
Parameterized Complexity of Logic-Based Argumentation in Schaefer’s
Framework

Yasir Mahmood,1 Arne Meier,1 Johannes Schmidt 2

1Leibniz Universität Hannover, Institut für Theoretische Informatik, Germany
2Jönköping University, Department of Computer Science and Informatics, School of Engineering, Sweden

{mahmood,meier}@thi.uni-hannover.de, johannes.schmidt@ju.se

Abstract

Logic-based argumentation is a well-established formalism
modeling nonmonotonic reasoning. It has been playing a ma-
jor role in AI for decades, now. Informally, a set of formu-
las is the support for a given claim if it is consistent, subset-
minimal, and implies the claim. In such a case, the pair of
the support and the claim together is called an argument. In
this paper, we study the propositional variants of the follow-
ing three computational tasks studied in argumentation: ARG
(exists a support for a given claim with respect to a given
set of formulas), ARG-Check (is a given set a support for a
given claim), and ARG-Rel (similarly as ARG plus requiring
an additionally given formula to be contained in the support).
ARG-Check is complete for the complexity class DP, and the
other two problems are known to be complete for the second
level of the polynomial hierarchy and, accordingly, are highly
intractable. Analyzing the reason for this intractability, we
perform a two-dimensional classification: first, we consider
all possible propositional fragments of the problem within
Schaefer’s framework, and then study different parameteriza-
tions for each of the fragment. We identify a list of reasonable
structural parameters (size of the claim, support, knowledge-
base) that are connected to the aforementioned decision prob-
lems. Eventually, we thoroughly draw a fine border of pa-
rameterized intractability for each of the problems showing
where the problems are fixed-parameter tractable and when
this exactly stops. Surprisingly, several cases are of very high
intractability (paraNP and beyond).

Introduction
Argumentation is a nonmonotonic formalism in artificial in-
telligence around which an active research community has
evolved (Atkinson et al. 2017; Amgoud and Prade 2009;
Rago, Cocarascu, and Toni 2018; Baroni et al. 2018). Es-
sentially, there exist two branches of argumentation: the
abstract (Dung 1995) and the logic-based (Besnard and
Hunter 2001, 2008; Chesñevar, Maguitman, and Loui 2000;
Prakken and Vreeswijk 2002) approach. The abstract setting
mainly focusses on formalizing the argumentative structure
in a graph-theoretic way. Arguments are nodes in a directed
graph and the ‘attack-relation’ draws which argument elim-
inates which other. In the logic-based method, one looks for

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

inclusion-minimal consistent sets of formulas Φ (the sup-
port) that entail a claim α, modelled through a formula (in
the positive case one calls (Φ, α) an argument). In this pa-
per, we focus on the latter formalism and, specifically, study
three decision problems. The first, ARG, asks, given a set of
formulas ∆ (the knowledge-base) and a formula α, whether
there exists a subset Φ ⊆ ∆ such that (Φ, α) is an argument
in ∆. The two further problems of interest are ARG-Check
(is a given set a support for a given claim), and ARG-Rel
(ARG plus requiring an additionally given formula to be
contained in the support, too).

Example 1 (Besnard and Hunter (2001)). Consider the fol-
lowing two arguments. (A1) Support: Donald is a public per-
son, so we can publicize details about his private life. Claim:
We can publicize that Donald plays golf. (A2) Support: Don-
ald just resigned from politics; as a result, he is no longer a
public person. Claim: Donald is no longer a public person.

Formalizing these arguments would yield A1 : Φ1 =
{xpd → xdg, xpd}, α1 = {xdg}, A2 : Φ2 = {xrd →
¬xpd, xrd}, α2 = {¬xpd}, where xpd , “Donald is a pub-
lic person”, xdg ,“Donald plays golf”, xrd ,“Donald
resigned from politics”. Each argument is supporting its
claim, yet together they are conflicting, as A2 attacks A1.

It is rather computationally involved to compute the sup-
port of an argument, as ARG was shown to be ΣP

2 -complete
by Parsons et al. (2003). Yet, there have been made ef-
forts to improve the understanding of this high intractabil-
ity by Creignou et al. (2014; 2011) in two settings: Schae-
fer’s (1978) as well as Post’s (1941) framework. Clearly,
such research aims for drawing the fine intractability fron-
tier of computationally involved problems to show for what
restrictions there still is hope to reach algorithms running for
practical applications. Both approaches mainly focus on re-
strictions on the logical part of the problem language, that is,
restricting the allowed connectives or available constraints.

In this paper, Schaefer’s approach is our focus, that is, the
formulas we study are propositional formulas in conjunctive
normalform (CNF) whose clauses are formed depending on
a fixed set of relations Γ (the so-called constraint language,
short CL). In this setting, Schaefer’s framework (1978) cap-
tures well-known classes of CNF-formulas (e.g., Horn, dual-
Horn, or Krom). Accordingly, one can see classifications in
such a setting as a one-dimensional approach (the dimension

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6426

is given rise by the considered logical fragments).
We consider a second dimension on the problem in this

paper, namely, by investigating its parameterized complex-
ity (Downey and Fellows 2013). Motivated by the claim that
the input length is not the only important structural aspect
of problems, one studies so-called parameterizations (or pa-
rameters) of a problem. The goal of such studies is to iden-
tify a parameter that is relevant for practice but also is slowly
growing or even of constant value. If, additionally, one is
able to construct an algorithm that solves the problem in time
f(k) · |x|O(1) for some computable function f and all inputs
(x, k), then one calls the problem fixed-parameter tractable.
That is why in this case one can solve the problem (for
fixed parameter values) in polynomial time. As a result, this
complexity class is seen to capture the idea of efficiency in
the parameterized sense. While NP-complete problems are
considered intractable in the classical setting, on the param-
eterized level, the complexity class W[1] is seen to play this
counterpart. Informally, this class is characterized via a spe-
cial kind of satisfiability questions. Above this class an in-
finite W-hierarchy is defined which culminates in the class
W[P], which in turn is contained in the class para-NP
(problems solvable by NTMs in time f(k) · |x|O(1)).

Contributions. Our main contributions are the following.

1. We initiate a thorough study of the parameterized com-
plexity of logic-based argumentation. We study three pa-
rameters: size of the support, of the claim, and of the
knowledge-base. We show that the complexity of ARG,
regarding the claim as a parameter, varies: FPT, W[1],
W[2], para-NP-, para-coNP-, as well as para-ΣP

2 -
complete cases. For the same parameter, ARG-Check
is FPT for Schaefer, para-DP-complete otherwise.
ARG-Rel is FPT, para-NP-, or para-ΣP

2 -complete.
The size of the knowledge-base as the parameter yields
dichotomy results for the two problems ARG and
ARG-Rel: FPT versus membership in para-coNP and
a lower bound that relates to the implication problem.
Concerning the size of the support as the parameter, we
prove a dichotomy: FPT versus para-DP-membership
and the same hardness as the implication problem.

