rules i.e. rules of the form
l {a1 ; . . . ; an ; . . . ; ∼ an+1 ; . . . ; ∼ ao} u ←
b1, . . . , bk,∼ bk+1, . . . ,∼ bm, where l and u are natural
numbers specifying a lower and upper bound. An interpre-
tation satisfies the head of such a rule if l ≤ (

∑
1≤i≤n ai ∈

I +
∑

n+1≤i≤o ai 6∈ I) ≤ u.
We are also going to use conditional choice rules where

the head takes the form l {L0 : L1, . . . , Ln} u and Li (0 ≤
i ≤ n) are non-ground atoms or default negated non-ground
atoms. Such a rule is essentially expanded during grounding
into an unconditional choice rule containing an instantiation
of L0 whenever the corresponding instantiations of the atoms
in L1, . . . , Ln are present or respectively not present as facts.

Furthermore, we also make use of aggregates. Although
different types of aggregates are supported by most ASP
solvers, we exclusively employ count aggregates. Gener-
ally, a count aggregate has the form #count{v1, . . . , vn :
L1, . . . , Lm} = b, where Li (i ≤ m) are literals, vj (j ≤ n)
are variables occurring in these literals, and b is a natural
number. An aggregate can be used in the positive body of
a rule. During grounding a count aggregate is expanded
to #count{c11, . . . , c1n : l11, . . . , l

1
m ; . . . ; ck1 , . . . , c

k
n :

lk1 , . . . , l
k
m} = b, where li1, . . . , l

i
m (i ≤ k) are ground in-

stances of the literals and ci1, . . . , c
i
n are the respective con-

stants instantiated for variables v1, . . . , vn. An aggregate
is satisfied by an interpretation I if the number of tuples
〈ci1, . . . , cin〉 where lk1 , . . . , l

k
m is satisfied by I (i ≤ k), is

exactly b.
For a more thorough reference for choice rules, aggregates

and other ASP language features, we refer to the relevant
literature (Eiter, Ianni, and Krennwallner 2009; Gebser et al.
2012, 2014).
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Constraint Answer-set Programming (CASP) extends ASP
with linear variables V = 〈v1, . . . , vn〉 over domains D =
〈D1, . . . , Dn〉 and linear constraints. In clingcon (Banbara
et al. 2017) – an extension of clingo and the CASP solver
we concentrate on – these linear constraints can appear as
body atoms or singular head atoms and the domains are
sets of integers. An interpretation for a program as defined
above is extended by a variable assignment A = 〈a1, . . . , an〉
of domain elements to the variables i.e. ai ∈ Di (i ≤ n).
A linear constraint is satisfied if the assignment satisfies it.
Answer-sets for CASP can then be defined – mutatis mutandis
– as for standard ASP above.

In clingcon, we can define the domains of linear variables
via domain constraints of the form &dom{l..u} = v, where
l and u are integer constants, and v is a linear variable. The
lower bound of the domain of v is represented by l and
the upper bound by u. Linear constraints like v1 + · · · +
vn ◦ k, for ◦ ∈ {=,≤,≥, <,>}, can be expressed with the
constraint atom &sum{v1 ; . . . ; vn} ◦ k, where vi (i ≤ n)
are linear variables and k is an integer constant. For linear and
domain constraints the constants can also be ASP variables
and the linear variables can contain ASP variables as well.
The latter leads to the generation of a linear variable for each
corresponding constant during the grounding of the program.

We can also specify an optimization objective for a CASP
program. In clingcon this can be done by adding a directive
&minimize{t : L1, . . . , Ln}, where t is a linear term over
non-ground linear variables and Li (i ≤ n) are non-ground
literals. During grounding the directive is expanded to repre-
sent the sum of the corresponding grounded linear variables
and the objective is to find an answer-set for which this sum
is minimal. If multiple directives are contained in a program,
then the overall objective is to minimize the total sum of all
of them.

For a more detailed introduction to CASP and the input
language of clingcon, we refer to the article by Banbara et
al. (Banbara et al. 2017).

Problem Description
In this work, we deal with TLSP-S, which is a variant of
TLSP. A complete and formal definition of both problems
can be found in (Mischek and Musliu 2018b).

