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Abstract

Preferences play a key role in computational argumentation
in AI, as they reflect various notions of argument strength
vital for the representation of argumentation. Within central
formal approaches to structured argumentation, preferential
approaches are applied by lifting preferences over defeasible
elements to rankings over sets of defeasible elements, in order
to be able to compare the relative strength of two arguments
and their respective defeasible constituents. To overcome the
current gap in the scientific landscape, we give in this paper
a general study of the critical component of lifting operators
in structured argumentation. We survey existing lifting opera-
tors scattered in the literature of argumentation theory, social
choice, and utility theory, and show fundamental relations and
properties of these operators. Extending existing works from
argumentation and social choice, we propose a list of pos-
tulates for lifting operations, and give a complete picture of
(non-)satisfaction for the considered operators. Based on our
postulates, we present impossibility results, stating for which
sets of postulates there is no hope of satisfaction, and for
two main lifting operators presented in structured argumen-
tation, Elitist and Democratic, we give a full characterization
in terms of our postulates.

1 Introduction
Computational argumentation has established itself as a dis-
tinguished and vital research area within Artificial Intelli-
gence (AI) that provides foundational approaches to non-
monotonic reasoning (Baroni et al. 2018; Bench-Capon and
Dunne 2007), with heterogeneous applications, e.g., in le-
gal reasoning, medical sciences, and e-government (Atkin-
son et al. 2017). In approaches to what is known as struc-
tured argumentation (Bondarenko et al. 1997; Modgil and
Prakken 2013; Garcı́a and Simari 2004; Besnard and Hunter
2008), formal reasoning processes are specified that give
provably rational accounts (Caminada 2018) of what can
be argued for, when faced with knowledge or beliefs that
are possibly conflicting or inconsistent. Reasoning is carried
out by formally defining how arguments can be constructed,
and how arguments are conflicting, e.g., whether one argu-
ment is a counter-argument for another. Argumentation se-
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mantics (Baroni, Caminada, and Giacomin 2011) then state
which sets of arguments can be deemed jointly acceptable
together, e.g., because they form a non-conflicting viewpoint
that defends itself against all counter-arguments.

Key to argumentative reasoning are preferential ap-
proaches (Beirlaen et al. 2018), which can reflect a wide
variety of notions of argument strength, e.g., subjective and
relative trust of arguments or societal values (Bench-Capon
2003). In major structured argumentation formalisms, pref-
erences are applied to argumentative reasoning by con-
sidering preference relations on the components that con-
stitute arguments. Arguments, e.g., in the structured for-
malisms of assumption-based argumentation (ABA) (Bon-
darenko et al. 1997) and ASPIC+ (Modgil and Prakken
2013), are based on derivations (via rules) starting off from
assumptions (premises). Importantly, some parts of argu-
ments are deemed defeasible, e.g., assumptions or defeasi-
ble rules, while others are considered strict, i.e., logically
sound deductions that cannot be attacked or countered. In
this sense, defeasible elements of an argument present po-
tential points of attacks or counters.

As illustrated in Figure 1, preferences are applied by con-
sidering a preference ordering over the defeasible elements,
which are then lifted to comparisons of sets of defeasible
elements. Using such a lifting, one inspects then certain de-
feasible elements of two arguments and ranks the arguments
based on the ranking of their respective sets of defeasible
elements. In ASPIC+, e.g., one can define to consider the
structure of arguments, and compare all or only some of the
defeasible elements (e.g., only top-most defeasible rules).

In this way, structured argumentation formalisms are gen-
eral frameworks that allow for a wide array of possible ways
of inclusion of preferences. In particular, ASPIC+ allows
for a large family of such lifting operators that lift a rank-
ing of the basic defeasible elements that can form arguments
to rankings on sets of defeasible elements. While in recent
years we have seen an increasing attention on research of
preferential approaches to (structured) argumentation (Beir-
laen et al. 2018), foundational and general research on pref-
erences in argumentation is still lacking. We take up this op-
portunity and provide a foundational study of the key com-
ponent of preferential reasoning in structured argumenta-
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tion: we formally study the important lifting operation, from
ranking of individual defeasible elements to ranking of sets.

Towards a general treatment, we base our study on the
methodology found in (computational) social choice (Brandt
et al. 2016) and utility theory (Barberà, Bossert, and Pat-
tanaik 2004), both fields which investigate ways of aggre-
gating (rankings of) individual objects to (a ranking of) sets
of objects, and apply such methods to the case of lifting op-
erators for structured argumentation. Concretely, our main
contributions are as follows.

