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Abstract

Commonsense reasoning is one of the ultimate goals of ar-
tificial intelligence research because it simulates the human
thinking process. However, most commonsense reasoning
studies have focused on English because available common-
sense knowledge for low-resource languages is scarce due
to high construction costs. Translation is one of the typi-
cal methods for augmenting data for low-resource languages;
however, translation entails ambiguity problems, where one
word can be translated into multiple words due to polysemes
and homonyms. Previous studies have suggested methods
to measure the validity of translated multiple triples by us-
ing additional metadata and manually labeled data. However,
such handcrafted datasets are not available for many low-
resource languages. In this paper, we propose a knowledge
augmentation method using adversarial networks that does
not require any labeled data. Our adversarial networks can
transfer knowledge learned from a resource-rich language to
low-resource languages and thus measure the validity score
of translated triples even without labeled data. We designed
experiments to demonstrate that high-scoring triples ob-
tained by the proposed model can be considered augmented
knowledge. The experimental results show that our proposed
method for a low-resource language, Korean, achieved 93.7%
precision@1 on a manually labeled benchmark. Furthermore,
to verify our model for other low-resource languages, we in-
troduced new test sets for knowledge validation in 16 differ-
ent languages. Our adversarial model obtains strong results
for all language test sets. We will release the augmented Ko-
rean knowledge and test sets for 16 languages.

Introduction
Commonsense knowledge consists of facts known by al-
most every human. People use this knowledge as a basis
for their thinking systems to understand, infer and commu-
nicate with someone. Therefore, commonsense reasoning
is considered the ultimate goal of artificial intelligence be-
cause it simulates human thinking. To turn common sense
into a form of knowledge graph that can be understood by
computers, ConceptNet (Liu and Singh 2004) was launched.
ConceptNet involves knowledge as a triple consisting of a
head entity, tail entity, and one relation that connects the
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two entities. The general triple form is <head entity,
relation, tail entity>. For example, the com-
monsense knowledge of “A bank can keep your money.”
is represented as a triple form of <bank, CapableOf,
keep money>.

ConceptNet supports 304 languages, but data size dif-
ferences between English and low-resource languages are
stark. In particular, the English vocabulary consists of 1.8M
words, but 217 languages, including Uyghur, Uzbek, and
Sanskrit, have fewer than 10K words. In the case of Korean,
ConceptNet covers 47K words, but there are only 4,561
triples where both entities are Korean. This is not a suffi-
cient data size for commonsense reasoning. However, it is
very hard to construct commonsense knowledge for all low-
resource languages as much as the number of English triples
due to construction costs.

One of the typical methods for triple expansions is to
translate English triples as a source side into low-resource
languages as a target side. However, translation suffers
from the ambiguity problem; one word can be translated
into two or more due to polysemes and homonyms. For
example, in Korean, the word “bank” can be translated
as “eun-haeng1” which indicates a financial insti-
tution that accepts deposits and “duk,” which is the
sloping land along the side of a river. The phrase “keep
money” is translated as “don-eul bogwanhada.”
For a given triple, <bank, CapableOf, keep
money>, the translated Korean triple of <eun-haeng,
CapableOf, don-eul bogwanhada> is valid, but
<duk, CapableOf, don-eul bogwanhada> is
invalid. Therefore, in this paper, we define the knowledge
augmentation as the task of finding reliable triples with high
validity scores among the translated candidates.

Several studies have proposed scoring methods to mea-
sure the validity of the translated triples to resolve the am-
biguity problem (Feng et al. 2016; Otani et al. 2018; An-
war et al. 2019; Moussallem, Soru, and Ngomo 2019). The
most common constraint in those studies is that the proposed
methods require manually labeled data or handcrafted tem-
plates. For this reason, these studies only validated the effec-
tiveness of their methods for a few languages. These meth-

1We denote Korean words as a phonetic expression in English
for readability.
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Figure 1: Overview of the proposed knowledge augmentation method.

ods are more limited in the case of low-resource languages
because manual labeling is very costly.