Each instance of TLSP-S consists of a set of projects,
which contain jobs to be scheduled. Each job has several
properties:

• A time window, given via a release date and a deadline. In
addition, it has a due date, which is similar to the deadline,
except that exceeding it is only a soft constraint violation.

• A set of available modes in which the job can be per-
formed.

• A duration which is modified by the assigned mode.

• The resource requirements for the job. We distinguish be-
tween workbenches, employees and several equipment
groups. For each of these resources, the job has a certain
demand (at most one workbench, the number of employees
depends on the assigned mode, demands for each equip-
ment group can be arbitrary). The assigned resource units

must be chosen from the set of available units for that job
and resource. For employees, there is also a set of preferred
employees, which should be chosen, if possible.

• The predecessors of the job, which must be completed
before the job can start. Precedence relations will only
occur between jobs of the same project.

• Linked jobs of this job, which must be performed by the
same employee(s). As before, such links only occur be-
tween jobs of the same project.

• Optionally, the job may contain initial assignments of a
mode, starting time slot and resources. Some or all of these
assignments may be present for any given job.

Out of all jobs, a subset are started jobs, which will always
start at time slot 0 and have initial mode and resource assign-
ments that are available for the job. The initial assignments
of a started job must not be changed in the solution.

The goal of TLSP-S is to find an assignment of a mode,
a time slot interval, and resources to each job, such that
all constraints are fulfilled and the objective function, the
weighted sum of the violations of five soft constraints, is
minimized. The weights of the soft constraints depend on
the specific situation in the lab and as was done in previous
work, we set them all to 1 for this paper. The hard and soft
constraints that we consider for TLSP-S will be listed in
the next section, where we will introduce the encoding as a
constraint logic program. A complete description and formal
definition of all constraints of the original model can be found
in (Mischek and Musliu 2018b).

Constraint Answer-set Program
In this section we present our Constraint Answer-set Program
for TLSP-S written in the input language of clingcon (Gebser,
Ostrowski, and Schaub 2009; Banbara et al. 2017).

A more detailed description of the encoding can also be
found in the master thesis of the first author (Geibinger 2020).

Solution Representation
Each answer-set of the encoding we are about to give will
represent a solution of TLSP-S with respect to the given
instance. More specifically, an answer-set will include the
following facts for each job j ∈ J :

• modeAssign(j,m) indicating that j is assigned mode m,

• empAssign(j, e) expressing that employee e is assigned
to j,

• workbenchAssign(j, w) representing the assignment of
workbench w to j, and

• equipAssign(j, e) meaning that j is assigned equipment
e.

Furthermore, an answer-set also contains a start time assign-
ment start(j) for each job j which is encoded as an integer
variable.

Basic Hard Constraints
The encoding for the basic hard constraints can be found in
Figure 1. The rules enforce the following constraints.
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&dom{R..D} = start(J) ← job(J), release(J,R), deadline(J,D) (2)
&dom{R..D} = end(J) ← job(J), release(J,R), deadline(J,D) (3)

1 {modeAssign(J,M) : modeAvail(J,M)} 1 ← job(J) (4)
duration(J, T ) ← job(J),modeAssign(J,M), durInMode(J,M, T ) (5)

&sum{end(J);−start(J)} = T ← job(J), duration(J ,T ) (6)
&sum{start(J)} ≥ end(K) ← job(J), job(K), precedence(J,K) (7)

&sum{start(J)} = 0 ← job(J), started(J) (8)
1 {workbenchAssign(J,W ) : workbenchAvail(J,W )} 1 ← job(J),workbenchReq(J) (9)

R {empAssign(J,E) : empAvail(J,E)} R ← job(J),modeAssign(J,M), reqEmployees(M,R)
(10)

R {equipAssign(J,E) : equipAvail(J,E), inGroup(E,G)} R ← job(J), group(G), reqEquip(J,G,R) (11)
← job(J), job(K), linked(J,K), empAssign(J,E),

∼ empAssign(K,E) (12)

Figure 1: Basic Hard Constraints

precedence(J,K) ∨ precedence(K,J) ← job(J), job(K ),workbenchAssign(J,W ),

workbenchAssign(K,W ), J < K (13)
precedence(J,K) ∨ precedence(K,J) ← job(J), job(K ), empAssign(J,E),

empAssign(K,E), J < K (14)
precedence(J,K) ∨ precedence(K,J) ← job(J), job(K ), equipAssign(J,E),

equipAssign(K,E), J < K (15)

Figure 2: No overlaps: Precedence formulation

Time windows For each job j, we have input facts
release(j, r) and deadline(j, d) indicating that r is its re-
lease date and d is its deadline respectively. The rules (2) and
(3) define the domains of the start and end times which are
bounded by the release times and deadlines of a job. This
ensures that every job is executed within its time window.