• We collect lifting operators scattered throughout the lit-
erature that lift partial orderings over (defeasible) ele-
ments: we include the Elitist and Democratic operators
from ASPIC+ (Modgil and Prakken 2018), Hoare’s and
Smyth’s operators (see, e.g., Brewka, Truszczynski, and
Woltran (2010)), the well-known operators due to Kelly
(1977), Fishburn (1972) and (Gärdenfors 1976) from so-
cial choice and further operators defined in the argumen-
tation literature (Beirlaen et al. 2018; Young, Modgil,
and Rodrigues 2016; Dyrkolbotn, Pedersen, and Broersen
2018). Additionally, we also consider the inverse of the
Elitist and Democratic operator and a generalized form of
the lexicographic orderings.

• We show relations among these operators, and, among
other results, find that all operators extend Kelly’s oper-
ator, yet diverge significantly in different directions.

• Based on existing works, we propose a list of postulates
(properties of interest), together with new ones by us, and
provide a complete picture which postulate is (not) sat-
isfied by an operator, highlighting, e.g., that the property
of being “reasonable-inducing” from Modgil and Prakken
(2018), a sufficient condition for reaching certain desir-
able properties, is not satisfied, e.g., by Smyth’s, Fish-
burn’s, and Gärdenfors’s operators.

• Based on our postulates, we give several impossibility re-
sults that state which (sets of) postulates cannot be satis-
fied together.

• We fully characterize the two main operators Elitist and
Democratic via our postulates.

To give a clear picture, in Section 2 we give the for-
mal background on how preferences are incorporated in
ASPIC+ and how lifting operators are used. We note
that our results can also be applied to other formalisms,
such as ABA+ (Čyras and Toni 2016), an extension of
ABA with preferences, and Defeasible Logic Programming
(DeLP) (Garcı́a and Simari 2004), which utilizes liftings.
Section 3 presents the lifting operators, Section 4 shows
properties and relations of the operators, Section 5 details
our analysis regarding postulates and gives our characteriza-
tion results.

2 Preferences in the ASPIC+ Framework
For our contributions studying lifting operators, we present
the context in the well-known ASPIC+ (Modgil and Prakken
2018) framework, where they are used for defining prefer-
ences of arguments. ASPIC+ is a general formal framework
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Figure 1: Ordering over defeasible elements ≤ (a) (higher is
more preferred) is lifted to ordering over sets of defeasible
elements ≺X under a variety of operators X (b). Finally an
ordering / over arguments is induced (c), here shown for the
Elitist ordering and two arguments.

for argumentation with several ingredients; due to space
constraints we recap only the part required for understanding
preferences in the framework, and refer the reader to Mod-
gil and Prakken (2018) for details. We assume a language L
composed of atoms x. One part of an ASPIC+ framework
is a knowledge base K ⊆ L consisting of a defeasible part
(called ordinary premisesKp) and a non-defeasible part (ax-
ioms Kn). Another part of ASPIC+ is a set of rules over
L, denoted by R. This set is composed of defeasible rules
a1, . . . , an ⇒ b and strict rules a1, . . . , an → b. We denote
the set of defeasible rules byRd and the set of strict rules by
Rs. When we do not distinguish between strict or defeasible
rules, we write a1, . . . , an  b. We restrict each set and rule
to be finite.

Arguments are constructed as follows in an inductive way.

• If x ∈ K, then A = x is an argument with Conc(A) = x.

• If A1, . . . , An are arguments, xi = Conc(Ai) for 1 ≤ i ≤
n, and (x1, . . . , xn  x) ∈ R, then A = A1, . . . , An  
x is an argument with Conc(A) = x.

We use the following shorthands for defeasible elements
in an argument A: Premd(A) denotes the ordinary premises
(sub-arguments in Kp), DefRules(A) denotes the defeasi-
ble rules in A, and LastDefRules(A) which is equal to the
top-most rule if it is defeasible, and, otherwise, via a recur-
sive definition, equals the top-most defeasible rules of the
immediate sub-arguments.

Preferences in ASPIC+ are defined via orderings on the
defeasible elements. In fact, three levels of preferences are
used in ASPIC+: an ordering ≤ on defeasible elements, an
ordering≺ on sets of defeasible elements, and an ordering /
on arguments. In ASPIC+, two preorders ≤1 and ≤2 on Kp

andRd, respectively, are used in order to define two liftings
≺1 and ≺2 on sets D ⊆ Kp and D′ ⊆ Rd. The focus of this
work is on such lifting operators; we recall a wide variety
of them (including the ones defined by Modgil and Prakken
(2018)) in Section 3.

Based on ≺, one can define / (ranking on arguments),
as follows, using either the so-called last-link principle or
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the weakest link principle. Using the weakest-link princi-
ple one compares all defeasible elements: argument B is
more preferred than A (A / B) if Rd(A) = Rd(B) = ∅,
then Premd(A) ≺ Premd(B); if Premd(A) = Premd(B) =
∅, then Rd(A) ≺ Rd(B); else Premd(A) ≺ Premd(B)
and Rd(A) ≺ Rd(B). Using the last link principle, we
have A / B if LastDefRules(A) ≺ LastDefRules(B),
or LastDefRules(A) = LastDefRules(B) = ∅ and
Premd(A) ≺ Premd(B).

