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Abstract
Techniques for learning logic programs from data typically
rely on language bias mechanisms to restrict the hypothesis
space. These methods are therefore limited by the user’s ability
to tune them such that the hypothesis space is simultaneously
large enough to include the target program but small enough to
admit a tractable search. We propose a technique to learn Dat-
alog programs from input-output examples without requiring
the user to specify any language bias. It employs an evolu-
tionary search strategy that mutates candidate programs and
evaluates their fitness on the examples using an off-the-shelf
Datalog interpreter. We have implemented our approach in
a tool called GENSYNTH and evaluate it on diverse tasks from
knowledge discovery, program analysis, and relational queries.
Our experiments show that GENSYNTH can learn correct
programs from few examples, including for tasks that require
recursion and invented predicates, and is robust to noise.

1 Introduction
The problem of learning logic programs from input-output
data has been widely studied in artificial intelligence, formal
methods, and machine learning. Such programs offer a vari-
ety of benefits by virtue of being explainable, interpretable,
generalizable, verifiable, and composable.

Datalog (Abiteboul, Hull, and Vianu 1994), a logic pro-
gramming language, is commonly targeted due to its rich
expressivity, declarative rule-based semantics, and efficient
implementations. In this setting, the input-output data are
specified in the form of tuples over finite relations; the goal
is to synthesize a Datalog program that, when executed on
the given input tuples, produces the given output tuples.

Figure 1 shows an example task in which the input data
is a binary relation edge encoding edges in a directed graph,
and the output data is a binary relation scc representing pairs
of nodes in the input graph that belong to the same strongly
connected component (SCC). A correct and concise solution
is the following recursive program:

path(x,y) :- edge(x,y).
path(x,y) :- edge(x,z), path(z,y).
scc(x,y) :- path(x,y), path(y,x).

The first rule defines the base case for the predicate path,
*Both authors contributed equally to the paper.
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(a)

Input tuples (EDB)

edge (3, 4)

edge (4, 5)

edge (5, 3)

· · ·

(b)

Output tuples (IDB)

scc (3, 3) scc (4, 3)

scc (3, 4) scc (4, 5)

scc (3, 5) · · ·
scc (4, 4)

(c)
Figure 1: Example of a directed graph (a) and its representa-
tion as a set of tuples (b). An edge from x to y is represented
as tuple edge(x,y). The goal is to realize relation scc(x,y),
indicating that x and y belong to the same SCC in graph (a).

stating that any edge from x to y implies a path from x to y.
The second rule defines the inductive step for path: an edge
from x to z and a path from z to y implies a path from x to
y. Finally, the third rule states that a path from x to y and a
path from y to x implies that x and y are in the same scc.

Note that this solution is non-trivial, as it is a recursive
program requiring complex joins and an invented predicate
path. An invented predicate is a hidden intermediate concept
often necessary for synthesis but not specified in the schema
or input-output example.

Existing approaches to this problem are broadly classified
into Inductive Logic Programming (ILP), e.g. Metagol (Mug-
gleton 1991); Answer Set Programming (ASP), e.g. ILASP3
(Law 2018); program synthesis, e.g. ProSynth (Raghothaman
et al. 2020); and neural learning, e.g. NTP (Rocktäschel and
Riedel 2017). Despite using notably different search tech-
niques, however, all of these approaches rely on various lan-
guage bias mechanisms or restrictions on expressiveness to
limit the hypothesis space. We draw comparisons between
various contemporary tools in Table 1.

Approaches with significant language bias mechanisms,
such as metarules (Metagol), candidate rules (ProSynth), or
templates (NTP) run quickly only under a carefully crafted
small set of these entities, hereafter called templates. This be-
lies the considerable user burden of authoring the templates
which then fundamentally biases the tool toward a specific
subset of programs that the author has in mind. Since the
runtime of these template-based tools become impractical
far before they can consider a large sample space, these ap-
proaches are critically limited by the user’s ability to strike
a balance when providing templates: too many and the tool
times out, too few and it fails to synthesize a solution.
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Metagol ProSynth NTP ILASP3 Popper GenSynth
Hypotheses Definite Datalog Datalog ASP Definite Datalog

Language bias Metarules Candidate rules Templates Modes None None
Predicate invention 3 # # # 7 3

Recursion 3 3 3 3 3 3
Noise handling 7 7 3 3 3 3

Table 1: Comparison of state-of-the-art tools. Metagol and Popper can also synthesize Datalog programs since Datalog programs
are definite. GenSynth and Metagol support automatic predicate invention, whereas ProSynth, NTP, and ILASP3 only support
prescriptive predicate invention, in which the schema of all invented predicates are specified.

