
Parameterized Logical Theories

Fangzhen Lin
Department of Computer Science & HKUST-Xiaoi Joint Lab

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

flin@cs.ust.hk

Abstract
A theory in first-order logic is a set of sentences. A param-
eterized theory is a first-order theory with some of its pred-
icates and functions identified as parameters, together with
some import statements that call other parameterized theo-
ries. A KB is then a collection of these interconnected pa-
rameterized theories, similar to how a computer program is
constructed as a set of functions in a modern programming
language. In this paper, we provide a translational semantics
for these parameterized theories in first-order logic using the
situation calculus. We also discuss their potential uses in ar-
eas such as multi-context reasoning and logical formalization
of computer programs.

Introduction
In AI, first-order logic and its variants have been widely used
in KR. Central to this use is the construction of a KB, which
is normally a logical theory, i.e. a set of sentences, for the do-
main of interest. When the domain of interest is complex and
diverse, it is often desirable to organize its KB in some mod-
ular ways. A simple approach is to organize it as a hierarchy
of smaller ones (e.g. (Hendrix 1975; Carnegie Group 1985;
Lenat 1995; Lifschitz and Ren 2006)). The hierarchy can
be in terms of refinement, abstraction, or some input/output
relationship. Another approach is to treat the KB as a col-
lection of contexts that are connected by some meta-axioms
or rules to connect these contexts (e.g. (McCarthy 1993;
Giunchiglia 1993; Giunchiglia and Serafini 1994; McCarthy
and Buvac̆ 1997; Brézillon 1999; Ghidini and Giunchiglia
2001)).

In this paper, we propose a notion of parameterized the-
ories and consider a KB to be a collection of such theories.
Informally, a parameterized theory is like a first-order the-
ory but with some of the predicate and function symbols in
it identified as parameters, and these parameters can be re-
placed when called from another theory. Like contexts, there
are no built-in hierarchies in our framework. Unlike con-
texts, there are no separate meta-axioms or rules. As we will
see, to connect some parameterized theories, one can define
a new one that “calls” these theories.

In a sense, parameterized theories are like functions in
computer programming languages: they can call and be

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

called by others. In fact, our motivation for this work came
from a recent work by Lin (2016) that translates a proce-
dural program to a first-order theory. While trying to ex-
tend Lin’s approach to more complex programs, including
those involving functions with side effects, we encountered
the need for embedding a logical theory inside another one,
for the reason that if a function P in a program is formalized
as a logical theory, then when another function Q calls P ,
there must be a way for the theory of Q to access the the-
ory of P . We will outline how our notion of parameterized
theories can be used to address this issue.

The rest of the paper is organized as follows. In the next
section, we define the syntax of parameterized theories, and
illustrate it with examples. We then propose a formal seman-
tics that translates a set of parameterized theories to a set of
first-order theories in the situation calculus, by viewing the-
ory calls as actions. This is the main technical contribution
of the paper. We next describe some possible applications,
discuss related work, and then conclude the paper.

Parameterized Theories
We consider parameterized theories in first-order logic. Each
parameterized theory can have its own language which is
a set of function (including constant) and predicate sym-
bols. We use lambda notation to denote anonymous func-
tions and relations. A lambda expression is one of the form
λx1...λxk.E, where E is either a term or a formula that has
x1, .., xk as the free variables. IfE is a term, then it defines a
k-ary function. If it is a formula then it defines a k-ary pred-
icate. For example, if f is a binary function and g a unary
function, then λx.f(x, g(x)) is an anonymous unary func-
tion defined by the following equation:

∀y.(λx.f(x, g(x)))(y) = f(y, g(y)).

Similarly, if P is a binary predicate, then λx.∃yP (x, y) is
an anonymous unary predicate such that (λx.∃yP (x, y))(z)
is true iff ∃yP (z, y) is true.

As we mentioned, a parameterized theory is essentially a
first-order theory with some of the functions and predicates
in it designated as parameters that can be replaced when it is
called or imported into another theory.

Definition 1. Given a language L, a parameterized the-
ory C(p1, ..., pn) consists of a unique name C, a tuple

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6402

(p1, .., pn) of formal parameters, which are distinct predi-
cate and function symbols in L, and a set of axioms which
are either first-order sentences in L or import statements of
the form

C ′(t1, ..., tm), (1)

where

• C ′ is a parameterized theory with some formal parame-
ters q1, ..., qm;

• t1, ..., tm, called the actual parameters, are expressions
(terms, functions, predicates, or lambda expressions) of
the same types as q1, ..., qm, respectively.

Notice that the qi’s are in the language of C ′ (the callee),
and ti’s in the language of C, the caller. One can read the
import statement (1) as: import C ′ with each formal param-
eter qi replaced by the actual one ti, 1 ≤ i ≤ m.