Preferences play a key role in argumentative conflict res-
olution in ASPIC+: in certain cases if argument A attacks
argument B, but A ≺ B, the weaker argument A does not
defeat B, and, e.g., one does not need to defend against the
attack from A.

Example 1. Consider atoms {a, b, c, d, e, x, y} with ordi-
nary premises {a, b, c, d, e}, two strict rules a, b → x and
c, d, e → y, leading to two arguments as shown in Fig-
ure 1(c). Dashed objects denote defeasible elements. With
a preference order over the ordinary premises as shown in
Figure 1(a), one can derive orderings over sets of defeasi-
ble elements (see subsequent section) shown in Figure 1(b),
leading, under the weakest link principle, to the argument
ordering shown in Figure 1(c) when using the particular Eli-
tist operator.

3 Lifting Operators
We survey and collect lifting operators from the literature in
argumentation and other research areas. We focus on lifting
operators that are defined on preorders, i.e., a binary relation
that is reflexive and transitive, and return a strict partial or-
der, i.e., a binary relation that is irreflexive, transitive, and
asymmetric. Our focus on preorders (not total orderings) on
defeasible elements is justified by their generality, and that it
seems plausible that not all defeasible elements in an argu-
mentation theory can be compared. Returning strict partial
orders give us the key comparison between sets of defeasi-
ble elements (arguments) we require: whether a set (an ar-
gument) is strictly more preferred than another. Further, as
in the current state of the art in, e.g., ASPIC+, we focus on
lifting operators that only take the set of defeasible elements
and a preference ordering on them as input. In the following,
we will use the symbols ≤ and � to refer to binary relations
that are reflexive. Additionally, we use < and ≺ to refer to
binary relations that are irreflexive. Observe that for every
preorder ≤, there is a corresponding strict partial order <
defined by A < B iff A ≤ B and B 6≤ A. Furthermore, we
write A ∼ B iff A � B and B � A hold.

In argumentation theories having an empty set of defeasi-
ble elements represents non-defeasibility (e.g., a logical de-
duction). Thus, we require that the empty set is handled dif-
ferently: it cannot be less preferred than a non-empty set,
and, if contained in a comparison, must be more preferred.
We assume all subsequent operators to satisfy this condition
without mentioning it in the definition explicitly and define
them only on comparisons of non-empty sets. Some of the
operators from outside the argumentation literature are in a
straightforward fashion adapted to satisfy this condition.

First, we define what an operator is.

Definition 1. An operator takes as input a set X and a pre-
order ≤ on X and outputs a strict partial order ≺ on the
powerset of X .

We begin with the Elitist and Democratic lifting operators
from the ASPIC+ framework (Modgil and Prakken 2018).
Definition 2 (Elitist). Let≤ be a preorder on a set X . Define
≺Eli for two non-empty A, B ⊆ X by A ≺Eli B iff ∃a ∈ A
s.t. ∀b ∈ B we have a < b.

That is, B is more preferred to A if there is at least one de-
feasible element in A that is (strictly) less preferred to each
element in B. Switching the quantifications leads directly to
the Democratic operator.
Definition 3 (Democratic). Let ≤ be a preorder on a set X .
Define ≺Dem for two non-empty A, B ⊆ X by A ≺Dem B iff
∀a ∈ A we have ∃b ∈ B s.t. a < b.

We observe that ≺Dem is only irreflexive if the sets are
finite, as, e.g., N ∼Dem N. The Democratic operator could be
considered a variant1 of an operator called Hoare’s operator
(see, e.g., (Brewka, Truszczynski, and Woltran 2010)):
Definition 4 (Hoare). Let≤ be a preorder on a set X . Define
�Hoa for two non-empty A, B ⊆ X by A �Hoa B iff ∀a ∈ A
we have ∃b ∈ B s.t. a ≤ b.

This operator is not asymmetric as, e.g., {a} ∼Hoa {b}
whenever a ≤ b and b ≤ a. In accordance with our frame-
work, we will only consider the corresponding strict partial
order ≺Hoa defined by A ≺Hoa B if and only if A �Hoa B
and B 6�Hoa A. Hoare’s operator is often considered to-
gether with its mirrored version, Smyth’s operator (Brewka,
Truszczynski, and Woltran 2010). Inspired by this, we also
consider the mirrored version of the Democratic and the Eli-
tist operator.
Definition 5 (Inverse Democratic). Let ≤ be a preorder on
a set X . Define ≺IDem for two non-empty A, B ⊆ X by
A ≺IDem B iff ∀b ∈ B we have ∃a ∈ A s.t. a < b.