For example, consider the metarules that Metagol needs to
synthesize scc:

metarule([P,Q],[P,A,B],[[Q,A,B]]).
metarule([P,Q,P],[P,A,B],[[Q,A,C],[P,C,B]]).
metarule([P,Q,Q],[P,A,B],[[Q,A,B],[Q,B,A]]).

There are hundreds of possible metarules of this length, and
without substantial background information about the prob-
lem or knowledge of a potential solution, it would be ex-
tremely difficult to craft a small set of templates that con-
tains these three rules. In practice, even the ordering of the
metarules significantly impacts Metagol’s performance; of-
tentimes an unlucky ordering will result in Metagol timing
out. When using rule enumeration techniques, tuning the hy-
perparameters of an enumerator for a specific benchmark to
guide the search space is still time consuming and difficult.
ProSynth times out on the SCC task when the enumerator
is not provided with benchmark-specific hyperparameters
obtained either through knowledge of the solution or through
tedious trial and error. Finally, template-based neural ap-
proaches, such as NTP, fare no better. NTP requires the user
to specify not only templates, but how often a template rule
should be instantiated and suffers from the same bias and
runtime issues as the other approaches.

ILASP3 does not require metarules, but still has language
bias in the form of modes, which restrict how often predi-
cates may appear in a clause. Furthermore, ILASP3 is biased
due to its support of prescriptive invented predicates; it can
only synthesize invented predicates if their schema has been
specified in advance. Given that it is not always obvious if an
invented predicate is even needed, this is a non-trivial task
(Cropper, Dumancic, and Muggleton 2020). Under the hood,
ILASP3 first generates candidate rules before running the
search algorithm, so it is burdened by the same issues that
afflict Metagol, ProSynth, or NTP. In practice, ILASP3 takes
about 4 times longer on SCC than GENSYNTH, even after we,
within ILASP, explicitly specify the arity and typing of the
path invented predicate and enable the anti-reflexive
and positive settings.

Popper has no language bias but it cannot handle predicate
invention. Thus its search space is limited not by its language
bias but by its severe restrictions on expressiveness. Popper is
not publicly available for comparison but would not be able
to synthesize at least 12 of the 42 noise-free benchmarks in
our evaluation which need invented predicates.

Our Approach. We introduce GENSYNTH1, a template-
free end-to-end Datalog synthesis tool. By end-to-end, we

1Available at https://jonomendelson.github.io/gensynth/

mean that only an input-output example and input-output
schema are provided; in our case, there are no templates,
meta-rules, meta-programs, or modes to specify. Furthermore,
GENSYNTH automatically synthesizes invented predicates
and is therefore free from the bias introduced by approaches
that use prescriptive invented predicates. Despite such an
unconstrained search space, GENSYNTH is able to gener-
ate small and interpretable solutions to Datalog problems,
including non-trivial ones like scc.

We frame the synthesis task as a search problem through
the space of Datalog programs—a very complex surface with
a sparse fitness function and riddled with local minima. We
depict the algorithm by following one program throughout
the run using the SCC example in Figure 2. The algorithm
consists of an accretion phase, where accretions mutate a
program until it has the desired fitness, and a reduction phase,
where reductions mutate the program decreasing its size but
maintaining its fitness. The accretion phase is inspired, in
part, by how humans write programs: they start with a simple
piece of code and make small changes each time they desire
a new feature or encounter a bug.

Our first insight is to combine the search with the rule gen-
eration, which occurs implicitly as a result of the mutations.
This allows us to prune most of the search space dynamically
as the algorithm progresses rather than pruning the search
space manually up front, as in template-based approaches.
For example, the set of programs explored at generation A4
is very highly constrained; all offspring of this program are
similar to the parent. This is a good way to constrain the
search space, since we have learned by A4 that this space of
programs is likely to have a high fitness. This constrained
search space then makes it much more likely that we reach
the program with fitness 1.0 found at generation A5.

Another insight is to use mutations to traverse a very com-
plex and coarse surface in an effective way. Differentiable
approaches such as Difflog (Si et al. 2019) or neural ap-
proaches using SGD struggle as they become trapped in local
minima. Using mutations, which only slightly modify the
program, makes it likely that a parent and offspring have
similar fitness scores, but mutations strung together allow for
leaps over local minima.

We also aim to maximize throughput; bottom-up tools
like ProSynth that run thousands of candidate rules simul-
taneously suffer from poor scalability as they overwhelm
the Datalog interpreter. GENSYNTH, on the other hand, runs
mostly very small programs. It further maximizes throughput
by considering only the space of valid programs and taking
advantage of its parallelism.
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Gen. Program F1 Mutation
A0 c1: scc(x, y) :- edge(x, y). 0.3429 Recurse on c1 to create c′1, c2 and c3. Swap on c′1 to create c′′1 .

A1
c′′1 : scc(x, y) :- inv(y, x).
c2: inv(x, y) :- edge(x, y).
c3: inv(x, y) :- inv(z, y), edge(x, z).