2. As a byproduct, we advance the algebraic tools in the con-
text of Schaefer’s framework, and show a list of technical
implementation results that are independent of the stud-
ied problem and might be beneficial for further research
in the constraint context.

3. We classify the parameterized complexity of the impli-
cation problem (does a set of propositional formulas Φ
imply a propositional formula α?) with respect to the pa-
rameter |α| and show that it is FPT if the CL is Schaefer,
and para-coNP-complete otherwise.

Related Work. Very recently, Mahmood et al. (2020) pre-
sented a parameterized classification of abductive reasoning
in Schaefer’s framework. Some of their cases, as well as re-
sults from Nordh and Zanuttini (2008) relate to some of our

results. The studies of the implication problem in the frame-
works of Schaefer (Schnoor and Schnoor 2008) as well as
in the one in Post (Beyersdorff et al. 2009) prove a classical
complexity landscape. Last year, Hecher et al. (2019) con-
ducted a parameterized study of abstract argumentation. The
known classical results (Creignou, Egly, and Schmidt 2014;
Nordh and Zanuttini 2008; Schnoor and Schnoor 2008; Bey-
ersdorff et al. 2009) are partially used in some of our proofs,
e.g., showing some parameterized complexity lower bounds.
The two mentioned parameterized complexity related pa-
pers (Fichte, Hecher, and Meier 2019; Mahmood, Meier, and
Schmidt 2020) both are about different formalisms that are
slightly related to our setting (the first is about abstract argu-
mentation, the second on abduction).

Due to space limitations, for results marked with a ?, the
proof can be found in the technical report of the paper (Mah-
mood, Meier, and Schmidt 2021).

Preliminaries
We assume familiarity with basic notions in complexity
theory (cf. Sipser (1997)) and use the complexity classes
P,NP, coNP,ΣP

2 . For a set S, we write |S| for its car-
dinality. Abusing notation, we will use |w|, for a string w,
to denote its length. If ϕ is a formula, then Vars(ϕ) denotes
its set of variables, and enc(ϕ) its encoding. W.l.o.g., we as-
sume a reasonable encoding computable in polynomial time
that encodes variables in binary. The weight of an assign-
ment σ is the number of variables mapped to 1.

Parameterized Complexity. We give a brief introduction
to parameterized complexity theory. A more detailed expo-
sition can be found in the textbook of Downey and Fel-
lows (2013). A parameterized problem (PP) Π is a sub-
set of Σ∗ × N, where Σ is an alphabet. For an instance
(x, k) ∈ Σ∗ × N, k is called the parameter. If there exists a
deterministic algorithm deciding Π in time f(k) · |x|O(1) for
every input (x, k), where f is a computable function, then Π
is fixed-parameter tractable (short: FPT).
Definition 2. Let Σ and ∆ be two alphabets. A PP Π ⊆
Σ∗ × N fpt-reduces to a PP Θ ⊆ ∆∗ × N, in symbols
Π ≤FPT Θ, if the following is true: (i) there is an FPT-
computable function f , such that, for all (x, k) ∈ Σ∗ × N:
(x, k) ∈ Π ⇔ f(x, k) ∈ Θ, (ii) there exists a computable
function g : N → N such that for all (x, k) ∈ Σ∗ × N and
f(x, k) = (y, `): ` ≤ g(k).

The problems Π and Θ are FPT-equivalent if both
Π ≤FPT Θ and Θ ≤FPT Π is true. We also use higher
classes via the concept of precomputation on the parameter.
Definition 3. Let C be any complexity class. Then para-C
is the class of all PPs Π ⊆ Σ∗ × N such that there exists
a computable function π : N → ∆∗ and a language L ∈ C
with L ⊆ Σ∗ × ∆∗ such that for all (x, k) ∈ Σ∗ × N we
have that (x, k) ∈ Π⇔ (x, π(k)) ∈ L.

Observe that para-P = FPT is true. For a constant c ∈
N and a PP Π ⊆ Σ∗ × N, the c-slice of Π, written as Πc, is
defined as Πc := { (x, k) ∈ Σ∗ ×N | k = c }. Observe that,
in our setting, showing Π ∈ para-C, it suffices to show

6427

Πc ∈ C for every c ∈ N. Consider the following special
subclasses of formulas:

Γ0,d = { `1 ∧ . . . ∧ `c | `1, . . . , `c are literals and c ≤ d },
∆0,d = { `1 ∨ . . . ∨ `c | `1, . . . , `c are literals and c ≤ d },

Γt,d =

{ ∧
i∈I

αi

∣∣∣∣αi ∈ ∆t−1,d for i ∈ I
}
,

∆t,d =

{ ∨
i∈I

αi

∣∣∣∣αi ∈ Γt−1,d, i ∈ I
}
.

The parameterized weighted satisfiability problem
(p-WSAT) for propositional formulas is defined as below.
The problem p-WSAT(Γt,d) asks, given a Γt,d-formula α
with t, d ≥ 1 and k ∈ N, parameterized by k, is there a
satisfying assignment for α of weight k?

The classes of the W-hierarchy can be defined in terms
of these problems.
Proposition 4 (Downey and Fellows, 2013). The problem
p-WSAT(Γt,d) is W[t]-complete for each t ≥ 1 and d ≥ 1,
under ≤FPT-reductions.

Logic-based Argumentation. All formulas in this pa-
per are propositional formulas. We follow the notion of
Creignou et al. (2014).
Definition 5 (Besnard and Hunter (2001)). Given a set of
formulas Φ and a formula α, one says that (Φ, α) is an ar-
gument (for α) if (1) Φ is consistent, (2) Φ |= α, and (3)
Φ is subset-minimal w.r.t. (2). In case of Φ ⊆ ∆, (Φ, α) is
an argument in ∆. We call α the claim, Φ the support of the
argument, and ∆ the knowledge-base.

In this paper, we consider three problems from the area
of logic-based argumentation, namely ARG, ARG-Check,
and ARG-Rel. The problem ARG asks, given a set of for-
mulas ∆ and a formula α, is there a set Φ ⊆ ∆ such that
(Φ, α) is an argument in ∆? The problem ARG-Check
asks, given a set of formulas Φ and a formula α, is (Φ, α) an
argument? The problem ARG-Rel asks, given a set of for-
mulas ∆, and formulas ψ ∈ ∆ and α, is there a set Φ ⊆ ∆
with ψ ∈ Φ such that (Φ, α) is an argument in ∆?