Again, we can also consider a variant of this operator by
replacing < with ≤. We call (the strict part of) this oper-
ator Smyth and write ≺Smy for it. In order to see that In-
verse Democratic is the inverse of the Democratic operator,
we define the inverse ≤−1 of a relation ≤ by a ≤−1 b iff
a ≥ b. Then, we can see that for non-empty A,B, we have
A ≺IDem B for a preorder ≤, iff A ≺−1Dem B holds with re-
spect to ≤−1.

We can define an inverse of the Elitist operator similarly.
Definition 6 (Inverse Elitist). Let ≤ be a preorder on a set
X . Define ≺IEli for two non-empty A, B ⊆ X by A ≺IEli B
iff ∃b ∈ B s.t. ∀a ∈ A we have a < b.

The following operators are well known and often used in
(computational) social choice, when studying strategyproof-
ness (Barberà 2011; Brandt, Brill, and Harrenstein 2016),
where such operators are often called extensions. Kelly’s
Extension could be considered as the “bare minimum” one
requires when lifting a preference ordering.

1While this variant of Hoare’s operator is less common, it is also
considered outside of argumentation, for example in Benferhat, La-
grue, and Papini (2004) and, for linear orders, in Maly, Truszczyn-
ski, and Woltran (2019).
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Definition 7 (Kelly’s Extension). Let ≤ be a preorder on a
set X . Define ≺K for two non-empty A, B ⊆ X by A ≺K B
iff a < b holds for all a ∈ A and b ∈ B.

That is, under Kelly’s operator, only if every a ∈ A is
ordered below all b ∈ B we have a comparison in ≺K.

Definition 8 (Fishburn’s Extension). Let ≤ be a preorder
on a set X . Define ≺F for two non-empty A, B ⊆ X with
A 6= B by A ≺F B iff a < b, a < x and x < b holds for all
a ∈ A \B, b ∈ B \A and x ∈ A ∩B.

Fishburn’s operator relaxes Kelly’s condition by allowing
an ‘overlap’, as long as all elements that are just in A are
ordered below all elements in B and all elements that are
just in B are all ordered above all elements in A.

Definition 9 (Gärdenfors’s Extension). Let ≤ be a preorder
on a set X . Then for two non-empty A, B ⊆ X with A 6= B
define A ≺G B iff one of the following holds:

1. A ⊂ B and a < b for all a ∈ A and b ∈ B \A.
2. B ⊂ A and a < b for all a ∈ A \B and b ∈ B.
3. Neither A ⊂ B nor B ⊂ A and a < b for all a ∈ A \ B

and b ∈ B \A.

Intuitively, Gärdenfors’s operator ignores the intersection
of A and B completely and just demands that all elements
that are just in A are smaller than all elements that are just
in B (condition 3). This does not work if either A ⊆ B or
B ⊆ A, hence conditions 1 and 2 handle these cases.

Next we recall some further operators studied in the argu-
mentation literature, The following operator appears in Beir-
laen et al. (2018).

Definition 10. Let≤ be a preorder on a set X . Define�Dom
by A �Dom B iff for all a ∈ A there is a b ∈ B for which
a ≤ b and for all b′ ∈ B there is an a′ ∈ A for which
a′ ≤ b′.

This operator, which equals �Hoa ∩ �Smy, is often called
Plotkin’s operator (Brewka, Truszczynski, and Woltran
2010). It is not asymmetric. In the following, we will again
only consider the strict part of this operator.

In Beirlaen et al. (2018) two other operators are surveyed,
called ≺max-min and ≺min-min. We observe that, on finite sets,
the former equals Kelly’s extension, while the latter equals
Inverse Democratic.

The following operator, called Disjoint Elitist (DEli)
is studied by Young, Modgil, and Rodrigues (2016)
and Dyrkolbotn, Pedersen, and Broersen (2018), which
gives intuitive results in certain scenarios.

Definition 11. Let≤ be a preorder on a set X . Define≺DEli
by A ≺DEli B iff ∃a ∈ A \B s.t. ∀b ∈ B \A we have a < b.

Observe that this operator is not transitive in the gen-
eral case. Consider elements a, b, c, d such that a < b and
c < d. Then, this operator implies {a, c} ≺DEli {b, c} and
{b, c} ≺DEli {b, d} but {a, c} 6≺DEli {b, d}. For using this
operator further restrictions were imposed, but since we aim
for general operators, we do not include operators that are
non-transitive in the general case in our study.