Therefore, we propose a knowledge augmentation method
using adversarial learning that does not require any labeled
data for low-resource languages. Our adversarial model pre-
dicts whether the triples are valid or not and learns the in-
dependent language features simultaneously. Thereby, the
model can transfer information learned from resource-rich
languages to low-resource languages and can measure the
validity of the candidate triples for any language without la-
beled data.

In the experiments, we applied our augmentation method
to Korean, a low-resource language. We evaluated the per-
formance of the proposed model on a manually labeled Ko-
rean benchmark test set and achieved 73.17% at mean aver-
age precision (MAP). Furthermore, to demonstrate that our
model is language-agnostic, we devised a method to auto-
matically construct test dataset that can verify the model on
various languages without manual annotation costs. We ex-
perimented on 16 languages, and the results showed that our
validity scoring model is useful regardless of the language.

In summary, the contributions of this paper are as follows:

• We propose a knowledge augmentation method that does
not require additional labeled data for low-resource lan-
guages. To the best of our knowledge, this is the first at-
tempt at applying adversarial learning to data augmenta-
tion and validity measurements for commonsense knowl-
edge.

• Our model is language-agnostic, so it can be validated for
various languages. To show the effectiveness of the pro-
posed method, we introduced a method to automatically
generate a test set for the validation of knowledge.

• The augmented knowledge in Korean, comprising
626,681 triples with a confidence of 93.7%, will be pub-
licly released for further research. In addition, we will
open automatically generated test sets in 16 languages.

Related Works
Several studies to reduce the number of differences in
knowledge base between resource-rich languages and low-
resource languages have been conducted (Feng et al. 2016;
Otani et al. 2018; Anwar et al. 2019; Moussallem, Soru, and
Ngomo 2019). To expand upon low-resource knowledge,
the authors proposed a machine translation (MT) based ap-
proach, a method for finding the triple with the highest va-
lidity score among translated candidates from one source
triple. Feng et al. proposed a training method to map source
triples and target triples into the same semantic vector space.
The validity score of the translated triple is calculated using
the distance from the source triple in the vector space. This
method requires manually aligned data with the same mean-
ing in the source and target triples for training. The works
of Otani et al. and Anwar et al. are the most closely related
to our study. In the work by Otani et al., they combined the
MT score that was converted into string by a handcrafted
template with the validity score measured from pre-trained
knowledge base completion (KBC) model. They obtained
Japanese and Chinese triples from English triples with Con-
ceptNet with high precision. Anwar et al. proposed a back-
translation-based approach to resolve the ambiguity problem
for Chinese to Uyghur triple translation. Moussallem, Soru,
and Ngomo, also suggested MT-based KB expansion, but
they focused on the translator unlike other previous meth-
ods that used existing translators or translation link infor-
mation. They trained their own translator with aligned bilin-
gual triples and a parallel corpus. All of the above mentioned
studies mentioned above have in common that they use man-
ually labeled parallel corpus or handcrafted templates.

Adversarial networks have shown remarkable success in
the natural language processing area, such as domain adap-
tation (Ganin and Lempitsky 2015; Ganin et al. 2016), and
cross-lingual transfer learning (Zhang et al. 2017; Kim et al.
2017; Chen et al. 2018). Ganin et al. proposed adversar-
ial training to overcome the insufficient labeled data prob-
lem in various domains for classification tasks. They ap-
plied reverse gradients from the domain classifier to learn
the domain-independent features for the target task. Chen
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et al. introduced a language-adversarial training approach
for multi-lingual sentiment classification. They showed out-
standing performance in a low-resource language without
labeled data since their adversarial approach transfers in-
formation learned from resource-rich languages to low-
resource languages. Our approach to measure the validity
score was inspired by their study.

Methods
Our goal for knowledge augmentation is to obtain valid
low-resource triples from the resource-rich knowledge. Fig-
ure 1 presents the process for expanding Korean triples
from an English triple. Our data augmentation is com-
posed of three parts: candidate generation, validity scoring,
and augmentation. Given an English triple,<bank, IsA,
slope> and <bank, CapableOf, keep money>,
we first generate the candidate triples in a low-resource lan-
guage. Then, the candidate triples are then entered into the
proposed adversarial model to measure the validity score. In
the augmentation stage, the triples that the model predicts
as valid are selected at the first stage. Next, we sort candi-
date triples by their logit scores. Lastly, the top-N triples are
obtained as augmented knowledge.