In the following, we use the following format

Parameterized Theory C(p1, ..., pn) :

ϕ1,

...
ϕm

to define a parameterized theory whose name is C, whose
parameters are p1, ..., pn, and whose axioms are ϕ1, ..., ϕm.
Unless otherwise stated, the language of this theory is taken
to be the set of function and predicate symbols that are men-
tioned in the first-order axioms of the theory.

We also use the convention that free variables in a dis-
played formula are universally quantified from outside so
for example,

P (x) ⊃ Q(x)

stands for ∀x.P (x) ⊃ Q(x).

Example 1 The following is a parameterized theory for a
syllogism, a generalization of modus ponens:

Parameterized Theory Syllogism(a, prem, concl):

prem(a),

prem(x) ⊃ concl(x),

where a is a constant symbol and a parameter of the pa-
rameterized theory, and x is a variable, thus universally
quantified from outside.

This is a base (primitive) parameterized theory that has no
import statements. The following parameterized theory uses
Syllogism. It has an import statement but no first-order ax-
ioms of its own:

Parameterized Theory SocrSyll():

Syllogism(Socrates,man,mortal),

where Socrates is a constant, and man and mortal
unary predicates. One can expect that parameterized theory
Syllogism will entail concl(a), and as a result, SocrSyll()
will entail mortal(Socrates).

A parameterized theory can call another one multiple
times. For example, the following import statements can all
be in the same parameterized theory:

Syllogism(Socrates,man,mortal),

Syllogism(Xenophon,man,mortal),

Syllogism(Tweety, bird, fly).

There is also no guard against inconsistent calls, like:

Syllogism(Tweety, bird, fly),

Syllogism(Tweety, penguin, λx.¬fly(x)).

Example 2 Parameterized Theories can call each other, like
mutually recursive functions. The following is a trivial ex-
ample on a language with only propositional symbols (0-ary
predicates).

Parameterized Theory Prop1(p): Prop2(p).
Parameterized Theory Prop2(p): Prop1(¬p).

It may appear that these two mutually recursive calls will
result in a contradiction. But if one follows the call chain:
Prop2(p) → Prop1(¬p) → Prop2(¬p) → ..., it is more
like a loop that never terminates. We’ll see that under our
semantics, these two theories are the same as tautology.

Semantics
Given a parameterized theory C(p1, ..., pn), a symbol in its
language is called a local symbol if it is not a parameter.

Local symbols are supposed to be existentially quantified.
For example, given

C(p) : p ≡ q,

the following two calls to it in another parameterized theory:

C ′(r) : C(r), C(¬r)

should not lead to a contradiction as the local symbol q is
supposed to be existentially quantified. For example, C ′(r)
in this case can be formalized as

∃q(r ≡ q) ∧ ∃q(¬r ≡ q), (2)

which is a tautology.
In general, local symbols can be functions and predicates.

Quantifying over them will lead to second-order axioms. In-
stead of existential quantification, we can introduce a fresh
new name for each local symbol every time a parameterized
theory is called. For example, C ′(r) can also be formalized
as

(r ≡ q1) ∧ (¬r ≡ q2). (3)
Notice that (2) and (3), while not equivalent in general,
are equivalent if restricted to the language of C ′: forgetting
about q1 and q2 in (3) (Lin and Reiter 1994) also yields tau-
tology.

In this paper we adopt the renaming approach, and pro-
pose a systematic way of renaming parameters and local
symbols by introducing special situation objects to book-
mark parameterized theory calls. The idea is similar to how
function calls are implemented in programming languages

6403

with so called activation records. Of course, we do not use
these data structures. Our semantics is entirely declarative.

We begin by adding a new situation sort S to the language.
Variables of this sort will be named using s, like s, s′, s1
etc. Unary functions from S to S will be named using µ,
like µ, µ′, µ1 etc. These unary functions are the ones that
will be used to bookmark parameterized theory calls, as we
will see shortly. For those familiar with the situation calcu-
lus (McCarthy 1968; Reiter 2001; Lin 2007), these unary
functions are like actions. We assume a special constant S0,
the dummy situation from which new situations are created
using unary functions µ1, µ2, etc.

Given a symbol p(~x) in the language of a parameterized
theory, we extend it with a sort S argument. Informally
p(~x, s) denotes the value of p(~x) inside the parameterized
theory that is called in situation s. This way of extending a
predicate or function with a new situation argument is stan-
dard in the situation calculus.

Our proposed semantics maps a parameterized theory C
to two sets of axioms: one for reasoning within the parame-
terized theory and the other for reasoning about the parame-
terized theory when it is called. We call the first set the pri-
mary theory of C and denote it by PT (C). We call the the
latter the situational theory of C and denote it by ST (C).
We now describe how to construct these two sets.

To simplify our notation, without loss of generality, we as-
sume that there is no overlap between the languages of any
two different parameterized theories. This can be achieved
by symbol renaming using a uniform scheme like adding a
unique name as the prefix to every symbol in a parameter-
ized theory.