Finally, we consider the famous lexicographic order, see
e.g. (Fishburn 1974). Usually, the lexicographic order is only

≺K

≺glex

≺F

≺G

≺Eli

≺IDem

≺Hoa

≺Dom≺IEli

≺Smy

≺Dem

≺IEli∪≺Eli

Figure 2: Relationship between operators. Arrow from op-
erator a to b means a is contained in b. Dotted arrows for
relationships that hold by definition.

defined if we have a linear order on X . However, we observe
that one way of defining the lexicographic order is A ≺lex B
iff min(A∆B) ∈ A. Here, ∆ is the symmetric difference
operator defined by A∆B = (A\B)∪ (B \A). This defini-
tion also makes sense if we only have a preorder on X and
hence can be used to generalize the lexicographic order to
that setting.

Definition 12 (Generalized Leximin). Let ≤ be a preorder
on a set X . Define ≺glex for two non-empty A, B ⊆ X by
A ≺glex B iff min(A∆B) 6= ∅ and min(A∆B) ⊆ A \B.2

It can be checked that ≺glex is a strict partial order and
equals the usual lexicographic order if ≤ is a linear order.
The leximax order could be generalized similarly. However,
under the leximax order a set is preferred to all its subsets. In
the argumentation domain, it is much more natural to prefer
less defeasible elements, hence we will focus mostly on the
leximin order.

4 Relations between Operators
We begin our formal analysis of the lifting operators by
showing their relationships. We present relations between
lifting operators ≺s, ≺t when lifted from the same under-
lying preorder ≤ over the same underlying set X . Then,
e.g., ≺s⊆≺t indicates that A ≺s B implies A ≺t B for all
A,B ⊆ X . For brevity, in the following formal statements
we tacitly assume presence of ≤ and X , without explicating
them. The results are summarized in Figure 2.

First it is well known (see, e.g., Brandt and Brill (2011)),
that we have ≺K⊆≺F⊆≺G. Moreover, as we will see, all
considered operators contain≺K, reflecting the very strict re-
quirement of Kelly’s operator. In particular, following from
the definitions, the following relationships hold.

Proposition 1. It holds that≺K⊆≺O forO ∈ {Eli, IEli,F}.
On the other hand, Elitist, and its inverse version do not

extend Fishburn’s operator, yet the union of Elitist and its
inverse version fully contains Fishburn’s operator.

Proposition 2. We find that ≺F 6⊆≺Eli, ≺F 6⊆≺IEli, and (≺Eli
∩ ≺IEli) 6⊆≺F, but ≺F ⊆ (≺Eli ∪ ≺IEli).

2Here, we define min(A) := {a ∈ A| 6 ∃b ∈ A s.t. b < a}
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The union≺Eli ∪ ≺IEli does not yield an interesting lifting
operator according to our requirements as it is not transitive.
Consider elements a, b, c, d, e such that a < c and c < d
and no other comparisons are possible. {a, b} ≺Eli {c} ≺IEli
{d, e} but neither {a, b} ≺Eli {d, e} nor {a, b} ≺IEli {d, e}.

In their definitions, Elitist and Democratic (and inverse
Elitist and Democratic operator) are dual by switching quan-
tifications. This is reflected in the following relation.

Proposition 3. We have ≺Eli⊆≺IDem and ≺IEli⊆≺Dem.

These inclusions are, in general, strict. Hoare’s and
Smyth’s operators extend this line of inclusions even further.

Proposition 4. We have ≺Dem⊆≺Hoa and ≺IDem⊆≺Smy.

Again, these inclusions are, in general, strict. On the other
hand, Gärdenfors’s operator is not comparable to any of
these operators.

Proposition 5. We find that ≺G 6⊆ (≺Hoa ∪ ≺Smy) and (≺Eli
∩ ≺IEli) 6⊆≺G.

Next we consider relations regarding ≺Dom. By defi-
nition, we have �Dom=�Hoa ∩ �Smy, but, nevertheless,
≺Dom 6⊆≺Hoa, as for a < b we have {a, b} ≺Dom {b} but
{a, b} ∼Hoa {b}. Similarly, ≺Dom 6⊆≺Smy.

Proposition 6. We have ≺Dom 6⊆≺Hoa, ≺Dom 6⊆≺Smy and
≺Dom 6⊆ (≺Eli ∪ ≺IEli) while ≺Eli 6⊆≺Dom and ≺IEli 6⊆≺Dom
and ≺F⊆≺Dom but ≺G 6⊆≺Dom 6⊆≺G.

That is, ≺Dom “branches off” from Fishburn’s operator,
but differently than Gärdenfors’s and the family of operators
for Democratic, Elitist, Hoare and their inverses.

Finally, we consider ≺glex, which extends Smyth’s and
Fishburn’s operators.

Proposition 7. We find that ≺glex is not contained in any
other operator, but≺IDem⊆≺glex and≺F⊆≺glex while, on the
other hand ≺Smy,≺G,≺IEli,≺Dom 6⊆≺glex.