Turning to the parameterized complexity perspective on
the introduced problems, immediate parameters that we con-
sider are |enc(X)| (size of the encoding of X), |X | (number
of formulas in X), |Vars(X)| (number of variables in X) for
X ∈ {∆,Φ}, as well as |enc(α)| and |Vars(α)|. Regarding
the parameterized versions of the problems from above, e.g.,
p-ARG(k), where k is a parameter, then defines the version
of ARG parameterized by k, accordingly.

In the following, we want to formally relate the mentioned
notions of encoding length, number of variables, as well as
number of formulas. We will see that bounding the encoding
length, implies having limited space for encoding variables
and, in turn, restricts the number of possible formulas. How-
ever, the converse is also true: if one bounds the number of
variables, then one also has limited possibilities about defin-
ing different formulas. The following definition makes clear
what ‘different’ means in our context.
Definition 6 (Formula redundancy). A CNF-formula ϕ =∧m

i=1 Ci, with Ci = (`i,1 ∨ · · · ∨ `i,ni
) is redundant if there

exist 1 ≤ i 6= j ≤ m such that { `i,k | 1 ≤ k ≤ ni } =
{ `j,k | 1 ≤ k ≤ nj }.
Example 7. The formulas x ∧ x and (x ∨ x ∨ y) ∧ (x ∨ y)
are redundant. The formulas x ∧ y and (x ∨ y) ∧ x are not
redundant.

Liberatore (2005) studied a stronger notion of redundancy
in the context of CNF-formulas, namely, on the level of im-
plied clauses. We do not need such a strict notion of redun-
dancy here, as the weaker notion suffices for proving the
following Lemma. As a result, in the following, we consider
only formulas that are just not redundant. The redundancy
(in our context) can be straightforwardly checked in time
quadratic in the length of the given formula.

Lemma 8 (?). For any set of CNF-formulas Φ, we have that

1. |Φ| ≤ 22
2·|Vars(Φ)|

,
2. f(|Vars(Φ)|) ≤ |enc(Φ)|, where f is some computable

function, and

3. |enc(Φ)| ≤ |Φ|3.

Notice that due to Lemma 8, the problems ARG,
ARG-Check, ARG-Rel parameterized with respect to any
of the parameters for the respective three (two) variants in-
troduced above are FPT-equivalent. As a result, we will
choose the one of the three (two) variants in our results that
is technically most convenient. Notice also that the param-
eter |Φ| only makes sense for ARG-Check, whereas |∆|
makes sense only for the other two problems, that is, ARG
and ARG-Rel.

Schaefer’s Framework
For a deeper introduction into Schaefer’s CSP framework,
consider the article of Böhler et al. (2004).

A logical relation of arity k ∈ N is a relation R ⊆
{0, 1}k, and a constraintC is a formulaC = R(x1, . . . , xk),
where R is a k-ary logical relation, and x1, . . . , xk are (not
necessarily distinct) variables. If V is a set of variables and u
a variable, thenC[V/u] denotes the constraint obtained from
C by replacing every occurrence of every variable of V by
u. An assignment θ satisfies C, if (θ(x1), . . . , θ(xk)) ∈ R.
A constraint language (CL) Γ is a finite set of logical rela-
tions, and a Γ-formula is a conjunction of constraints over
elements from Γ. Eventually, a Γ-formula ϕ is satisfied by
an assignment θ, if θ simultaneously satisfies all constraints
in it. In such a case θ is also called a model of ϕ. When-
ever a Γ-formula or a constraint is logically equivalent to a
single clause or term or literal, we treat it as such. We say
that a k-ary relation R is represented by a formula φ in CNF
if φ is a formula over k distinct variables x1, . . . , xk and
φ ≡ R(x1, . . . , xk). Moreover, we say that R is

• Horn (resp., dual-Horn) if φ contains at most one positive
(negative) literal per each clause.

• Bijunctive if φ contains at most two literals per each
clause.

• Affine if φ is a conjunction of linear equations of the form
x1 ⊕ . . .⊕ xn = a where a ∈ {0, 1}.

6428

• Essentially negative if every clause in φ is either negative
or unit positive. R is essentially positive if every clause in
φ is either positive or unit negative.

• 1-valid (resp., 0-valid) if every clause in φ contains at
least one positive (negative) literal.

Furthermore, we say a relation is Schaefer if it is Horn, dual-
Horn, bijunctive, or affine. We say that a relation is ε-valid
if it is 1- or 0-valid or both. Finally, for a property P of a
relation, we say that a CL Γ is P if all relations in Γ are P.
Definition 9. 1. The set 〈Γ〉 is the smallest set of relations

that contains Γ, the equality constraint, =, and which
is closed under primitive positive first order definitions,
that is, if φ is an Γ ∪ {=}-formula and R(x1, . . . , xn) ≡
∃y1 . . . ∃ylφ(x1, . . . , xn, y1, . . . , yl), then R ∈ 〈Γ〉. In
other words, 〈Γ〉 is the set of relations that can be ex-
pressed as a Γ∪{=}-formula with existentially quantified
variables.

2. The set 〈Γ〉 6= is the set of relations that can be expressed
as a Γ-formula with existentially quantified variables (no
equality relation is allowed).

3. The set 〈Γ〉 6∃,6= is the set of relations that can be expressed
as a Γ-formula (neither the equality relation nor existen-
tially quantified variables are allowed).
The set 〈Γ〉 is called a relational clone or a co-clone with

base Γ (Böhler et al. 2005). Notice that for a co-clone C and
a CL Γ the statements Γ ⊆ C, 〈Γ〉 ⊆ C, 〈Γ〉 6= ⊆ C and
〈Γ〉 6∃,6= ⊆ C are equivalent. Throughout the paper, we re-
fer to different types of Boolean relations and correspond-
ing co-clones following Schaefer’s terminology (Schaefer
1978). For a tabular overview of co-clones, relational prop-
erties, and bases, we refer the reader to Mahmood, Meier,
and Schmidt (2021, Table 1). Note that 〈Γ〉 6= ⊆ 〈Γ〉 is true
by definition. The other direction is not true in general. How-
ever, if (x = y) ∈ 〈Γ〉 6=, then we have that 〈Γ〉 6= = 〈Γ〉.
Example 10. Let R(x1, x2, x3) := (x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x2 ∨ ¬x3). Then (x1 ∨ x2) ∧ (x2 ⊕ x3 = 0) ≡
∃y(R(x1, x2, y) ∧ F (y) ∧ (x2 = x3)), where F = {0}.
This implies that (x1 ∨ x2) ∧ (x2 ⊕ x3 = 0) ∈ 〈{R,F }〉.