0.6667 Append Literal to c′′1 to create c′′′1 . Append Clause to create c4.

A2

c′′′1 : scc(x, y) :- inv(y, x), inv(x, y).
c2: inv(x, y) :- edge(x, y).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c4: scc(x, y) :- edge(x, y).

0.9259 Extend on c′′′1 to create c′′′′1 . Append Literal on c4 to create c′4.

A4

c′′′′1 : scc(x, y) :- inv(y, z), inv(x, y), inv(z, x).
c2: inv(x, y) :- edge(x, y).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c′4: scc(x, y) :- edge(y, x), scc(x, x).

0.9804 c′4 →∗ c′′4 as explained in box below. Append Clause to create c5.

A5

c′′′′1 : scc(x, y) :- inv(y, z), inv(x, y), inv(z, x).
c2: inv(x, y) :- edge(x, y).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c′′4 : scc(x, y) :- edge(x, z), scc(y, x), inv(z, x).
c5: inv(x, y) :- edge(x, y).

1.0

c′4: scc(x, y) :- edge(y, x), scc(x, x). [Swap]
scc(x, y) :- edge(x, y), scc(x, x). [Extend]
scc(x, y) :- edge(x, z), scc(x, x), inv(z, y). [Swap]

c′′4 : scc(x, y) :- edge(x, z), scc(y, x), inv(z, x).

Gen. Program F1 Mutation

R0

c1: scc(x, y) :- inv(y, z), inv(x, y), inv(z, x).
c2: inv(x, y) :- edge(x, y).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c4: scc(x, y) :- edge(x, z), scc(y, x), inv(z, x).
c5: inv(x, y) :- edge(x, y).

1.0 Remove Repeating Clauses to remove c2.

R2

c1: scc(x, y) :- inv(y, z), inv(x, y), inv(z, x).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c4: scc(x, y) :- edge(x, z), scc(y, x), inv(z, x).
c5: inv(x, y) :- edge(x, y).

1.0 Minimize Clauses to remove c4.

R4
c1: scc(x, y) :- inv(y, z), inv(x, y), inv(z, x).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c5: inv(x, y) :- edge(x, y).

1.0 Minimize Arguments on c1 to create c′1 (z → y).

R5
c′1: scc(x, y) :- inv(y, y), inv(x, y), inv(y, x).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c5: inv(x, y) :- edge(x, y).

1.0 Minimize Literals on c′1 to create c′′1 .

R8
c′′1 : scc(x, y) :- inv(x, y), inv(y, x).
c3: inv(x, y) :- inv(z, y), edge(x, z).
c5: inv(x, y) :- edge(x, y).

1.0

Figure 2: Sequence of mutations by GENSYNTH in the accretion (A0-A5) and reduction (R0-R8) phases for the SCC example.

Finally, the reduction phase is crucial for interpretability,
as illustrated in Figure 2. While in generation A5 we have
derived a correct program, it is difficult to understand, has ves-
tigial code, and may even overfit the example. The reduction
phase, by syntactically and possibly semantically modifying
the program, aims to reduce the size of the candidate solution
without compromising on its correctness.

In summary, these insights together make GENSYNTH
very effective at quickly synthesizing highly expressive, in-
terpretable programs without language bias.

2 Algorithm
Formally, GENSYNTH takes as input a set of relation schemas
R which is divided into the input relations Rin ( R, and
an output relation rout ∈ R. The schema of each relation
r(T1, T2, . . . , Tk) describes its arity k and the types of each
column Ti. The training data consists of a set of input tuples
I which populate the input relations, a set of desirable output
tuples O+, and a set of undesired output tuples O− such
that O+ ∩O− = ∅. Finally, it also takes as input the fitness
threshold 0 ≤ fT ≤ 1. If successful, it returns a Datalog

program with the desired fitness value on the training data.
We note that the synthesized program may reference invented
relations rinv /∈ R.

As discussed in Section 1, GENSYNTH consists of an ac-
cretion phase where it discovers an initial target program
with the desired fitness score, followed by a reduction phase
in which it attempts to reduce the size of the learned pro-
gram. We describe these algorithms in Algorithms 2 and 3
respectively. Informally, both procedures are instances of
evolutionary algorithms (Fogel 2006) which repeatedly ap-
ply mutations to a population of candidate programs, until
they discover a program with the desired properties—with
adequate fitness score, and with minimal size, respectively.

Throughout the algorithm, we ensure that all programs
in the population remain valid programs. Each clause in a
valid program must be well-typed, such that the arguments
respect the schema of the relations, grounded, such that all
arguments that appear in the head must appear at least once in
the body, and connected, where all literals must have at least
one argument which can be chained, directly or indirectly to
some argument of the head.
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Algorithms 1, 2, and 3 are designed to maintain these
invariants throughout execution.