Intuitively, the primary theory ofC is just the normal first-
order axioms in it, plus when there is an import statement in
it, the axioms that pass the actual parameters to the called
theory by creating a unique calling context:
Definition 2 (Primary Theory of a Parameterized The-
ory). Given a parameterized theory C, its primary the-
ory PT (C) consists of the first-order axioms in C and for
each import statement C ′(t1, ..., tn) in it with the prototype
C ′(p1, ..., pn), the following axioms:

∀~x.ti(~x)
.
= pi(~x, µ(S0)), 1 ≤ i ≤ n, (4)

where µ : S → S is a new unary function introduced for this
call, and ti

.
= pi is ti = pi if pi is a function, and t1 ≡ pi if

pi is a predicate.
The situational theory of C, written ST (C), is obtained

from its primary theory by extending all symbols in C with
a situation argument s and universally quantifying over it
from the outside.
Definition 3 (Situational Theory of a Parameterized The-
ory). Given a parameterized theory C, ST (C) is defined as
follows:

ST (C) = {∀s.ϕ[s] | ϕ ∈ PT (C)}, (5)

where ϕ[s] is obtained from ϕ by the following substitutions:
• Replace S0 by s;
• for each symbol p, replace its every occurrence p(~t) by
p(~t, s), where ~t does not contain sort S .

Intuitively, ϕ[s] means ϕ holds in s, and is applied only to
a formula ϕ that does not mention any other situation term
except S0. For example, (f(a, g(b, S0)) = f(c, x))[s] is

f(a(s), g(b(s), s), s) = f(c(s), x, s),

assuming a, b, and c are constants, g and f functions, and x
a variable.

Given a collection of parameterized theories, its semantics
is then the union of the translated theories of all the parame-
terized theories in the collection. However, when reasoning
about a specific parameterized theory, there is no need to
consider all other theories, only those that may potentially
be called by it.

Given a parameterized theory C, we say that C depends
on C ′ if C calls C ′ or C calls a parameterized theory C ′′

such that C ′′ depends on C ′, i.e. the transitive closure of “C
calls C ′”. Given a C, let

Dep(C) = {C ′ | C depends on C ′}.
Notice that it is possible for C ∈ Dep(C) for some C.
Definition 4. Let C be a parameterized theory. The trans-
lated theory of C, written Σ(C), is defined as the following
first-order theory:

Σ(C) = PT (C) ∪ ST (C) ∪⋃
C′∈Dep(C)

(PT (C ′) ∪ ST (C ′))

In the following we consider the semantics of C to be
Σ(C). For example, we say that C is a consistent parame-
terized theory if Σ(C) is a consistent first order theory. We
say that C entails a sentence ϕ, written C |= ϕ by over-
loading the classic entailment symbol “|=”, if Σ(C) |= ϕ in
first-order logic.

The following theorem says that for reasoning about sen-
tences in the langauge of C, we only need PT (C) and
ST (C ′) from those C ′ that C depends on.
Theorem 1. Let C be a parameterized theory and ϕ a sen-
tence in C. We have that

Σ(C) |= ϕ iff T (C) |= ϕ,

where

T (C) = PT (C) ∪
⋃

C′∈Dep(C)

ST (C ′)

Proof. The “if” direction is trivial. We show the “only if”
part. Suppose T (C) |= ϕ is not true, and M is a model that
satisfies T (C) but not ϕ. From M , we construct a model
M ′ that satisfies Σ(C) but not ϕ. Notice that a symbol p in a
language has two versions: its original one and the extended
one p(s). M ′ has the same domains as M . For each p, there
are two cases:

1. p is in C. M ′ interprets p the same as M does. If C ∈
Dep(C), then M ′ also interprets p(s) the same as M
does. Otherwise, M ′ interprets p(s) the same as p by ig-
noring the last argument s.

2. p is in a different parameterized theory C ′. M ′ interprets
p(s) the same as M does, and p the same as p(S0).

6404

Under this construction, one can verify that M ′ is a model
of Σ(C). It does not satisfy ϕ as M does not. Notice how
the unique role that S0 plays in the construction of M ′.

The following result says that when there is no recursive
calls, our semantics works like macro or inline expansions.
For simplicity, it’s given for the basic case of a theory call-
ing another base theory. Again, without loss of generality,
we assume the two theories have no common predicates and
functions. Our proof makes use of forgetting, and is omitted
here for lack of space.

Theorem 2. Let C(~p) and C ′(~q) be two parameterized the-
ories that do not have overlap in their languages. Suppose
C has a single import statement C ′(~t) and C ′ has no import
statement. For any formula ϕ in the language of C, C |= ϕ
iff Expand(C) |= ϕ, where Expand(C) is the conjunction
of the first-order axioms in C and C ′, with each qi in ~q re-
placed by its corresponding ti in ~t in the axioms of C ′.

Examples
We now illustrate this translational semantics with some ex-
amples from the previous sections.