Technical Implementation Results
We say a Boolean relation R is strictly essentially positive
(resp., strictly essentially negative) if it can be defined by
a conjunction of literals and positive clauses (resp., nega-
tive clauses) only. Note that the only difference to essen-
tially positive (resp., essentially negative) is the absence of
the equality relation (see (Mahmood, Meier, and Schmidt
2021, Table 1)). We abbreviate in the following essentially
positive by “ess.pos.” and essentially negative by “ess.neg.”.
Proposition 11 (Mahmood et al. (2020, Lem. 7)). Let Γ be
a CL that is neither ess.pos., nor ess.neg. Then, we have that
(x = y) ∈ 〈Γ〉 6= and 〈Γ〉 = 〈Γ〉 6=.

With the following implementation result we can
strengthen this statement to Lemma 13.
Lemma 12. Let Γ be a CL that is not ε-valid. If Γ is ess.neg.
and not strictly ess.neg. or ess.pos. and not strictly ess.pos.
then we have that (x = y) ∧ t ∧ ¬f ∈ 〈Γ〉 6∃,6=.

Proof. We prove the statement for Γ that is ess.pos. but not
strictly ess.pos. The other case can be treated analogously.
W.l.o.g., let Γ = {R}, thus R is ess.pos. but not strictly
ess.pos. Furthermore, R is neither 1-valid nor 0-valid. Let R
be of arity k and let V = {x1, . . . , xk} be a set of k distinct
variables. By definition of ess.pos. (cf. IS02 in (Mahmood,
Meier, and Schmidt 2021, Table 1)), R can be written as
conjunction of negative literals, positive clauses and equali-
ties.

If R can be written without any equality, then R is strictly
ess.pos., a contradiction. As a result, any representation of
R as conjunction of negative literals, positive clauses and
equalities requires at least one equality. Suppose, w.l.o.g.,
that R(x1, . . . , xk) |= (x1 = x2), while R(x1, . . . , xk) 6|=
x1 andR(x1, . . . , xk) 6|= ¬x1. We define the following three
subsets of V : W = {xi | R(x1, . . . , xk) |= (x1 = xi) },
N = {xi | R(x1, . . . , xk) |= ¬xi }, and P = V \ (W ∪N)

By construction the three sets provide a partition of V .
Then, W is nonempty by construction, N is nonempty since
R is not 1-valid and P is nonempty since R is not 0-valid.
Denote by C the {R}-constraint C = R(x1, . . . , xk). Con-
sider the constraint M(x1, x2, t, f) = C[W/x2, P/t,N/f].
One verifies thatM(x1, x2, t, f) ≡ (x1 = x2)∧ t∧¬f .

Lemma 13. Let Γ be a CL that is neither strictly ess.pos.,
nor strictly ess.neg. Then (x = y) ∈ 〈Γ〉 6= and 〈Γ〉 = 〈Γ〉 6=.

Proof. If Γ is not ess.pos. and not ess.neg. the statement fol-
lows from Proposition 11. Note that this lemma’s statement
implies that Γ is not ε-valid. If Γ is ess.pos. or ess.neg., by
Lemma 12 we have (x = y)∧t∧¬f ∈ 〈Γ〉 6∃,6=. Conclude by
noticing that (x = y) ≡ ∃t∃f (x = y)∧ t∧¬f ∈ 〈Γ〉 6=.

Lemma 14. Let Γ be a CL that is neither ε-valid, nor
ess.pos., nor ess.neg. Then, if Γ is

1. not Horn, not dual-Horn, and not complementive, then
(x 6= y) ∧ t ∧ ¬f ∈ 〈Γ〉 6∃,6=,

2. not Horn, not dual-Horn, and complementive, then (x 6=
y) ∈ 〈Γ〉 6∃,6=, and

3. Horn or dual-Horn, then (x = y) ∧ t ∧ ¬f ∈ 〈Γ〉 6∃,6=.

Proof. This follows immediately from the proof of Proposi-
tion 11. The proof given in (Mahmood, Meier, and Schmidt
2020, Lemma 7) makes a case distinction according to
whether Γ is 0-valid and/or 1-valid. In the case of non ε-valid
Γ a further case distinction is made according to whether Γ
is Horn and/or dualHorn. Here the statements 1., 2., and 3.
are proven.

Let us denote by T/F the unary relations that implement
true/false. That is, T = {(1)} and F = {(0)}. The following
implementation results are folklore.
Proposition 15 (Creignou et al. (2001)). If Γ is a CL that is

1. complementive and not ε-valid, then (x 6= y) ∈ 〈Γ〉 6∃,6=,

2. neither complementive, nor ε-valid, then (t∧f̄) ∈ 〈Γ〉 6∃,6=.
3. 1-valid and not 0-valid, then T ∈ 〈Γ〉 6∃,6=,
4. 0-valid and not 1-valid, then F ∈ 〈Γ〉 6∃,6=, and
5. 0-valid and 1-valid, then (x = y) ∈ 〈Γ〉 6∃,6=.

6429

Parameterized Implication Problem
In this subsection, we consider the parameterized complex-
ity of the implication problem (IMP). The problem IMP(Γ)
asks, given a set of Γ-formulas Φ and a Γ-formula α, is
Φ |= α true? For p-IMP, the parameterized version of IMP,
we consider the parameter k ∈ {|Φ|, |α|}, and also write
p-IMP(Γ, k). The following corollary is due to Schnoor and
Schnoor (2008, Theorem 6.5). They study a restriction of
our problem IMP, where |Φ| = 1.

Corollary 16. Let Γ be a CL. IMP(Γ) is in P when Γ is
Schaefer and coNP-complete otherwise.

Consequently, the parameterized problem p-IMP(Γ, k) is
FPT when Γ is Schaefer and k ∈ {|Φ|, |α|}. We consider
the cases when Γ is not Schaefer. In the following, we dif-
ferentiate the restrictions on Φ from the ones on α. That is,
we introduce a technical variant, IMP(Γ′,Γ) of the implica-
tion problem. An instance of IMP(Γ′,Γ) is a tuple (Φ, α),
where Φ is a set of Γ′-formulas and α is a Γ-formula. The
following corollary also follows from the work of Schnoor
and Schnoor (2008, Theorem 6.5).

Corollary 17. Let Γ and Γ′ be non-Schaefer CLs. If Γ′ ⊆
〈Γ〉 then IMP(Γ′,Γ) ≤P

m IMP(Γ).