2.1 Clause Generation, Accretion, and Reduction
Recall that the accretion algorithm repeatedly mutates the
programs in the population until it achieves the desired fitness
score. It starts with a list of c seed programs, each of which
is a small valid program generated by an invocation of the
CreateClause method, formally defined in Algorithm 1. In
each generation, it selects the best-performing s · c programs,
where 0 < s < 1, and repeatedly mutates each selected pro-
gram to restore the population size. Each mutation is itself a
sequence of n elemental mutations, described in Section 2.3.

The CreateClause procedure is a three-phase process: It
starts with the schema of the output relation, and fixes the
list of relations appearing in the body of the clause by greed-
ily picking input relations which can bind as many output
variables as possible. It then walks through the list of literals,
and randomly assigns variable names while ensuring that all
conditions for a valid program are met. This algorithm is
used to generate the seed programs, in Step 2 of Algorithm 2,
as well as in the Append Clause mutation as described in
Section 2.3. While it is possible that the seeds generated by
the CreateClause procedure may be isomorphic, subsequent
mutations in Algorithm 2 will cause them to diverge.

Next, observe that the reduction algorithm closely follows
the structure of the accretion phase, with a few notable dif-
ferences. First, while the initial programs of Algorithm 2 are
randomly generated by calls to the CreateClause method,
the reduction algorithm initializes its population with c copies
of p̂. It follows that the population of programs is therefore a
list with possible duplicates rather than a classical set. Second,
it sorts the programs by size rather than by fitness score in
Equation 2, with the condition that all programs have fitness
scores surpassing the threshold. The purpose of the reduc-
tive mutations is therefore to reduce the size of the learned
program, rather than necessarily improve fitness. Third, at
each step, it applies the reductive mutations to generate an
offspring program that has never been included in the popu-
lation before. Finally, in contrast to the accretive mutations,
which maintain or increase the size of the program, the re-
ductive mutations reduce or maintain the size of the program
to which they are applied. We catalog these mutations in Sec-
tion 2.3. As a result, it is a self-limiting process guaranteed to
terminate in Step 2c, when the 1-step reductions are unable
to discover any as-yet-unseen offspring.

2.2 Population-Specific Fitness Functions
One curious aspect of Algorithm 2 is that different popula-
tions use different values of β to track the programs under
consideration. More precisely, for each population, we sam-
ple β′ ∼ ( 0, 1) uniformly at random between 0 and 1. Then
with probability 0.5, we choose β = β′, and with probability
0.5, we choose β = 1/β′.

Recall that the training data consisted of the input tuples
I , desired output tuples O+, and undesired output tuples O−.
Consider a program p which, when applied to the input tuples
I , produces the output tuples p(I) = O, with TP = |O∩O+|
true positives. In this case, its fitness score Fβ(p) is defined

Algorithm 1 CreateClause(Rin, rhead). Given the set of in-
put relations Rin, and the output relation rhead, produces a
valid clause C that is as short as possible and includes only
input relations in the body.

1. Let C have head rhead and an empty body. Introduce fresh
arguments for rhead. Let Ahead contain these arguments.

2. Literal phase:
(a) Let Aug be the set of arguments of rhead that cannot

be grounded by any literal in the body of C. Initially,
Aug := Ahead.

(b) Repeat while Aug 6= ∅:
i. Select a relation r ∈ Rin where r allows the largest

possible number of arguments in rhead to be grounded
(breaking ties at random). Let A be a maximal set of
arguments that r can ground in Aug .

ii. Add r to the body of C without setting the arguments
and update Aug := Aug −A.

3. Argument phase:
(a) Let Abody contain all the arguments of all the literals in

the body of C, initally all unset arguments. Note that
Ahead only contains fresh arguments that are therefore
set. While there exists an unset argument ai ∈ Abody:

i. If there exists a previously set argument aj ∈ (Abody∪
Ahead) such that ai and aj are of the same type, with
probability 0.5 set ai := aj .

ii. If Step 3(a)i does not set ai, fix a fresh argument in ai.
4. Validity phase:

(a) While there exists a literal ri unconnected with rhead,
select arguments ai from ri and aj from (Abody∪Ahead)
uniformly at random such that their types match and aj
is not in ri. Update ai := aj .

(b) While there exists an ungrounded argument ai ∈ Ahead,
select an argument ab of the same type uniformly at
random from the body. Update ab := ai.

as the β-weighted harmonic mean of its precision TP/|O|
and recall TP/|O+|:

Fβ(p) =
(1 + β2) ∗ TP

|O ∩ (O+ ∪O−)|+ β2 ∗ |O+| (3)

As different populations are using slightly different fitness
functions, it reduces the chance of all populations simulta-
neously getting stuck in local maxima. Regardless of this,
Step 3c of Algorithm 2 allows the procedure to terminate
only if the F1 score of the program exceeds the cutoff.