Candidate Generation
We adopt the MT-based method2 to obtain the candidates for
knowledge augmentation in low-resource language. To gen-
erate as many translated candidates as possible, we use the
both Bing3 and Google Translate4 translator APIs. Google
Translate presents the most appropriate translation result by
using context. However, what we need to translate in Con-
ceptNet is entities, which are words or phrases, thus the con-
text cannot be reflected in the translation. Meanwhile, Bing
can output all possible translation results using a dictionary.
Therefore, it is more appropriate to use the multiple transla-
tion results provided by Bing to augment the various triples.
Thus, we first translate the entities in an English triple with
Bing. However, Bing may be unable to provide translation
results for some entities that are not registered in the dictio-
nary. In this case, the entities that cannot be translated by
Bing are fed into the Google Translate. Therefore most of
the English entities can be translated into low-resource lan-
guages by using two translators.

In addition, we applied the heuristic rule that if a trans-
lated entity has different part-of-speech (POS) tags to an in-
put English entity, we exclude this entity result from the can-
didate entities to reduce the number of obviously incorrect
translations. The POS tag information for translation results
is obtained from the Bing translator. This heuristic rule does

2The MT-based method is a typical way to generate candidates;
other candidate-generation methods such as automatic entity link-
ing and distant supervision can also be acceptable in our system.

3We used the “Dictionary Lookup” provided by translator v3.0
to generate the translated candidates. Please refer to https://docs.
microsoft.com/en-us/azure/cognitive-services/translator/

4“Cloud Translation - Basic(v2)” was used to generate can-
didates. More detailed information is included at https://cloud.
google.com/translate/docs/

Figure 2: Architecture of adversarial learning.

not apply when Bing cannot provide POS tags, or the trans-
lated candidate is obtained using a Google Translate.

After translation, we consider combinations of trans-
lated entities as the candidate triples. For example in Fig-
ure 1, given the English triple, <bank, IsA, slope>,
the head entity “bank” translates to “eun-haeng” and
“duk,” and then the tail entity “slope” translates to
“gyeong-sa” and “bi-tal.”, which are different terms
with the same meaning in Korean. Therefore, we can
obtain 2 ∗ 2 = 4 candidate triples. For the triple
<bank, CapableOf, keep money>, the tail entity
“keep money” has one translation result, “don-eul
bogwanhada,” thus generating two candidates.

Validity Scoring by Adversarial Networks
To decide whether the input triple is valid, we adopt the
adversarial learning approach. The proposed method is in-
spired by the study of Chen et al. because his work achieved
good performance with a large amount of data in a resource-
rich language on a low-resource language. Our adversarial
networks consist of three parts: a feature extractor (F ), a
triple classifier(C), and a language discriminator (D). Train-
ing is formalized as a work in which the classifier predicts
the correct validity label and the discriminator cannot distin-
guish the input language. After training, the feature extractor
is trained to learn language-agnostic features.

In Figure 2, the flow of data usage is indicated by ar-
rows: the labeled resource-rich language triple (EN) is used
to train a triple classifier and language discriminator with
training objectives Jc and Jd (blue solid arrows). The un-
labeled target language triple (KR) is trained for the only
language discriminator with Jd (red dotted arrow) because
this triple does not have the validity labels.

Feature Extractor (F ) The feature extractor represents
the input triple on a vector space. This space is shared in
both resource-rich and low-resource languages. The triples
vectorized by the feature extractor are entered in the triple
classifier and the language discriminator. The parameters of
the feature extractor are adjusted from the losses incurred by
these two modules. The purpose of adversarial learning is
that the feature extractor learns language-agnostic features.
Any neural network model can be used as a feature extrac-
tors, and we present the performances of when using various
DNN architectures in the experiment section.

Triple Classifier (C) This is the primary classifier used
for predicting the validity of the input triple. The label for
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validity is defined as a binary value that indicates whether
the input triple is valid or not. For training the triple classi-
fier, we use only English triples as resource-rich language.
The valid English triples are simply obtained from Concept-
Net. The invalid triples, which refers to negative triples, are
automatically generated by replacing the head or tail entity
of the valid triple with the random entities. In inference time,
the validity score of the input is specified as the logit score
which is derived from this classifier. The classifier is devel-
oped by a simple feed-forward architecture that consists of
two hidden layers and softmax layer for binary classification
with ReLu activation function.