Example 2. Let X = {a, b, c, d, e, f, g} and let ≤ be given
by a < c < e < g and b < d < e. Then, {a, b} ≺O {c, d}
holds for example for O = Dem or O = Hoa as a < c
and b < d holds. However, {a, b} 6≺IEli {c, d} as no el-
ement in {c, d} is preferred to all elements in {a, b}. In
contrast, {a, b} ≺K {e} as a, b < e and hence the same
holds for all operators. Now, {a, b} ≺O {e, f} holds for
O = IEli and hence also for O = Dem as a, b < e but not
for O = Smy as neither a ≤ f nor b ≤ f . Furthermore,
we have {a, b} 6≺glex {e, f} as f ∈ min({a, b}∆{e, f}).
Next, consider {a, c, e} ≺O {c, e}. It is easy to check that
this is satisfied for O = F and O = Eli but not by
O = Dem as there is no x ∈ {a, c, e} such that e < x.
Additionally, we have {a, c, e} ≺Dom {c, e} as a ≤ a, c, e
and a, c, e ≤ e holds, implying {a, c, e} �Dom {c, e} and
c, e 6≤ a implying {c, e} 6�Dom {a, c, e}. Finally, consider
{a, c, g} ≺O {a, e, g}. This only holds for O = glex and
O = G. In particular, {a, c, g} 6≺Dom {a, e, g} because
{a, c, g} �Dom {a, e, g} and {a, e, g} �Dom {a, c, g} hold.

5 Postulates on Lifting Operations
In this section, we will define several postulates on lifting
operators, discuss situations in which these postulates are

desirable and show several impossibility results. These pos-
tulates state properties that should be satisfied by an operator
≺ for all sets X and preorders ≤. For brevity, we again omit
in the postulates and formal statements the underlying order
≤ on X . In the following, we use A,B to denote non-empty
subsets of X . We summarize our findings in Table 1.

First of all, if we compare two sets of premises that both
contain only one premise, then we naturally expect the com-
parison between the sets to equal the comparison between
their single elements. This property is often called the exten-
sion rule or just extension (Barberà, Bossert, and Pattanaik
2004). All operators we consider satisfy this postulate.

Extension rule If A={x}, B={y} then A ≺ B iff x < y.

In most cases, we only want to set a preference between
two sets A and B if there is sufficient “reason” to do so: a
basic requirement is then that there is an element a in A and
an element b in B such that the preference between a and b
explains the preference between A and B.

Comparability A ≺ B implies ∃a ∈ A, b ∈ B s.t. a < b.

It is possible that in some situations we also accept other
“reasons” to prefer one set to another. For example, if we
value a small set of premises we could set A ≺ B whenever
B ( A or even |B| < |A|. Such operators would be, as we
call them, not (solely) comparison-based. The operators that
we consider that show such a behavior are ≺Hoa, ≺Smy and
≺glex, where ≺glex sets A ≺glex B whenever A ) B, ≺Hoa
sets A ≺Hoa B whenever A ( B and B 6�Hoa A, i.e., if
there is a b ∈ B such that b 6≤ a for all a ∈ A and ≺Smy sets
A ≺Smy B whenever A ) B and B 6�Smy A. Consequently,
these operators do not satisfy Comparability.

The following is a rephrasing from Modgil and Prakken
(2018), which if satisfied (together with irreflexivity and
transitivity) is a sufficient condition forming a class of
lifting operators satisfying further desirable properties in
ASPIC+.3

Reasonable inducing If (∪1≤i≤nAi) ≺ B then for some i,
1 ≤ i ≤ n, we have Ai ≺ B.

Within postulates to follow, an alternative name for this
would be weak left decomposition. It is interesting to note,
that reasonable inducing essentially rules out setting A ≺ B
for all B ( A (i.e., preferring proper subsets).

Proposition 8. If a strict partial order ≺ that is reasonable
inducing sets A ≺ B for all B ( A, then there are sets A
and B such that ∀a ∈ A∀b ∈ B, a < b but B ≺ A.

Hence,≺glex can not be reasonable including. We observe
that a generalization of the leximax order would be reason-
able inducing, which is possible as A ≺ B for all A ( B
does not contradict reasonable inducing.

We can strengthen reasonable inducing by turning the “for
some” into a “for all”.

Strong left decomposition If (∪1≤i≤nAi) ≺ B then for all
i, 1 ≤ i ≤ n, we have Ai ≺ B.

3In Modgil and Prakken (2018) the property is defined on argu-
ments, we rephrased it to the underlying set comparison.
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postulate Dem Eli IDem IEli Hoa Smy Dom K F G glex

Comparability X X X X x x X X X X x
Reasonable Inducing X X x X X x x X x x x
Strong Left Decomposition X x x X X x x X x x x
Weak Right Decomposition x X X X x X x X x x X
Strong Right Decomposition x X X x x X x X x x X
Left Extension X X X x X X X x x x X
Strong Left Extension x X X x x X x x x x X
Right Extension X x X X X X X x x x x
Strong Right Extension X x x X X x x x x x x
Strict Independence x x x x x x x x x x X
Responsiveness x x x x x x x x x X X
Left Dominance x X X x x X X x X X X
Right Dominance X x x X X x X x X X x

Table 1: Satisfaction of postulates

This is a very strong requirement and hence, it is surpris-
ing that several of our operators, including ≺Dem satisfy it.