2.3 Mutations
In this section, we describe the six accretive mutations and six
reductive mutations used by Algorithms 2 and 3, respectively.
Crucially, the mutations are designed such that the offspring
produced by any mutation is necessarily a valid program as
defined in the introduction to Section 2.

A candidate program is a collection of Datalog clauses of
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Algorithm 2 Accrete(R, I,O+, O−, fT ). Given a set of re-
lation names R and training data (I,O+, O−), returns a pro-
gram p̂ with fitness score F1(p̂) ≥ fT .
Run b independent populations in parallel. Within each, do:

1. Choose the fitness function Fβ as described in Section 2.2.
2. Initialize the list of seed programs P with c calls to the

randomized CreateClause(Rin, rout) method.
3. Repeat forever:

(a) Selection event: Sort the programs p ∈ P in descend-
ing order of their fitness scores Fβ(p), and update:

P := [P1, P2, . . . , Pbs·cc], (1)

where s is the fraction of programs which survive each
selection event, and c is a user-provided limit on the
population size.

(b) Proliferation sub-phase: Produce (1− s)/s offspring
for each program p ∈ P :

i. Select the number of mutations n to be applied to p by
sampling from a distribution, n ∼ B (defined in the
supplementary material).

ii. Initialize p0 = p, and for each i ∈ N, let pi+1 :=
Mutate(pi).

iii. Update: P := P ∪ {pn}.
(c) Termination: If there is a program p̂ ∈ P such that

F1(p̂) ≥ fT , terminate all populations and return p̂.

the form r0:-r1, ..., rn, where ri is a relation with arguments
(a1, ..., ak).

Accretive Mutations. Step 3b of Algorithm 2 applies a se-
quence of accretive mutations to produce offspring in each
generation. These mutations aim to increase the size of the
candidate program.

1. Append Clause: Create a new clause using the
CreateClause method and append this clause to the can-
didate program.

2. Append Literal: Randomly pick a clause. Append a
random input, invented, or output literal to the body of
this clause. When assigning arguments to the new literal,
choose fresh and existing arguments with equal probability
such that the clause is valid.

3. Extend: Randomly pick a clause r0 :- r1, ..., ri, ..., rn,
and within this clause, randomly pick a literal ri with
arguments (ai0, ..., aik, ..., aim). Introduce a fresh argu-
ment ai′k. Append a random input, invented, or out-
put literal rj to the body of this clause with arguments
(aj0, ..., aik, ..., ai

′
k, ..., ajp). Replace argument aik with

ai′k such that ri has arguments (ai0, ..., ai′k, ..., aim). The
resulting clause is r0 :- r1, ..., ri, ..., rn, rj .

4. Swap: Randomly pick a clause. Swap the location of two
randomly chosen arguments in the body of the clause.

5. Invent: Randomly pick a clause and randomly select a
literal from the body of the clause, where the clause is

Algorithm 3 Reduce(R, I,O+, O−, fT , p̂). Returns a re-
duced program p∗ such that F1(p

∗) ≥ F1(p̂).
Run b independent populations in parallel. Within each, do:

1. Initialize the list of seed programs P with c copies of p̂.
2. Repeat forever:

(a) Selection event: Let P ′ = [p ∈ P | f(p) ≥ fT ] be the
list of programs with acceptable fitness scores. Sort the
programs in increasing order of their size, and update:

P := [P ′1, P
′
2, . . . , P

′
k], (2)

where k = min(bs · cc, |P ′|), and as before, s is the
fraction of programs which survive each selection event.

(b) Proliferation sub-phase: Repeat (1 − s)/s times for
each program p ∈ P :

i. Choose a random mutation type m and let Mp,m be
the set of 1-step mutants obtained by applying m to p.

ii. Let the set of ancestors, C be the set of all programs
which inhabited P at any time.

iii. If Mp,m 6⊆ C, pick a mutant p′ ∈Mp,m \C uniformly
at random, and append p′ to P .

(c) Termination: If no new programs were added during
the proliferation sub-phase, then terminate this popula-
tion, and return the smallest program p ∈ P .

Let pi be the program returned by the i-th population. Let p∗
be the smallest program in {p1, p2, . . . , pb}. Return p∗.

r0:-r1, ..., ri, ..., rn and ri is a randomly selected literal.
Replace ri with a new invented predicate rinv that has the
same schema and arguments as ri such that the original
clause becomes r0:-r1, ..., rinv, ..., rn. Add a new clause
to the program rinv:-ri with head rinv and body ri.