Consider first the following two parameterized theories at
the beginning of last section:

C(p) : p ≡ q,
C ′(r) : C(r), C(¬r).

The parameterized theory C has no import statement, so its
primary theory, PT (C), is just p ≡ q. Its situational theory,
ST (C), is ∀s.p(s) ≡ q(s).

On the other hand, PT (C ′), is

r ≡ p(µ1(S0)),

¬r ≡ p(µ2(S0)),

where µ1 and µ2 are the two unary functions corresponding
to the two calls, respectively. ST (C ′) is:

r(s) ≡ p(µ1(s)),

¬r(s) ≡ p(µ2(s)).

Clearly, the union of all these theories is consistent. Further-
more, forgetting p(s), q(s) and r(s) in them will yield p ≡ q.
This means that the parameterized theory C ′ does not say
anything informative.

Syllogism
Consider the set of parameterized theories Syllogism and
SocrSyll. For the first one, its primary theory is just the set
of axioms in it as there are no import statements:

prem(a),

prem(x) ⊃ concl(x).

Its situational theory is obtained by adding a situation argu-
ment to all the axioms:

prem(a(s), s),

prem(x, s) ⊃ concl(x, s).

This parameterized theory entails concl(a). It is
easy to see that any parameterized theory that calls
Syllogism(t, p1, p2) will entail p2(t). For example,
SocrSyll calls Syllogism(Socrates,man,mortal), thus
entails mortal(Socrates). This can be independently
verified as follows. For SocrSyll, its primary theory is:

Socrates = a(µ(S0)),

man(x) ≡ prem(x, µ(S0)),

mortal(x) ≡ concl(x, µ(S0)),

where µ is the unary function introduced for the call
Syllogism(Socrates,man,mortal). Its situational theory
is:

Socrates(s) = a(µ(s)),

man(x, s) ≡ prem(x, µ(s)),

mortal(x, s) ≡ concl(x, µ(s)).

The conclusionmortal(Socrates) of SocrSyll can now be
verified as it is a logical consequence of ST (Syllogism) ∪
PT (SocrSyll), the primary theory of SocrSyll and the sit-
uational theory of Syllogism as the former calls the latter.

The following is an example of multiple calls that lead to
a contradiction:

Syllogism(Tweety, bird, fly),

Syllogism(Tweety, bird, λx.¬fly(x)).

Let µ1 and µ2 be the unary functions for these two calls,
respectively. These two calls generate the following axioms:

Tweety = a(µ1(S0)), bird(x) ≡ prem(x, µ1(S0)),

f ly(x) ≡ concl(x, µ1(S0)),

Tweety = a(µ2(S0)), bird(x) ≡ prem(x, µ2(S0)),

¬fly(x) ≡ concl(x, µ2(S0)).

They entail both fly(Tweety) and ¬fly(Tweety), a con-
tradiction caused by the two inconsistent calls.

Mutual Recursion
Consider now the mutually recursive theories Prop1(p) and
Prop2(p) in the last section. First of all, we rename the pa-
rameter p to make it unique to each theory.

Prop1(p1) : Prop2(p1),

P rop2(p2) : Prop1(¬p2).

The primary theory for Prop1(p1), PT (Prop1), is

p1 ≡ p2(µ1(S0)),

and ST (Prop1) is

p1(s) ≡ p2(µ1(s)),

where µ1 is the unary function corresponding to the call
Prop2(p1). Similarly PT (Prop2) is ¬p2 ≡ p1(µ2(S0)),
and ST (Prop2) is ∀s.¬p2(s) ≡ p1(µ2(s)), where µ2 is the
unary function corresponding to the call Prop1(¬q2). Thus

p1 ≡ p2(µ1(S0)) ≡ ¬p1(µ2(µ1(S0)))

≡ ¬p2(µ1(µ2(µ1(S0))))

≡ p1(µ2(µ1(µ2(µ1(S0))))) ≡ · · ·

6405

which is a consistent infinite equivalence chain. In fact, for-
getting the two unary predicates p1(s) and p2(s) will result
in a tautology, meaning the set of the above sentences has no
information about the truth values of p1 and p2.

Recursively defined functions and relations are most use-
ful on inductively defined domains. For example, we can de-
fine the concepts of odd and even numbers recursively using
the following two parameterized theories:

Parameterized Theory Odd(odd):
Even(tmp1),

odd(n) ≡ n 6= 0 ∧ tmp1(n− 1)

Parameterized Theory Even(even):
Odd(tmp2),

even(n) ≡ n = 0 ∨ (n > 0 ∧ tmp2(n− 1)),

where we assume a pre-defined natural number domain with
built-in functions like “-”. We will have more to say about
sorts and predefined (interpreted) symbols later. As an ex-
ample, under our semantics, assuming the standard inter-
pretation to these predefined symbols, and letting µ1 be the
unary situation function for the call Even(tmp1) in Odd,
and µ2 the unary situation function for the call Odd(tmp2)
in Even, odd(3) can be deduced as follows:
odd(3) ≡ temp1(2) ≡ even(2, µ1(S0))