Job duration Rule (5) enforces that each job has the dura-
tion required by its mode and (6) links the start and end time
to the duration. The duration t of a job j when performed
in mode m is given by the input fact durInMode(j,m, t).
Additionally, rule (4) ensures that every job is assigned an
available mode.

Precedences For each predecessor k of a job j , we have
an input fact precedence(j, k). Rule (7) ensures that a job’s
predecessors are completed before its own start.

Started Jobs If a job j is started then we have an input
fact started(j). Those jobs are required to start at the first
available timeslot i.e. zero. This is enforced by rule (8).

Resource Requirements The resource requirements for
each job are handled by rules (9), (10), and (11), ensuring

that each job is assigned a workbench if required, is assigned
as many employees as its mode requires, and the demands
for each equipment group are met, respectively.

Linked Jobs We also need to ensure that any two linked
jobs j and k (identified by input fact linked(j, k)) are per-
formed by the same employees, this is accomplished by the
constraint (12).

Unary Resource Constraints
In (Geibinger, Mischek, and Musliu 2019b), the authors ex-
pound on the difficulty of modelling unary resource con-
straints for TLSP-S i.e. constraints ensuring that no resource
is used by multiple jobs simultaneously. Their best formula-
tion of those constraints relied on a global cumulative con-
straint. clingcon has no such cumulative constraint and the
disjunctive it does support only works with fixed durations,
which we do not have because of the different possible exe-
cution modes. Hence, we had to decompose the constraints.

We propose two formulations for unary resource con-
straints. The first can be found in Figure 2.

Intuitively, those rules specify that whenever a resource
is used by two different jobs j, k ∈ J , then either j has to
precede k or k has to precede j. Note that with those rules it
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could be possible that both jobs precede each other, but this
cannot happen in any answer-set because of rule (7).

The second formulation is more straight-forward and is
given in Figure 3. In this formulation, a fact overlap(j, k) is
derived for each pair of overlapping jobs j, k ∈ J by rule
(16). The constraints (17–19) then ensure that overlapping
jobs cannot be assigned the same resources.

Soft Constraints
There are five soft constraints in the problem definition of
TLSP (Mischek and Musliu 2018b). The objective function
is the weighted sum over all soft constraint violations.

The first soft constraint counts the number of jobs. Since
the job grouping is fixed in TLSP-S, this is reduced to a con-
stant, which we can omit from the model (for comparability
with previous work, we add this constant to the final objective
value in post-processing). Hence, we are left with four soft
constraints each of which we can specify in our encoding as
a minimization objective. The complete encoding of all soft
constraints can be found in Figure 4.

Employee project preferences The first soft constraint
minimizes the number of employees assigned to each job
despite not being preferred. This can easily be realised using
a count aggregate as given in rule (20). For each job j, this
aggregate counts the number of occurrences where an em-
ployee e is assigned to j but empPref (j, e) (indicating that
e is preferred for j) cannot be derived and is thus not part
of the input. The objective (21) then encodes the necessary
minimization.

Number of employees We also need to minimize the num-
ber of different employees in each project. This is achieved
again by a simple count aggregate as formulated in (22) and
(23). The input fact projAssign(j, p) denotes that j is con-
tained in project p.

Due dates Another soft constraint considered in (Mischek
and Musliu 2018b) is minimizing tardiness i.e. we generally
want a job j to end before is due date t given by input fact
due(j, t) or, if this is not possible, to minimize the delay. The
encoding for this objective can be found in (24–26) where we
introduce integer variables for the delay of each job. Those
variables are then constrained to represent the difference
between the end and the due date or zero if the job completes
within its due date.

Project completion time The last soft constraint has the
most complex formulation which is given in (27–35). The
goal here is to minimize the completion time of each project
i.e. the time between the project start and end. The reason
why this objective is difficult to define is that we effectively
need to determine the job with the earliest start in a project
as well as the one with the latest end. We achieve this by
guessing a first and last job for each project with the rules
(29) and (32). For the selected first job, we ensure that no
other job in the project has an earlier start. Similarly for the

selected last job. We can then easily define the project start
via rule (30) and the end with rule (33). The objective (35)
then simply minimizes the sum of all completion times.