Language Discriminator (D) The purpose of the lan-
guage discriminator is to distinguish whether the language
of the input triples is English or another low-resource lan-
guage. The output of the language discriminator is the scalar
value that indicates the language score. The architecture of
the language discriminator is the same with the triple clas-
sifier except that it has a linear layer for output instead of
softmax layer.

Training If the language discriminator achieves good per-
formance in differentiating the input languages, the fea-
ture extractor learns the distinctive features of each lan-
guage. That is, the language discriminator is adversarial to
the feature extractor whose purpose is to learn language-
independent features. Therefore, to allow the feature ex-
tractor to learn language-agnostic features, the discriminator
should be trained in a way that cannot distinguish between
input languages. The objective function of the discriminator
is shown in Equation 1. The feature extractor, triple classifier
and language discriminator are denoted as F , C, and D re-
spectively. The discriminator D is trained with the resource-
rich language triple x and the low-resource triple x′. F (x)
indicates the vector which is represented by the feature ex-
tractor for input x.

Jd(θf ) ≡ max
θd

E
F (x)

[D(F (x))]− E
F (x′)

[D(F (x′))] (1)

where F (x) and F (x′) follow the distribution of resource-
rich languages and low-resource languages, respectively. To
coordinate the training of the triple classifier and language
discriminator, we first train the discriminator with k itera-
tions which is a hyper-parameter. Afterward, the parameters
of triple classifier are updated by the loss denoted as Equa-
tions (2). In Equation, L(ŷ, y) indicates the cross-entropy
loss where y is the answer validity label and ŷ is the out-
put of the triple classifier.

Jc(θf ) ≡ min
θf ,θc

E
(x,y)

[L(C(F (x)), y)] (2)

Then, the feature extractor is trained to accurately predict
the validity label and at the same time learn the language-
agnostic features by minimizing the loss denoted as follow
equation:

Jf ≡ Jc + λJd (3)
where λ is a hyper-parameter that controls the influence of
the triple classifier and language discriminator for updating
the feature extractor.

Experiments
In our experiments, we first show the results of the knowl-
edge augmentation on one of the low-resource languages,
Korean. Next, we introduce automatically generated test sets
on 16 languages. Lastly, we demonstrate that our method can
be applied to different languages.

Low-resource Knowledge Augmentation on Korean
While ConceptNet has 34M triples, there are only 4,561 Ko-
rean triples. In this section, we first demonstrate that our ad-
versarial learning approach can validate the Korean triples
with high reliability when the labeled Korean data does not
exist. Next, we show how many Korean triples can be ob-
tained via the proposed knowledge augmentation method.

(1) Datasets The datasets needed to train our adversarial
model are three-fold: labeled resource-rich language (En-
glish) data, unlabeled target language (Korean) data, and la-
beled target language data for evaluation.

• Labeled English Data: There are over 3.4M En-
glish triples in ConceptNet. We extracted 18,690 highly
weighted triples, and divided them into 17,690, 500, and
500 for the training, development, and test sets, respec-
tively. In order to train the triple classifier, which predicts
whether the triples are valid or not, negative triples are
needed. We generated negative triples by replacing the
head or tail entities with a random entity while prevent-
ing duplication. As a result, 106,140, 3,000, and 3,000
English triples were used for the training, development,
and test sets, respectively.

• Unlabeled Korean Data: Since there are only 4,561 valid
Korean triples available, we used a translator to build
unlabeled Korean triples. We translated 17,690 English
triples to 217,411 Korean triples using Bing and Google
Translate.

• Labeled Korean Data: To evaluate the proposed
method’s performance on Korean, we manually con-
structed development and test sets. First, we translated
each 500 labeled English development and test triples to
5,055 and 4,509 Korean candidate triples, respectively.
Then, three native Koreans annotated each triple as valid
or invalid.