≡ temp2(1, µ1(S0)) ≡ odd(1, µ2(µ1(S0)))

≡ temp1(0, µ2(µ1(S0)))

≡ even(0, µ1(µ2(µ1(S0)))) ≡ true

Extensions
Conditional Imports
We have defined an import statement as a wholesome call
to a parameterized theory. It can be generalized to include
conditional ones such as:

penguin(Tweety) ⊃
Syllogism(Tweety, bird, λx.¬fly(x)),

parrot(Tweety) ⊃ Syllogism(Tweety, bird, fly).

Conditional imports will be needed for formalizing the se-
mantics of computer programs as discussed in the next sec-
tion. Our semantics can be extended to these conditional
calls straightforwardly. For example, the above two example
calls will yield the following axioms in the primary theory
of the parameterized theory that contains them:

penguin(Tweety) ⊃ Tweety = a(µ1(S0)) ∧
∀x(bird(x) ≡ prem(x, µ1(S0))) ∧
∀x(¬fly(x) ≡ concl(x, µ1(S0))),

parrot(Tweety) ⊃ Tweety = a(µ2(S0)) ∧
∀x(bird(x) ≡ prem(x, µ2(S0))) ∧
∀x(fly(x) ≡ concl(x, µ2(S0))).

Their corresponding axioms in the situational theory can
then be generated as usual.

Import statements, however, should not be used like ordi-
nary predicates. For example, putting a negation in front of
them like ¬Syllogism(Tweety, bird, fly) does not seem
to make any sense.

Sorts and Interpreted Symbols
So far we have considered first-order languages without
multiple sorts and interpreted or pre-defined symbols. How-
ever, these additional features can be accommodated with-
out any problem. A first-order many-sorted language (with
interpreted symbols) consists of the following components:

• A finite set of sorts, some of them marked as interpreted,
meaning they will be interpreted by some pre-defined sets.

• A finite set of function and predicate symbols. Each of
them will come with a type: a function symbol f will have
a type of the form τ1×· · ·×τn → τ , and a predicate of the
form τ1 × · · · × τn, where the τ ’s are sorts. Some of the
symbols can be designated as interpreted, meaning their
interpretations will be fixed.

Lambda expressions are the same as before but will have
types as well. Parameterized theories and import statements
are also defined as before, but with the following restriction:

• Interpreted symbols cannot be formal parameters.

• In an import statement C(t1, ..., tn) that calls
C(p1, ..., pn), each actual parameter ti must be of
the same type as its corresponding formal parameter pi.

The semantics for these parameterized theories is the same
as before.

We have seen earlier that the two mutually recursive the-
ories Odd and Even use interpreted sorts and symbols. We
give another example here. It uses one interpreted sortN for
natural numbers, and one (un-interpreted) sortO for domain
objects. We also use + and 0 as interpreted symbols of their
usual meaning in N .

The following base parameterized theory defines the tran-
sitive closure of a binary relation.

Parameterized Theory TransClos(base, tr):

tr(x, y) ≡ ∃n.tr0(x, y, n),

tr0(x, y, 0) ≡ base(x, y),

tr0(x, y, n+ 1) ≡ ∃z.base(x, z) ∧ tr0(z, y, n),

where x and y are variables of sort O, and n a variable
of sort N . They are all universally quantified over their
respective sorts. Notice that from the axioms, one can see
that base is a binary predicate of sort O × O. The types
of other predicates can be similarly determined.

Other parameterized theories can use TransClos to de-
fine transitive closures of some specific binary relations. The
following parameterized theory uses TransClos to define
when a node is reachable from a starting node.

Parameterized TheoryReachable(start, edge, reachable):

TransClos(edge, path),

reachable(x) ≡ path(start, x),

where x is a variable of sortO, and start a constant sym-
bol of sort O.

6406

Figure 1: A magic box

Some Applications
Multicontext Reasoning
A collection of parameterized theories is a set of logical the-
ories interconnected by import calls. The connection with
multicontext reasoning is apparent, at least informally.

Consider the “magic box” shown in Figure 1, an example
adapted from (Ghidini and Giunchiglia 2001). There are two
agents, Mr. 1 and Mr. 2, who look at the box from two per-
pendicular sides. Mr. 1, looking into the box from the side,
can see whether the left and the right rows of the box have
balls. Mr. 2, looking from the bottom, can tell whether the
left, center, and the right column of the box have balls. Their
knowledge alone cannot determine exactly which cell is oc-
cupied. But combining their knowledge, sometimes one can.
For example, if Mr. 1 sees a ball on the left side but no ball
on the right side, and Mr. 2 sees a ball on the left side, then
we can conclude that the top left corner is occupied by a ball.