Mirroring the preceding two postulates, the following
postulates allow us to decompose the right side of a pref-
erence relation.

Weak right decomposition If A ≺ (∪1≤i≤nBi) then for
some i, 1 ≤ i ≤ n, we have A ≺ Bi.

Strong right decomposition If A ≺ (∪1≤i≤nBi) then for
all i, 1 ≤ i ≤ n, we have A ≺ Bi.

These postulates are, in a formal sense, symmetric to the
left decomposition postulates.

Proposition 9. A strict partial order≺ satisfies weak/strong
left decomposition if and only if ≺−1 satisfies weak/strong
right decomposition.

It is possible to satisfy strong left and strong right decom-
position at the same time, as witnessed by Kelly’s operator.
However, Kelly’s operator is already the least restrictive op-
erator with this property.

Proposition 10. Assume ≺ is a strict partial order that sat-
isfies extension, strong right decomposition and strong left
decomposition. Then ≺⊆≺K .

In the other direction, we can look at conditions under
which we can add an element on the right or left side of
a preference. We consider three conditions. In the weakest
case, one can add an element if it is better/worse than all
elements on the other side. In the next case, one can add
an element if it is better/worse than at least one element on
the other side. Finally, we consider the case that one can
add an element without any condition.4 Related postulates to
strong left extension (LAMC) and strong right decomposi-
tion (RAMC) were studied by Heyninck and Straßer (2019).

Weak left extension If for all b ∈ B we have a < b, then
A ≺ B implies A ∪ {a} ≺ B.

4Many other cases are possible, for example adding elements
that are incomparable to all elements on the other side. However,
for the operators that we studied the given conditions turned out to
be the most interesting ones.

Left extension If there is a b ∈ B such that a < b, then
A ≺ B implies A ∪ {a} ≺ B.

Strong left extension A ≺ B implies A ∪ {a} ≺ B.
Weak right extension If for all a ∈ A we have a < b, then

A ≺ B implies A ≺ B ∪ {b}.
Right extension If there is a a ∈ A such that a < b, then

A ≺ B implies A ≺ B ∪ {b}.
Strong right extension A ≺ B implies A ≺ B ∪ {b}.

All operators that we consider satisfy weak left as well
as weak right extension. It turns out that Kelly’s operator is
the most restrictive operator that satisfies the extension rule,
weak left and weak right extension.
Proposition 11. Assume ≺ is a strict partial order that sat-
isfies the extension rule, weak left and weak right extension
Then ≺K⊆≺.

We observe that Proposition 10 and 11 together character-
ize Kelly’s operator.

The “left” versions of the preceding postulates have an
argumentative flavour, since adding a defeasible element can
be construed as weakening an argument; however scenarios
are feasible where one does not prescribe such a behavior,
and our postulates indicate potentially fitting operators.

We observe that strong left and strong right extension are
incompatible under very weak conditions.
Proposition 12. No strict partial order satisfies extension,
strong left extension, and strong right extension.

On the other hand, it is possible to satisfy strong right
extension together with left extension, as witnessed by the
Democratic operator. However, it could be argued that the
behavior of the Elitist operator (strong left extension and
weak right extension), Inverse Democratic and Smyth op-
erator (strong left extension and right extension) are more
desirable in certain argumentative contexts.

Next, we observe that it is not possible to satisfy strong
extension, comparability, and strong decomposition postu-
lates on the same side.
Proposition 13. No strict partial order satisfies extension,
comparability, strong right decomposition and strong right
extension at the same time.
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Now, we consider postulates from the social choice litera-
ture. First, we consider strict independence, a monotonic-
ity postulate that is desirable in many contexts (Barberà,
Bossert, and Pattanaik 2004) and the responsiveness postu-
late often considered in fair allocation (Aziz et al. 2015).
Strict independence If A ≺ B and x 6∈ A ∪ B, then A ∪
{x} ≺ B ∪ {x}.

Responsiveness If x ∈ A, y 6∈ A and x < y, then A ≺
(A \ {x}) ∪ {y}.
We observe the following:

Proposition 14. Any strict partial order that satisfies exten-
sion and strict independence also satisfies responsiveness.