6. Recurse: Randomly pick a clause and randomly select
a literal from the body of the clause, where the clause is
r0:-r1, ..., ri, ..., rn and ri is the randomly selected literal.
Replace ri with a new invented predicate rinv that has the
same schema as ri such that the original clause becomes
r0 :- r1, ..., rinv, ..., rn. Then add two new clauses:

(a) One “base case” clause where rinv:-ri.
(b) One “recursive step” clause where rinv:-ri, rinv such

that ri contains at least one argument appearing in the
head and rinv and ri share a newly introduced argument
that does not appear in the head.

Observe that the Invent mutation can only synthesize in-
vented predicates whose schemas coincide with that of an
input or output relation. While this is indeed a limitation, we
have never encountered a task in practice that has required
an invented predicate with a distinct schema.

Note also that the accretive mutations are designed such
that the algorithm will eventually reach a consistent solution
with probability 1 if such a solution exists, given a large
enough choice of the peak mutation length. This follows
from the observations that: (a) any clause which is currently
producing undesired output tuples can be deactivated by ap-
pending sufficiently many literals, and (b) any target clause
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can be created by a suitable combination of the Append
Clause and Append Literal mutations.

Reductive Mutations. Step 2b of Algorithm 3 applies a
sequence of reductive mutations to produce offspring each
generation. These mutations aim to simplify the candidate
program by decreasing its size.

1. Remove Repeating Clauses: If the candidate program
contains two identical clauses, remove one of the clauses.

2. Remove Repeating Literals: If there exists some clause
with two identical literals with identical arguments, remove
one of the literals.

3. Reduce Invented Predicate: Randomly pick a clause
r0:- r1, ..., rinv, ..., rn such that rinv is a non-recursive,
one-clause invented predicate where rinv:- ir1, ..., irk.
Replace rinv in the body of the clause with the
body of rinv so that the original clause becomes r0:-
r1, ..., ir1, ..., irk, ..., rn. Update arguments in the new
clause appropriately so that the original and new programs
are semantically equivalent.

4. Minimize Clauses: Randomly pick a clause and remove
it from the candidate program.

5. Minimize Literals: Randomly pick a clause. Within the
body of the clause, randomly pick a literal and remove it
from the clause.

6. Minimize Arguments: Randomly pick a clause. Ran-
domly choose two arguments that appear in the clause,
ai and aj , where ai 6= aj . Replace all instances of aj with
ai throughout the clause.

The first three mutations above are equivalence-preserving
and therefore do not alter the overall fitness score of the
candidate programs. The remaining mutations, which remove
clauses, literals, and arguments, may alter the fitness score
of the candidate programs. However, Algorithm 3 ultimately
only applies mutations such that the fitness score is either
preserved or improved.

3 Evaluation
In this section, we experimentally evaluate GENSYNTH with
respect to the following criteria:

1. Effectiveness: How does GENSYNTH compare to exist-
ing approaches that use different kinds of language bias?

2. Generality: How does GENSYNTH perform on diverse
tasks compared to a state-of-the-art approach?

3. Robustness: How does GENSYNTH perform on noisy
data compared to a state-of-the-art approach?

4. Scalability: How does GENSYNTH scale with the size of
the data and the amount of available parallelism?

All experiments were run on a Ubuntu 18.04 server with an
18 core Intel Xeon 3 GHz processor and 394 GB memory.
We use the following hyperparameters in our experiments:

1. Number of populations: b = 32.
2. Population size: c = 50.
3. Selection ratio: s = 0.2.

4. Number of mutations in each step: n ∼ B, where B =
Bin(n, p) is a binomial distribution with n = b15c1c2c
and p = 0.3. Both c1 and c2 are sampled uniformly at
random between 0 and 1.

3.1 Effectiveness
We study the effectiveness of GENSYNTH at learning non-
trivial Datalog programs compared to three contemporary ap-
proaches: Metagol, a meta-interpretive learning system using
a top-down Prolog interpreter; ProSynth, a program synthe-
sizer using a bottom-up Datalog interpreter; and ILASP3, an
inductive Answer System Program learning system.

Setup. We compare these tools on Andersen, a popular
program analysis for statically reasoning about pointer alias-
ing in programs written in languages like C and Java. The
task consists of 4 input relations and 19 input-output tuples.
Since Andersen is noise-free, we require a solution with an
F1 score of 1.0. We choose Andersen as a representative
from the 42 tasks used in Section 3.2 as its solution consists
of multiple recursive clauses, making it a challenging task:

pt(x,y) :- addr(x,y).
pt(x,y) :- assgn(x,z), pt(z,y).
pt(x,y) :- load(x,z), pt(z,w), pt(w,y).
pt(x,y) :- store(z,w), pt(z,x), pt(w,y).

As previously stated, Metagol and ILASP3 require a choice
of metarules and are further influenced by either the choice
of orderings of rule bodies or mode declarations. So we use
a single representative benchmark for this comparison as it
would be difficult to fairly set up these tools across 42 tasks.