Regarding non-Schaefer CLs, it turns out that the param-
eter α does not make the problem any easier. One possible
explanation for this hardness is that the formulas in Φ and α
do not necessarily share a set of variables.

Lemma 18. The problem p-IMP(Γ, |α|) is para-coNP-
complete when the CL Γ is not Schaefer.

Proof. Membership follows because the classical problem
is in coNP. To achieve the lower bound, we reduce from
the unsatisfiability problem. That is, given a formula Φ,
the question is whether Φ is unsatisfiable. Moreover, check-
ing unsatisfiability is coNP-complete for non-Schaefer lan-
guages (follows by Schaefer’s (1978) SAT classification).

We will inherently use Corollary 17 and make a case dis-
tinction as whether (Φ, α) is 1-valid, 0-valid or complemen-
tive.

Case 1. Let Γ be 1-valid and not 0-valid. We prove that for
some well chosen 1-valid language Γ′ and a Γ′-formula
Φ, the problem p-IMP(Γ′,Γ, |α|) is para-coNP-hard.
According to item (3.) in Proposition 15, T ∈ 〈Γ′〉 6∃,6=.
Let α = T(x) and Φ be a Γ′-formula where x does not
appear. Then Φ |= α if and only if Φ is unsatisfiable. This
is because, if Φ is satisfiable then there is an assignment
s such that s |= ψ. This gives a contradiction because the
assignment s′ that extends s by s′(x) = 0 satisfies that
s′ |= Φ and s′ 6|= α.

Case 2. Let Γ be 0-valid and not 1-valid. According to item
(4.) in Proposition 15, F ∈ 〈Γ′〉 6∃,6=. This case is similar
to Case 1, as we take α = F(x) and Φ a Γ′-formula not
containing x.

Case 3. Let Γ be complementive but not ε-valid. We prove
that for some well chosen complementive language Γ′

and a Γ-formula α, the problem p-IMP(Γ′,Γ, |α|) is

para-coNP-hard. According to item (1.) in Proposi-
tion 15, x 6= y ∈ 〈Γ′〉 6∃,6=. Then, coNP-hardness follows,
as for any set of Γ′-formulas Φ, Φ |= (x 6= x) if and only
if Φ is unsatisfiable.

Case 4. Let Γ be 0- and 1-valid. By Lemma 14 (1.)/(2.),
we have access to ‘6=’. We can state a reduction from the
complement of SAT to p-IMP(Γ, |α|) as in Case 3. That
is, Φ is unsatisfiable if and only if Φ |= x 6= x for a fresh
variable x.

Note that regarding the parameter |Φ|, the problem
p-IMP(Γ, |Φ|) is FPT if Γ is Schaefer. Otherwise, only
coNP-membership is clear.

Parameter: Size of the Claim α
In this section we discuss the complexity results regarding
the parameter α, that is, the number of variables and the
encoding size of α. It turns out that the computational com-
plexity of the argumentation problems is hidden in the struc-
ture of the underlying CL. That is, in many cases, consider-
ing the claim size as a parameter does not lower the com-
plexity. This is proved by noting that certain slices of the
parameterized problems already yield hardness results.

Theorem 19. p-ARG(Γ, |α|), for a CL Γ, is

1. FPT if Γ is Schaefer and ε-valid,
2. para-NP-complete if Γ is Schaefer and neither ε-valid,

nor strictly ess.pos., nor strictly ess.neg.,
3. in W[1] if Γ is strictly ess.neg. and strictly ess.pos.,
4. in W[2] if Γ is strictly ess.neg. or strictly ess.pos.,
5. para-coNP-complete if Γ is not Schaefer and ε-valid,

and
6. para-ΣP

2 -complete if Γ is not Schaefer and not ε-valid.

Proof. (1.) The classical problem ARG(Γ) is already in P
for this case (Creignou, Egly, and Schmidt 2014, Thm 5.3).
(2.) The upper bound follows because the unparameterized
problem ARG(Γ) is in NP (Creignou, Egly, and Schmidt
2014, Prop 5.1). The lower bound is proven in Lemmas 21,
22 and 23. (3.) is proven in Lemma 24. (4.) is proven in
Lemma 25.

For (5.) (resp., (6.)), the membership follows because
the classical problem is in coNP (resp., ΣP

2) (Creignou,
Egly, and Schmidt 2014, Thm 5.3). For hardness of
p-ARG(Γ, |α|) when Γ is ε-valid, notice that, since ∆ is
ε-valid, an instance (∆, α) of p-ARG admits an argument
if and only if ∆ |= α. The result follows from Lemma 18
because the implication problem is still para-coNP-hard.
Finally, when Γ is not Schaefer and not ε-valid, in the proofs
of Creignou et al. (2014, Prop. 5.2) the constructed reduc-
tions define α whose length is 2 or 3. Accordingly, either
the 2-slice or the 3-slice is ΣP

2 -hard. This gives the desired
hardness result.

For technical reasons we introduce the following vari-
ant of the argumentation existence problem. The problem
ARG(Γ, R) asks, given a set of Γ-formulas ∆ and an R-
formula α, ∃ Φ ⊆ ∆ s.t. (Φ, α) is an argument in ∆?

6430

Lemma 20. Let Γ,Γ′ be two CLs and R a Boolean rela-
tion. If Γ′ ⊆ 〈Γ〉 6= and R ∈ 〈Γ〉 6∃,6=, then ARG(Γ′, R) ≤log

m

ARG(Γ).

Proof. Let (∆, α) be an instance of the first problem, where
∆ = { δi | i ∈ I } and α = R(x1, . . . , xk). We map this in-
stance to (∆′, α′), where ∆′ = {δ′i | δi ∈ ∆} and α′ is a Γ-
formula equivalent to R(x1, . . . , xk) (which exists because
R ∈ 〈Γ〉 6∃,6=). For i ∈ I we obtain δ′i from δi by replacing δi
by an equivalent Γ-formula with existential quantifiers (such
a representation exists since Γ′ ⊆ 〈Γ〉 6=) and deleting all ex-
istential quantifiers.

Note that the previous result is only used to show lower
bounds for specific slices and, accordingly, is stated in the
classical setting.

Lemma 21. If the CL Γ is neither affine, nor ε-valid, nor
ess.pos., nor ess.neg., then p-ARG(Γ, |α|) is para-NP-
hard.

Proof. We give a reduction from the NP-complete prob-
lem Pos-1-In-3-Sat such that |α| is constant. An instance of
Pos-1-In-3-Sat is a 3CNF-formula with only positive liter-
als, the question is to determine whether there is a satisfying
assignment which maps exactly one variable in each clause
to true. We make a case distinction according to the case (1.)
and (3.) in Lemma 14. Case (2.) is not needed because if Γ
is not affine, not horn and not dual-Horn, then Γ can not be
complementive. We first treat case (3.), that is, we have that
(x = y)∧t∧¬f ∈ 〈Γ〉 6∃,6=. We then show that the other case
can be treated with minor modifications of the procedure.