This is a classic example in multi-context systems where
contexts are used to represent agents’ views, and bridge rules
for linking contexts to reason about the state of the box.

In our framework, we can specify an agent’s point of view
by a parameterized theory, and use a “main” parameterized
theory to aggregate the views by calling the agents’ param-
eterized theories. For the magic box problem, the main pa-
rameterized theory can be written as follows:

Main():

Mr1(l1, r1),

Mr2(l2, c2, r2),

l1 ≡ b11 ∨ b12 ∨ b13,
r1 ≡ b21 ∨ b22 ∨ b23,
l2 ≡ b11 ∨ b21,
c2 ≡ b12 ∨ b22,
r2 ≡ b13 ∨ b23,

where Mr1() and Mr2() are the parameterized theories for
the two agents, respectively. For example, if Mr. 1 sees that
the left row is occupied but not the right row, while Mr. 2
sees that the left and the right columns are occupied but not
the center one, then we have

Mr1(l, r): l ∧ ¬r.

Mr2(l, c, r): l ∧ ¬c ∧ r.
With these three parameterized theories, it is easy to see that
the main parameterized theory entails b11 (the top left corner
is occupied by a ball).

Program Semantics
Our initial motivation for proposing this framework of log-
ical theories is to provide a logical semantics to program-
ming languages. Lin (2016) proposed a translation from pro-
grams in a core programming language to first-order theo-
ries. Later they demonstrated the practical effectiveness of
this approach in automated program verification (Rajkhowa
and Lin 2018, 2019), with SOTA performance in a recent
program verification competition.

However, one limitation with their system is that it has
difficulty dealing with functions with side effects. For ex-
ample, consider a function called AddOne(A) that takes an
array A of integers as input and adds 1 to every element in
it. If arrays are implemented as reference variables like in C,
then this function has no effect on the input array variable it-
self. Instead, it achieves its goal through its “side” effects of
changing the values of a consecutive sequence of locations
pointed to by the array variable.

One way to axiomatize the effects of this function is to
introduce an array sort and use the following two functions,
value(a, i) that denotes of the value of the ith element in a
one-dimensional array a, and len(a) that denotes the length
of the array a. The effect of AddOne(A) can then be for-
malized by the following axioms:

A′ = A,

len′(a) = len(a),

1 ≤ i ≤ len(A) ⊃ value′(A, i) = value(A, i) + 1,

1 ≤ i ≤ len(a) ∧ a 6= A ⊃ value′(a, i) = value(a, i),

where a is an array variable, and i an integer variable, both
are universally quantified. Primed symbols like A′ denote
the outputs of the function. So A and A′ are the values (lo-
cations) of the input array A before and after AddOne(A) is
executed, respectively. A′ = A means that the function has
no effect on the value of the input array as a reference vari-
able. Similarly, value′ is value after the function returns, so
value′(a, i) denotes the value of the ith element of the array
object a after the function returns.

Now, whenever AddOne(A) is called in a program, we
will need to insert the above set of axioms when translat-
ing the program to a first-order theory. One can imagine
the challenge of systematically doing this, especially when a
function is recursively defined. This is what motivated us to
introduce the notion of parameterized theories in this paper,
and also the reason why we propose a translational seman-
tics for these parameterized theories. Each function in a pro-
gram will now be formalized as a parameterized theory, and
a function call will be translated to a corresponding import
statement.

Notice that in a program, a function call can occurs in
an expression such as X=X+f(X) or in a conditional state-
ment like if X==0 then f(X). In the first case, one can
eliminate calls in an expression by using a new variable, like

6407

Y=f(X); X=X+Y; (notice that while f(X) may have side
effects, it will not have side effect on a value variable like
X that occurs in an arithmetic expression). In the latter case,
we can extend our import statements to conditional ones of
the form ϕ ⊃ C(t1, ..., t2), where ϕ is a sentence in the
language of the caller, as we discussed earlier.

Related Work
In a nutshell, a parameterized theory is a named theory with
some of its predicates and functions marked as parameters so
that it can be called by other theories. This is of course sim-
ilar to how functions and procedures are defined and used
in high level programming languages, except that there is no
real computation done when a parameterized theory is called
- it is just a way to import a set of axioms. In this sense, call-
ing a parameterized theory is like importing a package or
a module in computer programming, except that packages
and modules in software engineering do not normally have
parameters.

In logic, variables that range over predicates and func-
tions are second-order. Thus a parameterized theory could
be captured by a third-order predicate with second-order ar-
guments. While we do not intend to use third-order logic
for reasoning, we are currently exploring a third-order logic
semantics and studing its relationship with our first-order se-
mantics here.