Methodology. We compare the time taken by GENSYNTH,
Metagol, ProSynth, and ILASP3 on Andersen. We describe
each tool’s instantiation using as (n, r, t) where n is the num-
ber of templates, r is the number of times the tool was run,
and t is the number of runs that timed out in 1 hour.

Metagol’s runtime depends on the ordering of the tem-
plates. We thus provide it with the exact four templates
needed to learn the solution but order the predicates of each
template differently. We run ProSynth with the 64 templates
used in (Raghothaman et al. 2020). We also run it with a more
natural set of templates generated using the algorithm from
(Si et al. 2018), which constructs them by mutating a small
number of chain rule templates. Lastly, ILASP3 requires a
search space of templates induced via mode declarations that
specify how many times each predicate can occur in a rule’s
body. We run it with 28,237 templates—the minimum num-
ber possible via mode declarations. The templates used by
ProSynth and ILASP3 were grounded, whereas the metarules
used by Metagol were not.

Results. The results are shown in Figure 3. GENSYNTH
does not time out on any of its 8 runs and synthesizes the
solution within 5 minutes on average. On the other hand,
Metagol times out on 54 out of the 72 runs, despite providing
it with the minimum set of templates. ProSynth is able to
synthesize the solution quickly when using 64 templates, but
its performance suffers with the larger choice of templates.
ILASP3 solves the benchmark in 48 minutes on average.
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Figure 3: Results of the effectiveness experiment using n
templates over r runs, of which t runs timed out in one hour.
Observe that Metagol times out on 54 out of 72 runs.

Figure 3 also shows that the running time of template-
based approaches is heavily influenced by the choice of tem-
plates, and effectively requires the user to tune them. For
instance, the running time of Metagol varies by two orders
of magnitude based on the ordering of templates, and that
of ProSynth increases by three orders of magnitude in going
from the smaller to the larger choice of templates.

3.2 Generality
A key benefit of language bias mechanisms is the ability to
tailor them to tasks in different application domains. In this
section, we investigate how GENSYNTH performs on diverse
tasks in the absence of such mechanisms, compared to a state-
of-the-art approach. We choose ProSynth as this baseline
since it is faster than Metagol and ILASP3, as demonstrated
in Section 3.1. Since all tasks in this section are noise free,
we require solutions with an F1 score of 1.0. We run both
GENSYNTH and ProSynth using the same Datalog interpreter,
Souffle (Jordan, Scholz, and Subotić 2016).

Setup. We compare GENSYNTH and ProSynth on 42 tasks
from three different domains: 17 knowledge discovery tasks
frequently used in the artificial intelligence and database
literature, 11 common program analysis tasks for statically
reasoning about C or Java programs, and 15 relational query
tasks from (Wang, Cheung, and Bodik 2017) based on Stack
Overflow posts and textbook examples. Of these 42 tasks, 13
are recursive, and 12 require invented predicates.

Methodology. We overcome the differences in dependen-
cies between ProSynth and GENSYNTH as follows. In addi-
tion to requiring templates, ProSynth requires the signatures
of invented predicates, unlike GENSYNTH, which synthesizes
them automatically. So we provide ProSynth with a number
of advantages: we enumerate all well-typed templates up
to a certain bound, we provide ProSynth with correct sig-
natures for invented predicates, and we hand-craft settings
for the template enumeration algorithm for each task so as
to produce the minimum number of templates that allow to
synthesize the intended solution. Finally, we simulate paral-
lelizing ProSynth by taking the minimum of 32 runs.

Results. Figure 4 compares GENSYNTH and ProSynth in
terms of (a) running time and (b) quality of synthesized
programs. We observe, from Figure 4a, that GENSYNTH

synthesizes programs faster than ProSynth on all 42 tasks.
Most notably, GENSYNTH, which never times out, has a clear
advantage once the tasks become more difficult, as ProSynth
times out on 11 out of the 42 tasks.

Interpretability is a major advantage of program synthesis
approaches; producing small and easily readable programs
is a large part of their usefulness. We observe from Figure
4b that GENSYNTH always produces a program with fewer
than 10 predicates, and always returns a smaller solution than
ProSynth. Note that we define program size as total number
of atoms that appear in the body of each rule in the program.
This shows that ProSynth often overfits on the data given
to it and produces uninterpretable programs. GENSYNTH’s
reduction phase is a large part of the reason why it produces
such interpretable programs, and, on average, it accounts for
a 43% decrease in the size of programs.