Let ϕ be an instance of Pos-1-In-3-Sat. We first reduce
ϕ to and instance (∆, α) of ARG({T,F,=}, (x = y) ∧
t ∧ ¬f), and then conclude with Lemmas 14 and 20. Given
ϕ =

∧k
i=1(xi ∨ yi ∨ zi), an instance of Pos-1-In-3-Sat and

let t, f, c1, . . . , ck+1 be fresh variables. We let ∆ and α as
following.

∆ =
⋃k

i=1{xi ∧ ¬yi ∧ ¬zi ∧ (ci = ci+1) ∧ t ∧ ¬f}
∪
⋃k

i=1{¬xi ∧ yi ∧ ¬zi ∧ (ci = ci+1) ∧ t ∧ ¬f}
∪
⋃k

i=1{¬xi ∧ ¬yi ∧ zi ∧ (ci = ci+1) ∧ t ∧ ¬f},
α = (c1 = ck+1) ∧ t ∧ ¬f.

Note that any formula in ∆ is expressible as Γ-formula since
{T,F,=} ⊆ IM2 ⊆ 〈Γ〉 (cf. Mahmood, Meier, and Schmidt
(2021, Table 1)). Since by Lemma 13, 〈Γ〉 6= = 〈Γ〉 and
by construction (x = y) ∧ t ∧ ¬f ∈ 〈Γ〉 6∃,6=, we have, by
Lemma 20, the desired reduction to p-ARG(Γ, |α|). Note
that in the reduction of Lemma 20 the size of α is always
constant.

For case (1.) of Lemma 14 we have that (x 6= y) ∧ t ∧
¬f ∈ 〈Γ〉 6∃,6=. To cope with this change in the reduction we
introduce one additional variable d and replace α by (c1 6=
d) ∧ (d 6= ck+1) ∧ t ∧ ¬f .

Lemma 22. If the CL Γ is affine, neither ε-valid, nor ess.
pos., nor ess.neg., then p-ARG(Γ, |α|) is para-NP-hard.

Proof. We proceed analogously to the proof of Lemma 21.
We give a reduction from the NP-complete problem
Pos-1-In-3-Sat such that |α| is constant. We make a case
distinction according to case (1.) and (2.) in Lemma 14 (case
3. can not occur for Γ is affine and not ess.pos.). First, we
treat the second case, that is, we have that (x 6= y) ∈ 〈Γ〉 6∃,6=.
Then, we show that the first case can be treated with minor
modifications of the procedure.

Now, we reduce Pos-1-In-3-Sat to ARG({=, 6=}, {6=}),
and then conclude with Lemmas 14 and 20. We give the fol-
lowing reduction. Let ϕ =

∧k
i=1(xi ∨ yi ∨ zi) be an in-

stance of Pos-1-In-3-Sat and let t, d, c1, . . . , ck+1 be fresh
variables. We map ϕ to (∆, α), where

∆ =
⋃k

i=1{(xi = t) ∧ (yi 6= t) ∧ (zi 6= t) ∧ (ci = ci+1)}
∪
⋃k

i=1{(xi 6= t) ∧ (yi = t) ∧ (zi 6= t) ∧ (ci = ci+1)}
∪
⋃k

i=1{(xi 6= t) ∧ (yi 6= t) ∧ (zi = t) ∧ (ci = ci+1)},
α = (c1 6= d) ∧ (d 6= ck+1).

Note that any formula in ∆ is expressible as Γ-formula since
{=, 6=} ⊆ ID ⊆ 〈Γ〉 (cf. Mahmood, Meier, and Schmidt
(2021, Table 1)). Since by Lemma 13 〈Γ〉 6= = 〈Γ〉 and by
construction (x 6= y) ∈ 〈Γ〉 6∃,6=, we have by Lemma 20 the
desired reduction to p-ARG(Γ). Note that in the reduction
of Lemma 20 the size of α is always constant.

For case (1.) of Lemma 14 we have that (x 6= y) ∧ t ∧
¬f ∈ 〈Γ〉 6∃,6=. To cope with this change in the reduction, we
introduce one additional variable f and add the constraints
t ∧ ¬f to α as well as to every formula in ∆ .

Lemma 23. Let Γ be a CL that is not ε-valid. If Γ is ess.pos.
and not strictly ess.pos. or ess.neg. and not strictly ess.neg.,
then p-ARG(Γ, |α|) is para-NP-hard.

Proof. We can use exactly the same reduction as in
Lemma 21, except we do not require a case distinction. Note
that, by Proposition 15, we have that (t ∧ ¬f) ∈ 〈Γ〉 6∃,6=.
Since ∃f (t ∧ ¬f) ≡ T(t) and ∃t (t ∧ ¬f) ≡ F(f), we
conclude that T,F ∈ 〈Γ〉 6=. Further, by Lemma 13, we have
that (x = y) ∈ 〈Γ〉 6=. Together we have {T,F,=} ⊆ 〈Γ〉 6=,
and thus any formula in ∆ is expressible as Γ-formula with
existential quantifiers but without equality. By Lemma 12, it
follows that (x = y)∧t∧¬f ∈ 〈Γ〉 6∃,6=. Hence we can apply
Lemma 20 to conclude.

Lemma 24 (?). If Γ is a CL that is strictly ess.neg. and
strictly ess.pos., then p-ARG(Γ, |α|) ∈W[1].
Lemma 25 (?). If Γ is a CL that is strictly ess.neg. or strictly
ess.pos., then p-ARG(Γ, |α|) ∈W[2].
Theorem 26. p-ARG-Check(Γ, |α|), for a CL Γ, is (1.)
FPT if Γ is Schaefer, and (2.) para-DP-complete other-
wise.

Proof. 1. This follows from (Creignou, Egly, and Schmidt
2014, Theorem 6.1) as classically ARG-Rel(Γ) ∈ P.

2. Here, the membership follows as classically
ARG-Rel(Γ) ∈ DP. Furthermore, the reduction in
the proof of Creignou, Egly, and Schmidt (2014, Proposi-
tions 6.3 and 6.4) always uses a fixed size of the claim α.

6431

As a consequence, certain slices of ARG-Check(Γ) are
DP-hard, giving the desired results.

Theorem 27. p-ARG-Rel(Γ, |α|), for a CL Γ, is

1. FPT if Γ is either positive or negative.
2. para-NP-complete if Γ is Schaefer but neither strictly

ess.neg. nor strictly ess.pos.
3. para-ΣP

2 -complete if Γ is not Schaefer.