Very Large Neighborhood Search
Analogously to (Geibinger, Mischek, and Musliu 2019a),
we employed our encodings in a Very Large Neighborhood
Search framework. Just like Geibinger et al. we start with
a feasible solution and repeatedly fix most of the schedule
except for a small number of projects and then try to find an
optimal solution for the unfixed projects.

The basic steps of the search are are the same as in
(Geibinger, Mischek, and Musliu 2019a) but we do not hot
start the solver as this functionality seems to be unsupported
by clingcon. Instead, we only apply moves if they present an
actual improvement of the current solution. Hence, we have
the following algorithm:
1. Find Initial Solution

In order for the Very Large Neighborhood Search to work,
we need a feasible schedule for the instance. Hence, we
use clingcon and our encoding to find such a schedule.

2. Calculate lower bound for each project
In parallel to step one we determine a lower bound for
each project. This is done by running clingcon on each
project once without regard for the other projects. The
optimal objective is then a lower bound for the penalty of
the project in the original problem. Since this can take a
long time for bigger projects we define a runtime limit of
30 seconds for each project, which is also going to be the
move timeout later. If the limit is reached and no optimal
solution could be found, we determine a heuristic lower
bound for the project by adding up the number of jobs,
the minimum number of different employees needed for
the project, and the minimal duration of all jobs on the
longest path in the job dependency graph.

3. Fix all but k projects
After the initial solution is found we select at random
a combination of k projects (initially, k = 1), with the
following properties: All of them overlap in the current
schedule (or, if there are no such combinations, have over-
lapping time windows) and at least one of the projects has
potential for improvement i.e. the difference between the
current penalty and the lower bound is bigger than zero.
The projects which are not in the selected combination
are then fixed by modifying the time windows and avail-
abilities of each job contained in a fixed project.

4. Perform move
After the preprocessing we try to find an optimal solution
for the selected projects, where we set a runtime limit of
30 seconds. The best assignment found within this limit
is then applied to the current incumbent schedule if it
improves the current solution.
The combination of projects used in this move is then
saved in a list. Project combinations contained in this list
(or subsets of a combination in the list) are not selected
again unless there has been a change in a job overlapping
the projects.
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overlap(J,K) ← job(J), job(K),&sum{start(K)} < end(J),&sum{end(K)} > start(J), J < K (16)
← overlap(J ,K ),workbenchAssign(J,W ),workbenchAssign(K,W ), J < K (17)
← overlap(J ,K ), empAssign(J,E), empAssign(K,E), J < K (18)
← overlap(J ,K ), equipAssign(J,E), equipAssign(K,E), J < K (19)

Figure 3: No overlaps: Direct formulation

&sum{unprefEmp(J)} = N ← job(J),#count{E : empAssign(J,E),

∼ empPref (J,E)} = N (20)
&minimize{unprefEmp(J) : job(J)} (21)

&sum{employees(P )} = N ← project(P ),#count{E : empAssign(J,E),

projAssign(J, P )} = N (22)
&minimize{employees(P ) : project(P )} (23)

&sum{delay(J);T} = end(J) ← job(J), due(J, T ),&sum{end(J);−T} > 0 (24)
&sum{delay(J)} = 0 ← job(J), due(J, T ),&sum{end(J);−T} ≤ 0 (25)

&minimize{delay(J) : job(J)} (26)

&dom{0..H} = projectStart(P ) ← project(P ), horizon(H) (27)
&dom{0..H} = projectEnd(P ) ← project(P ), horizon(H) (28)

1 {firstJob(J) : job(J), projAssign(J, P )} 1 ← project(P ) (29)
&sum{projectStart(P )} = start(J) ← firstJob(J), projAssign(J, P ) (30)
&sum{projectStart(P )} ≤ start(J) ← job(J), projAssign(J, P ) (31)

1 {lastJob(J) : job(J), projAssign(J, P )} 1 ← project(P ) (32)
&sum{projectEnd(P )} = end(J) ← lastJob(J), projAssign(J, P ) (33)
&sum{projectEnd(P )} ≥ end(J) ← job(J), projAssign(J, P ) (34)