There has been much work on various notions of mod-
ules and modular systems in KR. In fact, almost every
KR formalism, monotonic or nonmonotonic, has seen some
work on them. To our understanding, the most closely re-
lated work in KR is that on reasoning about contexts (Mc-
Carthy 1993; Giunchiglia 1993), especially those on multi-
context systems (MCS) (e.g. (Giunchiglia 1993; Giunchiglia
and Serafini 1994; Ghidini and Giunchiglia 2001; Brewka,
Roelofsen, and Serafini 2007; Brewka et al. 2011, 2018)).
MCS has been used for aggregating heterogeneous knowl-
edge sources. The basic idea is that each knowledge source
will have its own language and axioms, and they are inte-
grated using so-called bridge rules. A classic example that
illustrates the uses of the MCS is the magic box example
that we discussed earlier. As we have seen, instead of bridge
rules, we use a parameterized theory to import all knowl-
edge sources and aggregate them by standard first-order ax-
ioms. It’s an interesting open question if the two frameworks
can be related in a precise way. Given that MCS has been
extended to nonmonotonic logics (Brewka, Roelofsen, and
Serafini 2007), a good understanding of the relationships be-
tween these two frameworks will help when we consider ex-
tending parameterized theories to nonmonotonic logics.

There are two key points that we can make about our
approach. One is that different parameterized theories can
assumed to have completely different languages. The other
is that theory calls can be recursive, especially when there
are pre-interpreted sorts for inductively defined objects. The
first point simplifies many issues, like how two modules may
interact through shared vocabularies, a common issue for
work on modules in many formalisms (e.g. separability in
DLs (Konev et al. 2009) and input/output interface in ASP
(Janhunen et al. 2009)). The second point is what made this

work non-trivial, especially given that we want a transla-
tional first-order semantics.

While work on module is often based on computational
considerations, our main motivation is on first-order the-
ory composition, especially in the context of logical formal-
ization of programs: if a function is represented by a first-
order theory T , and a program calls this function, then a
first-order theory for the program can be “computed” from
T in a modular way. If there is no cycle in the call depen-
dency graph, then this can be handled by macro expansion
or inline function. Interestingly, this is the approach taken in
(Baral, Dzifcak, and Takahashi 2006) for ASP and in a re-
cent work on programming with logical constraints using so-
called knowledge units (Liu and Stoller 2020). However, be-
ing able to handle recursive calls is crucial for us. Again, the
reason is that when we want to have a one to one correspon-
dence between functions in a computer program and param-
eterized theories here, a set of recursively defined functions
will cause cycles in the chains of theory calls. Notice that Lin
(2016) also considered recursive functions. But those func-
tions are assumed to return values without any side effects.
In a sense, recursive theory calls are our answer to recursive
functions with side effects.

Concluding Remarks

Motivated by the need to have callable theories in logi-
cal formalization of computer programs, we have proposed
a framework of parameterized first-order theories. While
reasoning about parameterized theories appears to require
higher-order logics, we have been able to provide a first-
order semantics by making use of the situation calculus. Our
semantics is modular, declarative, and at the same time re-
tains certain procedural information of how parameterized
theories are “run”. We have shown some possible applica-
tions of our framework in formal semantics of computer pro-
grams and in reasoning about contexts.

One future work is to implement this framework in pro-
gram verification, following the work of Rajkhowa and Lin
(2018; 2019). Their system was based on a translation (Lin
2016) from programs to first-order theories, and uses the off-
the-shelf math system SymPy as the algebraic simplifier and
SMT solver Z3 (de Moura and Bjørner 2008) as the theo-
rem prover. Remarkably, despite its simplicity, their system
managed to achieve SOTA performance in the tracks that
it competed in at SV-COMP’20191. In particular, it came
first in the Arrays subcategory and Recursive subcategory of
ReachSafety category of the competition. However, it uses
inline expansion when there is a function call with array pa-
rameters. With this work, we can implement a more general
system that is able to handle recursive functions with array
parameters as well as other functions with side effects.

We also plan to use the proposed framework in applica-
tions other than program verification. We have mentioned
multi-context systems. We hope to have more to report on
this soon.

1See https://verifierintegerassignment.github.io

6408

Acknowledgments
I want to thank Pritom Rajkhowa for many useful discus-
sions that we had during the course of our work on pro-
gram verification in first-order logic where the need for this
work first arose. I also thank Annie Liu, Yisong Wang, and
the anonymous reviewers for their many critical, construc-
tive and helpful comments on earlier versions of this paper.
Of course, any remaining problems and possible errors are
solely the author’s responsibility.

References
Baral, C.; Dzifcak, J.; and Takahashi, H. 2006. Macros,
Macro Calls and Use of Ensembles in Modular Answer Set
Programming. In Logic Programming, 22nd International
Conference, ICLP 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, 376–390.

Brewka, G.; Eiter, T.; Fink, M.; and Weinzierl, A. 2011.
Managed Multi-Context Systems. In Walsh, T., ed., IJCAI
2011, 786–791. IJCAI/AAAI. doi:10.5591/978-1-57735-
516-8/IJCAI11-138.