Proof. 1. This follows as classically ARG-Rel(Γ) ∈ P by
Creignou, Egly, and Schmidt (2014, Prop. 7.3).

2. Here, the membership follows because the classical prob-
lem is in NP. We make a case distinction as whether Γ is
ε-valid or not.

Case 1. Let Γ be Schaefer and ε-valid, but neither pos-
itive nor negative. The hardness follows because the
2-slice of the problem is already NP-hard (Creignou,
Egly, and Schmidt 2014, Proposition 7.6).

Case 2. Let Γ be Schaefer but neither ε-valid, nor
strictly ess.neg. or strictly ess.pos The hardness fol-
lows from Theorem 19. This is due to the reason that
p-ARG-Rel is always harder than p-ARG via the re-
duction (∆, α) 7→ (∆ ∪ {ψ}, ψ, α).

3. In this case, the membership is true because the classi-
cal problem is in ΣP

2 . Hardness follows from a result of
Creignou, Egly, and Schmidt (2014, Prop. 7.7). Notice
that, while proving the hardness for each sub case, the
claim α has fixed size in each reduction. This implies that
certain slices in each case are ΣP

2 -hard, consequently, giv-
ing the desired hardness results.

Parameters: Size of Support, Knowledge-Base
Regarding these parameters, we will always show a di-
chotomy: for the Schaefer cases, the problem is FPT, oth-
erwise we have a lower bound by the implication problem.

Recall that the collection ∆ of formulas is not assumed to
be consistent.

Theorem 28. p-ARG(Γ, |∆|) and p-ARG-Rel(Γ, |∆|),
for CLs Γ, are (1.) FPT if Γ is Schaefer, and (2.)
p-IMP(Γ, |Φ|)-hard and in para-coNP otherwise.

Proof. 1. Notice that the number of subsets of ∆ is bounded
by the parameter. Consequently, one simply checks each
subset of ∆ as a possible support Φ for α. Moreover, the
size of each support Φ is also bounded by the parameter,
as a result, one can determine the satisfiability and entail-
ment in FPT-time. This is because, the satisfiability and
entailment for Schaefer languages is in P.

2. For the lower bound, we have p-IMP(Γ, |Φ|) ≤FPT

ARG(Γ, |∆|) ≤FPT p-ARG-Rel(Γ, |∆|) by identities.
For membership, we make case distinction as whether Γ
is ε-valid or not.
Case 1. Γ is ε-valid. The membership follows because

the unparameterized problem ARG(Γ) is in coNP
when Γ is ε-valid.

Case 2. Γ is neither 0-valid nor 1-valid. The member-
ship follows because for each candidate Φ, one needs
to determine whether Φ is consistent and Φ |= α.
The consistency can be checked in FPT-time because
|Φ| is bounded by the parameter. The entailment prob-
lem for non-Schaefer, non ε-valid languages is still in
para-coNP when |Φ| is the parameter.

For p-ARG-Rel(Γ, |∆|) ∈ para-coNP, try all the sub-
sets of ∆ that contain ψ, as a candidate support.

When the support size |Φ| is considered as a parameter,
the problems ARG and ARG-Rel become irrelevant. Con-
sequently, we only consider the problem ARG-Check.
Corollary 29. p-ARG-Check(Γ, |Φ|), for a CL Γ, is (1.)
FPT if Γ is Schaefer, and (2.) p-IMP(Γ, |Φ|)-hard and in
para-DP otherwise.

Conclusion and Outlook
In this paper, we performed a two dimensional classification
of reasoning in logic-based argumentation. On the one side,
we studied syntactical fragments in the spirit of Schaefer’s
framework of co-clones. On the other side, we analysed a list
of parameters and classified the parameterized complexity of
three central reasoning problems accordingly.

As a take-away message we get that α as a parameter does
not help to reach tractable fragments of p-ARG.

The case for p-ARG-Rel(Γ, |α|) when Γ is strictly
ess.neg. or strictly ess.pos. is still open. Also, few tight com-
plexity results have to be found and the implication problem
regarding the parameter |Φ| has to be understood.

It is worth noting that for some CLs, e.g., those that
are ε-valid, the problem p-ARG-Check is harder than
p-ARG. This is because the problem p-ARG under con-
sideration is the decision problem. Having the identity re-
duction from p-ARG-Check to p-ARG shows that the min-
imality is checked by solving the problem p-ARG, already.
This shows that computing a minimal support is potentially
harder than deciding whether such a support exists, unless
the complexity classes DP and coNP coincide. We pose
as an interesting open problem to classify the function ver-
sion of ARG, in both, the classical and the parameterized
setting.

Regarding other parameters, treewidth (Robertson and
Seymour 1984) is a quite promising structural property that
led to several FPT-results in the parameterized setting:
artificial intelligence (Gottlob and Szeider 2007), knowl-
edge representation (Gottlob, Pichler, and Wei 2006), ab-
duction in Datalog (Gottlob, Pichler, and Wei 2007), and
databases (Grohe 2007). Fellows et al. (2012) show that
abductive reasoning benefits from this parameter as well.
Using a reduction between abduction and argumentation
(Creignou, Egly, and Schmidt 2014) might yield FPT-
results in our setting. Furthermore, we plan to give a precise
classification of p-IMP.

As further future work, we plan investigating the (parame-
terized) enumeration complexity (Fomin and Kratsch 2010;
Creignou et al. 2017, 2019; Meier 2020) of reasoning in this
setting.

6432

Acknowledgements
This work was supported by the German Research Foun-
dation (DFG) under the project number ME 4279/1-2. The
authors would like to thank the anonymous reviewers for the
valuable feedback they have provided.

References
Amgoud, L.; and Prade, H. 2009. Using arguments for mak-
ing and explaining decisions. Artif. Intell. 173(3-4): 413–
436.

Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.;
Prakken, H.; Reed, C.; Simari, G. R.; Thimm, M.; and Vil-
lata, S. 2017. Towards Artificial Argumentation. AI Mag.
38(3): 25–36. doi:10.1609/aimag.v38i3.2704.

Baroni, P.; Gabbay, D.; Giacomin, M.; and van der Torre,
L., eds. 2018. Handbook of Formal Argumentation. College
Publications.

Besnard, P.; and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artif. Intell. 128(1-2): 203–235.

Besnard, P.; and Hunter, A. 2008. Elements of Argumenta-
tion. MIT Press.