(2) Baseline Models To demonstrate our method’s effec-
tiveness, we conducted experiments on three different ar-
chitectures: LSTM, CNN, and Multilingual BERT (Devlin
et al. 2019) as a feature extractor. These baselines are trained
to minimize the cross-entropy loss in Equation 2 without
adversarial learning. In addition, we compared our method
with the KBC methods, such as TransE (Bordes et al. 2013),
which can be applied to measure the validity of triples in the
knowledge graph.

• TransE: Using the KBC method is a common approach to
validate a triple’s reliability. The score function suggested
by Bordes et al. provides a high score when the triple is
valid. We used the TransE method to score the validity of
candidate triples.
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• MT+KBC: This model follows the implementation de-
scribed in Otani et al.; they suggested a knowledge aug-
mentation method that combines the MT score and KBC
score. To obtain the MT score, we annotated templates
to transform the Korean triple to the sentence. The con-
verted sentence was entered into the MT model trained
with two English-Korean parallel corpora, the 2018 ver-
sion of OpenSubtitles (Lison, Tiedemann, and Kouylekov
2018) and Ted talks released in IWSLT2017 (Cettolo et al.
2017), all of which total 1.6M sentences. We used TransE
as a KBC model. Translated Korean triples are fed into
the KBC model to compute the KBC score. Finally, we
measured the validity score by combining the MT score
and KBC score with a multi-layer perceptron.

• LSTM: We performed comparisons with the proposed
adversarial method and several feature extractor models
without adversarial learning. We used Bi-LSTM with a
dot attention method (Luong, Pham, and Manning 2015)
as a feature extractor, and bilingual word embeddings
(BWEs) for English and the target language are used as
initial inputs.

• CNN: A feature extractor with a CNN (Kim 2014) model
was used. The input and output architectures are the same
as those of LSTM baseline.

• Multilingual BERT (M-BERT): M-BERT is a multilin-
gual version of BERT (Devlin et al. 2019). M-BERT is
trained on multilingual corpora in 104 languages and has
shown good performance at various cross-lingual tasks.
We used M-BERT as a feature extractor, and we added
single feed-forward layers for the triple classifier and lan-
guage discriminator, respectively.

(3) Experimental Settings When we trained the triple
classifier (C), the negative triples are generated by replac-
ing the true triple’s head or tail entity with other random en-
tities. Experimental results show that models perform best
when the number of negative samples is five times the num-
ber of positive samples. Thus, we made five invalid triples
according to each positive triple.

In the experiments for the LSTM and CNN feature extrac-
tor models, we used the AdamW optimizer (Loshchilov and
Hutter 2019) and set the batch size to 128, learning rate to
1e-4, and clip to (-0.01, 0.01) for language discriminator D.
The size of the hidden layers of Bi-LSTM is 900, and the
kernel sizes of CNN are 3, 4, and 5 with 400 feature maps.

In training M-BERT, we set the batch size to 64, learning
rate to 2e-5, and clipped gradient norm as 1.0 to avoid ex-
ploding gradients. λ in Equation 3 was chosen to be between
{0.01, 0.1, 0.2, 0.4}, and k was chosen to be between {0, 3,
5, 10}. We adapted KG-BERT’s (Yao, Mao, and Luo 2019)
training method and the input of M-BERT is a text sequence
of each triple. All hyper-parameters were tuned based on the
development.

When we compared the baseline models, which are
trained without adversarial learning, where labeled Korean
triples are needed. Thus, we composed data for supervised
learning using the same method for generating labeled En-
glish data. For English-Korean BWE, we used the published

Figure 3: Precision@N on the Korean test set, and the num-
ber of augmented triples according to the result of top-N
augmentation.

aligned word vectors made by Joulin et al..

(4) Evaluation of Triple Classifier on Korean We first
show the results of the triple classifier on Korean. As shown
in Figure 1, each English triple is translated to several can-
didates due to the translation ambiguity problem. Moreover,
multiple candidates can be true because words can be trans-
lated with synonyms. Therefore, MAP and accuracy are used
for evaluating ranking and triple classification performance,
respectively.