&minimize{projectEnd(P )− projectStart(P ) : project(P )} (35)

Figure 4: Soft constraints

5. Possibly change k
If k is bigger than 1 and the incumbent schedule has
been improved by the last move, then we set k back to
1. Otherwise, if there are no more eligible combinations
with size k, we increase k by one or – with probability
0.35 – by two. This probabilistic increase was also used in
(Geibinger, Mischek, and Musliu 2019a). If there no more
combinations for any k, we double the move timeout and
perform all moves again which did run out of time before.
If there are no such moves, we terminate.
After this we check if the current solution is equal to the
sum of all project lower bounds. Should that be the case,
then we have found an optimal solution and can terminate.
If not, we go back to step 3 or terminate if we have reached
the time limit of the solver.

Experiments
We evaluate our model on the benchmark instances that were
also used in (Geibinger, Mischek, and Musliu 2019b). This

data set contains 30 generated instances containing between
7 and 401 jobs. In addition, we use the three real-world
instances from (Danzinger et al. 2020). All instances are
available online2.

As our CASP solver we use clingcon-5 (unpublished
as of the writing of this article3).

Our experiments were performed on a benchmark server
with 224GB RAM and two AMD Opteron 6272 Processors
each with a frequency of 2.1GHz and 16 logical cores. Unless
noted otherwise, we used single-threaded configurations and
we usually executed two independent benchmarking runs in
parallel. Each run had a time limit of 1800 seconds.

Unary Resource Constraints
As described above, our model contains two alternative for-
mulations for the unary resource constraints. We evaluated

2dbai.tuwien.ac.at/staff/fmischek/TLSP
3github.com/potassco/clingcon

6363



Configuration #Feas #Opt #Best
bb,hier 30 18 28
bb,dec 30 18 30
usc,3 30 18 27
default 30 18 26

Table 1: Comparison of different clingcon optimization strate-
gies. Shown are the number of feasible solutions found
(#Feas), the number of proven optima (#Opt) and the number
of instances for which the solution was the best among all
four configurations (#Best).

both versions of our model, once with the direct formulation
and once with the precedence formulation, on all 30 gen-
erated test instances. The direct formulation found a better
solution on 5 instances, while the precedence formulation
found a better solution on 11 instances (both models produced
schedules with the same objective value for the remaining 14
instances). In addition, the direct formulation could not find
any feasible solution for the two biggest instances.

For this reason, we used the model with the precedence
formulation for all further experiments.

Clingcon Search Strategy
clingcon supports a large number of configuration options
to modify its behavior. For our experiments in this paper,
we mostly rely on its default configuration. However, we do
include here a comparison between different optimization
strategies (parameter --opt-strategy), inspired by the
strategies used in (Abseher et al. 2016).

We evaluated the following four optimization strategies:

(i) Branch-and-bound in hierarchical order of priorities
(bb,hier),

(ii) branch-and-bound with exponentially decreasing steps
(bb,dec, not used in (Abseher et al. 2016)),

(iii) optimization based on unsatisfiable cores (usc,3), and

(iv) clingcon’s default strategy.

Table 1 shows the results on the 30 generated test instances.
All four strategies produce solutions of identical objective
value on most instances. On the few instances where they dif-
fer, configuration (ii) consistently produced the best solution.
The remaining experiments use this strategy.

Comparison
For our main evaluations, we used a timeout of 2 hours (7200
seconds), to be comparable with the results in (Geibinger,
Mischek, and Musliu 2019a). That publication features Con-
straint Programming models solved by the solvers Chuffed
and CP Optimizer (CPLEX was also used, but showed quite
poor performance for this problem). Of these, Chuffed only
supports single-threaded solving, whereas CP Optimizer was
run with 8 threads in parallel. For better comparability, we
evaluated our model with clingcon both in single-threaded
mode and in multi-thread mode with 8 threads, using the
portfolio solving option (--configuration=many).
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Figure 5: Performance comparison between clingcon in
single-threaded (ST) or multi-threaded (MT) mode, Chuffed
and CP Optimizer. The results were scaled by the best known
penalty for each instance.