Brewka, G.; Ellmauthaler, S.; Gonçalves, R.; Knorr, M.;
Leite, J.; and Pührer, J. 2018. Reactive multi-context sys-
tems: Heterogeneous reasoning in dynamic environments.
Artif. Intell. 256: 68–104. doi:10.1016/j.artint.2017.11.007.

Brewka, G.; Roelofsen, F.; and Serafini, L. 2007. Contextual
Default Reasoning. In Veloso, M. M., ed., IJCAI 2007, 268–
273.

Brézillon, P. 1999. Context in problem solving: a survey.
The Knowledge Engineering Review 14(1): 47–80. doi:10.
1017/S0269888999141018.

Carnegie Group. 1985. Knowledge Craft 3.0 reference man-
ual. Volume 1 and 2. Technical report, Carnegie Group Inc,
Pittsburgh, Pennsylvania, U.S.A.

de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient
SMT Solver. In Ramakrishnan, C. R.; and Rehof, J., eds.,
Tools and Algorithms for the Construction and Analysis of
Systems, 337–340. Berlin, Heidelberg: Springer Berlin Hei-
delberg. ISBN 978-3-540-78800-3. URL http://research.
microsoft.com/en-us/um/redmond/projects/z3/.

Ghidini, C.; and Giunchiglia, F. 2001. Local Models Se-
mantics, or contextual reasoning = locality + compatibil-
ity. Artificial Intelligence 127(2): 221 – 259. doi:https:
//doi.org/10.1016/S0004-3702(01)00064-9.

Giunchiglia, F. 1993. Contextual reasoning. Epistemologia
16: 341–364.

Giunchiglia, F.; and Serafini, L. 1994. Multilanguage hi-
erarchical logics or: How we can do without modal logics.
Artificial Intelligence 65(1): 29–70.

Hendrix, G. 1975. Expanding the utility of semantic net-
works through partitioning. In Proc. of IJCAI’75, 115–121.

Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity Aspects of Disjunctive Stable Models. J.
Artif. Intell. Res. 35: 813–857.

Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2009. For-
mal Properties of Modularisation, 25–66. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-642-01907-
4. doi:10.1007/978-3-642-01907-4 3. URL https://doi.org/
10.1007/978-3-642-01907-4 3.
Lenat, D. B. 1995. CYC: A Large-Scale Investment in
Knowledge Infrastructure. Commun. ACM 38(11): 32–38.
doi:10.1145/219717.219745.
Lifschitz, V.; and Ren, W. 2006. A Modular Action De-
scription Language. In Proceedings, AAAI-2006, 853–859.
AAAI Press.
Lin, F. 2007. Situation Calculus. In van Harmelen, F.; Lifs-
chitz, V.; and Porter, B., eds., Handbook of Knowledge Rep-
resentation. Elsevier.
Lin, F. 2016. A Formalization of Programs in First-Order
Logic with a Discrete Linear Order. Artificial Intelligence
235: 1–25.
Lin, F.; and Reiter, R. 1994. Forget it! In Greiner, R.; and
Subramanian, D., eds., Working Notes of AAAI Fall Sympo-
sium on Relevance, 154–159. The American Association for
Artificial Intelligence, Menlo Park, CA.
Liu, Y. A.; and Stoller, S. D. 2020. Knowledge of Un-
certain Worlds: Programming with Logical Constraints. In
Proceedings of the 2020 International Symposium on Log-
ical Foundations of Computer Science, volume 11972 of
LNCS, 111–127. Deerfield Beach, Florida: Springer. doi:
https://doi.org/10.1007/978-3-030-36755-8 8.
McCarthy, J. 1968. Situations, actions and causal laws.
In Minsky, M., ed., Semantic Information Processing, 410–
417. MIT Press, Cambridge, Mass.
McCarthy, J. 1993. Notes on formalizing context. In Proc.
of IJCAI’93, 555–560.
McCarthy, J.; and Buvac̆, S. 1997. Formalizing context
(expanded notes). In Aliseda, A.; van Glabbeek, R.; and
Westerstå hl, D., eds., Computing Natural Language, 13–50.
CSLI Publications, Stanford.
Rajkhowa, P.; and Lin, F. 2018. Extending VIAP
to Handle Array Programs. In 10th Working Con-
ference on Verified Software: Theories, Tools, and
Experiments, VSTTE 2018, Oxford, UK, July 18-19.
URL https://github.com/VerifierIntegerAssignment/sv-
comp/blob/master/extending-viap-array.pdf.
Rajkhowa, P.; and Lin, F. 2019. VIAP 1.1 - (Competition
Contribution). In Beyer, D.; Huisman, M.; Kordon, F.; and
Steffen, B., eds., Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics,
Held as Part of ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part III, volume 11429 of Lecture
Notes in Computer Science, 250–255. Springer. URL https:
//doi.org/10.1007/978-3-030-17502-3\ 23.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.

6409