Table 1 shows the performance of the triple classification
on the Korean test sets. Firstly, the results of TransE method
did not meet expectations, despite having shown good per-
formance in many datasets (Sun et al. 2019). We observed
that if labeled data are not sufficient, such as low-resource
language datasets, models cannot learn the relational prop-
erties in the knowledge graph.

We also performed comparisons with three baseline mod-
els. While the LSTM and CNN baselines showed low per-
formance, our adversarial method successfully discerned the
Korean triples without any labeled Korean data, improving
both accuracy and MAP. Notably, our method obtained a sig-
nificant performance gain by 13.74 in MAP with the CNN
feature extractor, and improved about 4 points in both LSTM
and M-BERT.

Moreover, we conducted further experiments with the as-
sumption of having small labeled data, for example, 4,561
Korean triples in ConceptNet. We added 4,561 triples to
training data for the triple classifier. The results show that
small labeled data are helpful for improving the perfor-
mance, but not significantly. Our adversarial network still
works well even when a small batch of labeled data is given.

Experiments were also conducted on M-BERT. M-BERT
with a small batch of labeled Korean data outperformed
other feature extractor models; in particular, it improved
MAP significantly, by over 13 points for each baseline
model.

(5) Knowledge Augmentation on Korean Using the
trained triple classifier model, we evaluated how reliable
triples can be generated. Figure 3 shows the precision@N
of our knowledge augmentation results on the Korean test
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Dev Test
Accuracy MAP Accuracy MAP

TransE (Bordes et al. 2013) 0.6271 (± 0.11) 0.4920 (± 0.08) 0.6088 (± 0.10) 0.5385 (± 0.06)
MT+KBC (Otani et al. 2018) 0.5273 (± 0.17) 0.5532 (± 0.02) 0.5456 (± 0.21) 0.5744 (± 0.04)
LSTM (Luong, Pham, and Manning 2015) 0.3041 (± 0.00) 0.3764 (± 0.08) 0.3553 (± 0.00) 0.3952 (± 0.06)
Adv-LSTM 0.6663 (± 0.08) 0.4272 (± 0.04) 0.6147 (± 0.06) 0.4343 (± 0.04)
Adv-LSTM (+Kr) 0.6537 (± 0.02) 0.4348 (± 0.05) 0.6386 (± 0.05) 0.4262 (± 0.05)
CNN (Kim 2014) 0.3041 (± 0.00) 0.5126 (± 0.01) 0.3512 (± 0.00) 0.5447 (± 0.00)
Adv-CNN 0.6734 (± 0.02) 0.6946 (± 0.02) 0.6323 (± 0.02) 0.6766 (± 0.01)
Adv-CNN (+Kr) 0.6726 (± 0.02) 0.7024 (± 0.01) 0.6398 (± 0.00) 0.6724 (± 0.02)
M-BERT (Devlin et al. 2019) 0.6990 (± 0.02) 0.7076 (± 0.02) 0.6684 (± 0.00) 0.7180 (± 0.00)
Adv-M-BERT 0.7098 (± 0.04) 0.7012 (± 0.02) 0.6723 (± 0.05) 0.7329 (± 0.02)
Adv-M-BERT (+Kr) 0.7163 (± 0.02) 0.7162 (± 0.02) 0.6781 (± 0.02) 0.7335 (± 0.02)

Table 1: Performance of triple classifier on Korean development and test sets. Adv- denotes baseline model with adversarial
learning, and (+Kr) means small labeled Korean data is added to train data.

set; as well as the number of triples when the top-N triples
are augmented. We achieved 93.7% precision@1 with our
adversarial method with M-BERT, implying that if labeled
resource-rich languages are given, we can obtain target lan-
guage knowledge by picking the highest-scoring triple with
93.7% reliability.

We translated 3,414,063 English triples in ConceptNet
into Korean, and 7,475,644 candidate triples were gener-
ated. Next, we measured the validity of the Korean candi-
date triples and selected the highest scoring Korean triples.
As a result, we obtained 626,681 Korean triples at 93.7%
precision@1 without any labeled Korean data.

One encouraging fact is that the proposed method per-
formed at more than 85% even at precision@10. In some
cases, such as when the quantity of data is more important
than the quality and target data is low-resource language, our
method is a compelling option for expanding knowledge. In
Korean, we obtained 862,304 fairly reliable triples with con-
fidence of over 85%.