A comparison of the solvers’ performance can be seen
in Figure 5. All solvers found feasible solutions for all 334

instances. Both the single-threaded and the multi-threaded
configuration of clingcon proved optimality for 19 instances,
but the multi-threaded version found better solutions on all
but one of the remaining instances. Compared to Chuffed,
(single-threaded) clingcon found both more optimal solutions
and slightly better penalties on average. Multi-threaded cling-
con found the best solution among all four runs for 26 out of
the 33 instances. On average, clingcon achieved comparable
penalties to CP Optimizer, which found the best known solu-
tion for 16 instances and could only prove optimality for the
four smallest instances.

Very Large Neighborhood Search
We also compare Very Large Neighborhood Search using
clingcon (single-threaded) with the Very Large Neighbor-
hood Search approach based on CP with Chuffed (Geibinger,
Mischek, and Musliu 2019a). Due to the nondeterministic
nature of Very Large Neighborhood Search, we performed
five runs for each instance.

Our results show that while Very Large Neighborhood
Search with either solver produces similar results, VLNS
with clingcon finds equivalent or slightly better solutions on
average for every single test instance (see Figure 6).

VLNS also produces significantly better solutions than
clingcon alone, even when compared to the multi-threaded
configuration. This matches the results of (Geibinger, Mis-
chek, and Musliu 2019a).

Of particular interest is also that VLNS could prove op-
timality for 15 instances by finding solutions that match
the precomputed lower bounds (Very Large Neighborhood
Search with Chuffed proved optimality for 16 instances).
However, optimality could also be shown for an additional
five instances where the optimal solution is above the lower
bounds. In four of those last cases, the proof of optimality

4Results for two of the real-world instances have not been pub-
lished for CP Optimizer and are not included.
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Figure 6: Performance comparison between Very Large
Neighborhood Search using clingcon (single threaded) as
the internal solver and Very Large Neighborhood Search us-
ing Chuffed. The figure shows average results over five runs,
scaled by the best known penalty for each instance.

was obtained by increasing the neighborhood size to the to-
tal number of projects in the instance (effectively reducing
the Very Large Neighborhood Search algorithm to the exact
clingcon solver). The fifth instance (test instance number 22)
can actually be separated in two independent subproblems,
which were detected automatically and individually solved
to completion by VLNS. In (Geibinger, Mischek, and Musliu
2019a), the Very Large Neighborhood Search approach based
on Chuffed found the same solutions for these instances, but
was unable to prove their optimality within the given time.

Exploration of such large neighborhoods became possible
due to clingcons ability to quickly prove optimality of small
subproblems and an aggressive strategy for increasing the
neighborhood size.

Overall, we could find new best known solutions for 12
instances using Very Large Neighborhood Search based on
clingcon, including for all three real-world instances, and
prove the optimality of previously best known solutions for
five further instances.

Conclusion
In this work, we provided an exact solution method for the
real-world scheduling problem TLSP-S. We encoded the
problem as a constraint answer-set program in the language
of the CASP solver clingcon. To the best of our knowledge,
this is the first CASP model for an extension of RCPSP in
the literature.

We then experimentally compared different encoding meth-
ods and optimization strategies of the solver. In a further
experiment we compared our clingcon encoding with exist-
ing CP based approaches for TLSP-S and showed that we
achieve competitive results and can solve 19 out of 33 bench-
mark instances to optimality. Additionally, we also employed
clingcon and our encoding in an existing Very Large Neigh-
borhood Search framework and showed that this outperforms
the existing best solution methods for TLSP-S (Very Large
Neighborhood Search based on a CP solver). In fact, the

clingcon based Very Large Neighborhood Search found new
upper bounds for 12 of 33 benchmark instances, including
the 3 available real-world instances.

For the future, we plan to investigate constraint answer-
set programming for the full TLSP as well as utilizing the
multi-shot solving capabilities of clingcon.
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Bellenguez, O.; and Néron, E. 2005. Lower Bounds for the
Multi-skill Project Scheduling Problem with Hierarchical
Levels of Skills. In Proceedings of the 5th International Con-
ference on the Practice and Theory of Automated Timetabling
(PATAT 2005), volume 3616 of LNCS, 229–243. Springer.

Bofill, M.; Coll, J.; Suy, J.; and Villaret, M. 2020. SMT encod-
ings for Resource-Constrained Project Scheduling Problems.
Computers & Industrial Engineering 149: 106777.
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