Beyersdorff, O.; Meier, A.; Thomas, M.; and Vollmer, H.
2009. The complexity of propositional implication. Inf. Pro-
cess. Lett. 109(18): 1071–1077. doi:10.1016/j.ipl.2009.06.
015.

Böhler, E.; Reith, S.; Schnoor, H.; and Vollmer, H. 2005.
Bases for Boolean co-clones. Inf. Process. Lett. 96(2): 59–
66. doi:10.1016/j.ipl.2005.06.003.

Böhler, E.; Creignou, N.; Reith, S.; and Vollmer, H. 2004.
Playing with Boolean blocks, part II: Constraint satisfaction
problems. ACM SIGACT-Newsletter 35.

Chesñevar, C. I.; Maguitman, A. G.; and Loui, R. P. 2000.
Logical models of argument. ACM Comput. Surv. 32(4):
337–383.

Creignou, N.; Egly, U.; and Schmidt, J. 2014. Complex-
ity Classifications for Logic-Based Argumentation. ACM
Trans. Comput. Log. 15(3): 19:1–19:20. doi:10.1145/
2629421.

Creignou, N.; Khanna, S.; and Sudan, M. 2001. Complexity
classifications of Boolean constraint satisfaction problems,
volume 7 of SIAM monographs on discrete mathematics and
applications. SIAM. ISBN 978-0-89871-479-1.

Creignou, N.; Ktari, R.; Meier, A.; Müller, J.; Olive, F.; and
Vollmer, H. 2019. Parameterised Enumeration for Modi-
fication Problems. Algorithms 12(9): 189. doi:10.3390/
a12090189.

Creignou, N.; Meier, A.; Müller, J.; Schmidt, J.; and
Vollmer, H. 2017. Paradigms for Parameterized Enumera-
tion. Theory Comput. Syst. 60(4): 737–758. doi:10.1007/
s00224-016-9702-4.

Creignou, N.; Schmidt, J.; Thomas, M.; and Woltran, S.
2011. Complexity of logic-based argumentation in Post’s
framework. Argument & Computation 2(2-3): 107–129.

Downey, R. G.; and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artif. Intell. 77(2): 321–
358.
Fellows, M. R.; Pfandler, A.; Rosamond, F. A.; and Rüm-
mele, S. 2012. The Parameterized Complexity of Ab-
duction. In Hoffmann, J.; and Selman, B., eds., Pro-
ceedings of the Twenty-Sixth AAAI Conference on Ar-
tificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada. AAAI Press. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI12/paper/view/5048.
Fichte, J. K.; Hecher, M.; and Meier, A. 2019. Count-
ing Complexity for Reasoning in Abstract Argumentation.
In The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, 2827–2834. AAAI Press. doi:
10.1609/aaai.v33i01.33012827.
Fomin, F. V.; and Kratsch, D. 2010. Exact Exponential
Algorithms. Texts in Theoretical Computer Science. An
EATCS Series. Springer. ISBN 978-3-642-16532-0. doi:
10.1007/978-3-642-16533-7.
Gottlob, G.; Pichler, R.; and Wei, F. 2006. Bounded
Treewidth as a Key to Tractability of Knowledge Repre-
sentation and Reasoning. In Proceedings, The Twenty-
First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence
Conference, July 16-20, 2006, Boston, Massachusetts, USA,
250–256. AAAI Press.
Gottlob, G.; Pichler, R.; and Wei, F. 2007. Efficient datalog
abduction through bounded treewidth. In AAAI, 1626–1631.
Gottlob, G.; and Szeider, S. 2007. Fixed-Parameter Al-
gorithms For Artificial Intelligence, Constraint Satisfaction
and Database Problems. The Computer Journal 51(3): 303–
325. ISSN 0010-4620. doi:10.1093/comjnl/bxm056.
Grohe, M. 2007. The Complexity of Homomorphism and
Constraint Satisfaction Problems Seen from the Other Side.
J. ACM 54(1). ISSN 0004-5411. doi:10.1145/1206035.
1206036.
Liberatore, P. 2005. Redundancy in logic I: CNF proposi-
tional formulae. Artif. Intell. 163(2): 203–232.
Mahmood, Y.; Meier, A.; and Schmidt, J. 2020. Parame-
terised Complexity of Abduction in Schaefer’s Framework.
In Logical Foundations of Computer Science - International
Symposium, LFCS 2020, Deerfield Beach, FL, USA, January
4-7, 2020, Proceedings, 195–213. doi:10.1007/978-3-030-
36755-8_13.
Mahmood, Y.; Meier, A.; and Schmidt, J. 2021. Parameter-
ized Complexity of Logic-Based Argumentation in Schae-
fer’s Framework. CoRR abs/2102.11782. URL https://arxiv.
org/abs/2102.11782.

6433

Meier, A. 2020. Parametrised enumeration. Habilitation
thesis, Leibniz Universität Hannover. doi:10.15488/9427.
Nordh, G.; and Zanuttini, B. 2008. What makes proposi-
tional abduction tractable. Artif. Intell. 172(10): 1245–1284.
doi:10.1016/j.artint.2008.02.001.
Parsons, S.; Wooldridge, M. J.; and Amgoud, L. 2003. Prop-
erties and Complexity of Some Formal Inter-agent Dia-
logues. J. Log. Comput. 13(3): 347–376.
Post, E. L. 1941. The two-valued iterative systems of math-
ematical logic. Annals of Mathematical Studies 5: 1–122.
Prakken, H.; and Vreeswijk, G. 2002. Logics for Defeasible
Argumentation, 219–318. Dordrecht: Springer Netherlands.
Rago, A.; Cocarascu, O.; and Toni, F. 2018. Argumentation-
Based Recommendations: Fantastic Explanations and How
to Find Them. In IJCAI, 1949–1955. ijcai.org.
Robertson, N.; and Seymour, P. D. 1984. Graph minors. III.
Planar tree-width. J. Comb. Theory, Ser. B 36(1): 49–64.
doi:10.1016/0095-8956(84)90013-3.
Schaefer, T. J. 1978. The Complexity of Satisfiability Prob-
lems. In Lipton, R. J.; Burkhard, W. A.; Savitch, W. J.; Fried-
man, E. P.; and Aho, A. V., eds., Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, May 1-
3, 1978, San Diego, California, USA, 216–226. ACM. doi:
10.1145/800133.804350.
Schnoor, H.; and Schnoor, I. 2008. Partial Polymorphisms
and Constraint Satisfaction Problems. In Complexity of Con-
straints - An Overview of Current Research Themes [Result
of a Dagstuhl Seminar], 229–254. doi:10.1007/978-3-540-
92800-3_9.
Sipser, M. 1997. Introduction to the theory of computation.
PWS Publishing Company.

6434