(6) Human Evaluation In addition, we conducted human
evaluation on the automatically generated Korean triples.
We randomly selected 1,000 triples among 626,681 Ko-
rean triples that were automatically generated by our best
model. Then, two annotators tagged with valid, invalid, or
neutral. When neutral triples were considered invalid, the
accuracy was 83.6%, and when they were considered valid
triples, the accuracy was 96.6%. Most of the invalid triples
were semantically wrong but had text similarities between
the head and tail entities. e.g., the generated Korean triple
<eun-haeng namu, FormOf, eun-haeng>5 is in-
valid but its confidence score is high because of the text
similarity of eun-haeng. Setting neutral results aside, our
model showed high accuracy without labeled Korean data.

Multilingual Experiments
(1) Multilingual Automatically Generated Test Sets To
show that the proposed methods are language-independent,

5means <ginkgo, FormOf, ginkgo nut>, and eun-
haeng has several meanings in Korean including bank and ginkgo
nut

Figure 4: Example of automatically generated test sets.

Language # triples Language # triples
fr (French) 38,887 de (German) 30,574
es (Spanish) 1,758 ar (Arabic) 360
zh (Chinese) 91,832 sv (Swedish) 2,316
ru (Russian) 3,905 ms (Malay) 410
it (Italian) 4,563 sl (Slovenian) 90
pt (Portuguese) 2,923 sk (Slovak) 222
nl (Dutch) 2,093 hi (Hindi) 112
ja (Japanese) 59,000 tr (Turkish) 539

Table 2: Statistics for 16 languages test sets

evaluations on different languages should be provided. How-
ever, labeled data is scarce for most low-resource languages,
and manually constructing data for all different languages
is extremely costly. Therefore, we designed an evaluation
method that can be used for validating knowledge in several
languages and introduced automatically built test sets using
ConceptNet.

Although ConceptNet contains triples in 304 languages,
most triples are in resource-rich languages. We devised au-
tomatic test sets using “Synonym” relation in ConceptNet.
In ConceptNet, synonyms in different languages are con-
nected with the relation “Synonym” as an inter-language
link. For example, the entities “dog” and “perro” (dog in
Spanish) are connected as “Synonym”. Using this informa-
tion, we can build new triple sets by connecting entities with
the same meaning in English and other languages. For ex-
ample, as shown in Figure 4, when we make the Spanish test
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set, the process is as follows:
1. Triples with both head and tail entities as Spanish

synonym links are chosen. e.g. <dog, CapableOf,
bark>

2. New Spanish triples are obtained by replacing each En-
glish entity with Spanish, e.g.<perro, CapableOf,
ladrar> (blue dashed-line in Figure 4)

3. Negative triples are generated by replacing one of head
and tail entities with its 1-hop neighbor, e.g. <migon,
CapableOf, ladrar> (red dotted-line in Figure 4)
Note that when we generated negative triples,

we excluded the neighbors that have relations such
as {RelatedTo, Synonym, FormOf, IsA,
PartOf, DefinedAs, and SimilarTo} with head
or tail entities. For example, “animal” is a neighbor
of perro in Figure 4, but <animal, CapableOf,
ladrar> is not included as a negative triple because
the relation is “IsA”. In many cases, neighbors in such
relations can be regarded as valid triples.

Through this process, we constructed test sets for 16
languages, including those from different language fami-
lies, such as Germanic, Romance, Slavic, and non-Indo-
European. The statistics for each dataset are presented in
Table 2.

To demonstrate that our method can be used language-
independently, we performed experiments on 16 automati-
cally built test sets proposed in the previous section.

(2) Experimental Settings In practice, the knowledge of
low resource languages is scarce, and tagging all the triples
in different languages is laborious. To simulate these con-
straints, we limited the training examples to 30K, which is
the average for the 30 languages with the fewest resource in
ConceptNet. English labeled data was used as resource-rich
language data, and the training and development data for the
target languages were built in the same way used for build-
ing the English training/development datasets; we extracted
valid triples from ConceptNet and randomly generated neg-
ative triples.