Especially responsiveness can be appealing in the argu-
mentation contexts: replacing a defeasible element with a
more preferred one results in higher lifted preference. How-
ever, both postulates are hard to combine with the previously
discussed postulates.
Proposition 15. Let ≺ be a strict partial order that is rea-
sonable inducing and satisfies extension and comparability.
Then it is not possible that ≺ satisfies strong left extension
together with either strict independence or responsiveness.
Proposition 16. No strict partial order satisfies extension,
comparability and strong left decomposition together with
either strict independence or responsiveness.

Finally, we consider two dominance postulates, often
called Gärdenfors’s principle after Peter Gärdenfors who in-
troduced a version of this postulate in Gärdenfors (1976).
Left dominance Let A be a non-empty set and x ∈ X an

element. If x < y for all y ∈ A, then A ∪ {x} ≺ A.
Right dominance Let A be a non-empty set and x ∈ X an

element. If y < x for all y ∈ A, then A ≺ A ∪ {x}.
In the social choice literature both postulates are often

considered together as just dominance. A well known im-
possibility result by Barberà and Pattanaik (1984) tells us,
that both dominance axioms together are incompatible with
strict independence.
Proposition 17 (Barberà and Pattanaik 1984). There is no
strict partial order that satisfies strict independence, left
dominance and right dominance at the same time.

On the other hand, we observe that strong right extension
is incompatible with left dominance and vice versa.
Proposition 18. No strict partial order satisfies strong right
extension and left dominance. Similarly, no strict partial or-
der satisfies strong left extension and right dominance.

We already characterized Kelly’s operator (Proposition 10
and 11). As it turns out, the postulates that we consider also
suffice to characterize the Democratic as well as the Elitist
operator (and therefore also their mirrored versions).
Proposition 19. Let ≺ be a strict partial order that is rea-
sonable inducing and satisfies extension and strong right de-
composition. Then ≺⊆≺Eli.
Proposition 20. Let ≺ be a strict partial order that satis-
fies extension, strong left extension and weak right extension.
Then ≺Eli⊆≺.

Switching left and right gives a characterization of ≺IEli.
Proposition 21. Let ≺ be a strict partial order that sat-
isfies comparability and strong left decomposition. Then
≺⊆≺Dem.
Proposition 22. Let ≺ be a strict partial order that satis-
fies extension, strong right extension and left extension. Then
≺Dem⊆≺.

Switching left and right gives a characterization of≺IDem.

6 Related Work and Conclusions
The idea of ranking sets of objects based on a ranking of the
objects can be traced back at least to antiquity where humans
ordered words lexicographically (Daly 1967). In the social
choice community, interest in rankings sets of object was
sparked by investigating manipulability, e.g., by the famous
result by Gibbard (1973) and Satterthwaite (1975). The ax-
iomatic approach to the order lifting problem was mainly
studied in utility theory. First works were published from
the fifties onward (Kraft, Pratt, and Seidenberg 1959; Kim
and Roush 1980), including the seminal results by Kannai
and Peleg (1984) (see also Barberà, Bossert, and Pattanaik
(2004)). However, a usual assumption is that the underly-
ing order is total; which seems not plausibly to assume in
argumentation theory. Lifted orders are also required in fair
allocation, when one allocates according to ordinal prefer-
ences (Bouveret, Endriss, and Lang 2010; Aziz et al. 2015);
in this context responsiveness is often the only assumption.

There are several works in the argumentation literature
studying preferences (Beirlaen et al. 2018): in abstract ar-
gumentation (e.g., Amgoud and Vesic (2011, 2014)) and in
structured argumentation (e.g., Modgil and Prakken (2018);
Young, Modgil, and Rodrigues (2016); Čyras and Toni
(2016); Wakaki (2017)). General axiomatic studies (Am-
goud 2014; Dung 2016; Dung and Thang 2018; Liao
et al. 2016) and studies of rationality (Caminada 2018)
were presented, as well. Properties of liftings were studied
by Dyrkolbotn, Pedersen, and Broersen (2018), Heyninck
and Straßer (2019), and D’Agostino and Modgil (2020), but,
to our knowledge, there is no study like ours in argumenta-
tion that collects a wide variety of operators and postulates,
and studies implications, impossibility and characterization
results.

In particular, we show that there are two important fami-
lies of operators of increasing strength, from Elitist to Smyth
and from Inverse Elitist to Hoare, while all other operators
branch off differently from Fishburn’s operator. Moreover,
Kelly’s operator turns out the best choice when only un-
equivocal preferences should be taken into account. We ob-
serve that the set of postulates satisfied by Elitist seems par-
ticularly desirable for applications in argumentation, but its
extensions Inverse Democratic and Smyth are not reasonable
inducing and hence less useful in ASPIC+. Finally, Smyth
and the generalized lexicographic order are sensible candi-
dates for operators that are not solely comparison-based, for
example if small sets are valued highly.

For future work, both studying further postulates as well
as impact of applying lifting operators on argumentative ac-
ceptance in structured argumentation appear intriguing.
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