The training and development datasets have 30K exam-
ples each, except for Hindi, Swedish, and Turkish. These
languages have fewer than 10K triples in ConceptNet; thus,
we used smaller-sized training and development datasets.
Details of the datasets are described in the Appendix. We
used the M-BERT model for the multilingual evaluation
with the same settings as the Korean experiments.

(3) Evaluation on Multilingual Automatically Generated
Test Sets Table 3 shows the evaluation results for the mul-
tilingual automated test sets. We compared the M-BERT
models with small labeled monolingual training sets and M-
BERT using adversarial learning (Adv-M-BERT) without
labeled data in the target languages. Our adversarial method
outperformed the baseline for all language test sets. We
achieved improvements of over 10 points for five languages
(Chinese, Russian, Portuguese, German, and Slovak); and of
over 20 points for Dutch.

Although our adversarial learning approach improved the
performance over the M-BERT on the proposed test sets,

Accuracy (%)
M-BERT Adv-M-BERT

fr (French) 69.80 ± 0.42 71.07 ± 0.82 (+1.27)
es (Spanish) 40.58 ± 0.77 43.14 ± 0.21 (+2.56)
zh (Chinese) 75.88 ± 1.36 88.89 ± 1.24 (+13.01)
ru (Russian) 42.04 ± 0.08 57.42 ± 0.74 (+15.38)
it (Italian) 43.98 ± 0.56 50.74 ± 0.23 (+6.75)
pt (Portuguese) 51.96 ± 0.11 62.25 ± 0.89 (+10.28)
nl (Dutch) 42.67 ± 1.21 62.93 ± 1.15 (+20.25)
ja (Japanese) 68.38 ± 0.65 77.15 ± 0.04 (+8.77)
de (German) 56.46 ± 2.06 67.93 ± 1.15 (+11.47)
ar (Arabic) 34.96 ± 0.06 45.58 ± 1.61 (+10.62)
hi (Hindi) 39.74 ± 0.62 45.91 ± 0.58 (+6.21)
sv (Swedish) 41.87 ± 0.51 48.23 ± 1.46 (+6.36)
sk (Slovak) 42.15 ± 0.90 53.63 ± 0.58 (+11.48)
tr (Turkish) 36.08 ± 2.23 43.96 ± 1.05 (+7.88)
sl (Slovenian) 33.50 ± 1.33 35.33 ± 0.33 (+1.83)
ms (Malay) 39.89 ± 1.57 49.58 ± 0.80 (+9.69)

Table 3: Results on 16 automatically generated test sets.

the results for most languages are still unsatisfactory, with≤
50% accuracy, especially in low-resource languages, such as
Turkish, Slovenian, and Malay. Considering the necessity of
knowledge for low-resource languages, achieving high per-
formance on the proposed test sets would encourage the de-
velopment of further research. In the same vein, obtaining
high performance on all language test sets would be highly
challenging.

Conclusion & Future Work
In this paper, we propose a knowledge augmentation method
for low-resource languages. Our augmentation task consists
of two steps: candidate generation and scoring validity. First,
we translate triples from resource-rich languages into low-
resource languages. In general, translation leads to more
than one result due to polysemes and homonyms. To resolve
this ambiguity problem, we adopted the adversarial learning
approach to measure the validity of candidate triples. In ad-
versarial learning, knowledge learned from a resource-rich
language can be transferred to low-resource languages; thus,
this approach is suitable for languages for which it is diffi-
cult to obtain labeled data. The experimental results showed
that applying adversarial learning is effective. Our proposed
method for the low-resource language, Korean, achieved
93.7% precision@1 on a manually labeled benchmark. As
a result, we obtained 626,681 triples of high-reliable Ko-
rean knowledge from 3.4M English triples. Additionally, to
show that the proposed method is language-agnostic, we in-
troduced new test sets for 16 languages and validated our
model on them. Our adversarial method also obtained strong
results on all language test sets.

In future, we plan to expand our method with more lan-
guages and to improve the learning method and models to
achieve high performance on our test sets. In addition, we
will conduct research on how to efficaciously use the knowl-
edge we have generated. Therefore, we expect that future
work will address the difficulties related to starting various
research efforts for low-resource languages.
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