For instance, compare GENSYNTH’s program for SCC:

inv(x,y) :- edge(x,y).
inv(x,y) :- inv(x,z), edge(z,y).
scc(x,y) :- inv(x,y), inv(y,x).

an easily interpretable solution, with that of ProSynth’s:

scc(x,z) :- scc(x,y), inv(x,z).
inv(z,x) :- scc(x,y), inv(z,y).
inv(x,z) :- edge(x,y), inv(y,z).
scc(y,x) :- edge(x,y), inv(y,x).
scc(x,y) :- edge(x,y), scc(y,x).
inv(z,x) :- edge(x,y), edge(z,x).
scc(y,z) :- scc(x,y), inv(x,z).

which is nearly triple in size and highly overfits the task.
Thus we see that GENSYNTH not only produces programs

more efficiently, but produces higher quality programs. De-
spite a lack of templates, it is able to solve a diverse range of
tasks. On the other hand, template-based approaches often
timeout when too many templates are provided, and even
when a program is synthesized, it is potentially of poor qual-
ity due to high syntactic bias.

3.3 Robustness
We investigate whether GENSYNTH is resilient to noise and
how its resilience compares to existing approaches. Neural
approaches naturally handle noise, so we compare it to a state-
of-the-art neural approach, the Neural Theorem Prover (NTP).
NTP is a differentiable learning system based on dense vector
representations of symbols. We do not compare to Metagol
or ProSynth as they are both unable to handle noise.

Setup. We use the Countries benchmark as it is the most
difficult of the NTP benchmarks (Rocktäschel and Riedel
2017). It consists of 244 countries, 23 subregions, 5 re-
gions, and 1,158 geographical facts (locatedIn(x,y) and
neighborOf(x,y)). The countries are split into 198 train-
ing, 24 validation and 24 testing countries. This data was
obtained from NTP’s GitHub repository, and we use the
same sets of present and missing data for both tools. How-
ever, since GENSYNTH is type-conscious, we further par-
tition the locatedIn relation into locatedInCR(c,r),
locatedInSR(s,r), and locatedInCS(c,s) where c is
a country, r is a region, and s is a subregion. Note that we
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(a) GENSYNTH v/s ProSynth running times. (b) GENSYNTH v/s ProSynth program sizes. (c) Results of the scalability experiment.

Figure 4: Results for the generality and scalability experiments.

NTP GENSYNTH

F1 Score Time (s) F1 Score Time (s)
S1 1.0 245.45 1.0 14.06
S2 0.7586 328.63 0.8936 3.05
S3 0.7547 1660.48 0.8888 684.82

Table 2: Comparison of F1 scores and time taken for solving
the Countries benchmark by NTP and GENSYNTH.

cannot use any of the 42 benchmarks introduced in Section
3.2, as they have solutions that perfectly fit the example and
are therefore noise-free.

Methodology. The Countries benchmark contains 3 sub-
problems, S1, S2, and S3, that contain increasing amounts
of naturally occurring noise as a result of there being no
reasonable solution that perfectly fits the data. To increase
the amount of noise, increasing numbers of facts are removed
from S1, S2 and S3. Hence, for each subproblem, the solvers
must fill in larger and larger gaps.

In S1, all ground atoms locatedInCR(c,r) where c is
a test country and r is the region are removed. In S2, in addi-
tion to S1, all ground atoms locatedInCS(c,s) where c
is a test country and s is a subregion are removed. In S3, in
addition to S2, all ground atoms locatedInCR(c,r) where
c is a training country neighboring a test or validation coun-
try and r is a region are removed. In all sub-problems, the
positive examples are all pairs (c, r) in locatedInCR such
that c is a train or validation country and r is a region. The
negative examples are all pairs (c, r) not in locatedInCR
such that c is a train or validation country and r is a region.

For our comparison, we run GENSYNTH and NTP on the
same machine as described in Section 3, but additionally use
an Nvidia 2080 Ti GPU for NTP’s scalable implementation
(Minervini et al. 2018). We compare the F1 scores of the
results produced by GENSYNTH and NTP on the test coun-
tries as well as the time taken for the respective tools. Both
GENSYNTH and NTP were run 8 times and we consider the
median of those runtimes.

Results. While the F1 score for S1 is expected to be 1.0,
problems S2 and S3 only admit solutions with a lower F1
score. Table 2 shows that GENSYNTH outperforms NTP on
S2 and S3 while taking less time. A closer look reveals that
the difference in F1 scores, especially in S3, is mainly due to

the fact that NTP is restricted by templates provided to it:

3 #1(X,Y):- #1(Y,X).
3 #1(X,Y):- #2(X,Z),#2(Z,Y).
3 #1(X,Y):- #2(X,Z),#3(Z,Y).
3 #1(X,Y):- #2(X,Z),#3(Z,W),#4(W,Y).

These templates, which specify variable bindings and even
how often each will be instantiated, were crafted to perfectly
match the following expected solution:
neighborOf(x,y) :- neighborOf(y,x).
locatedIn(x,y) :- locatedIn(x,z), locatedIn(z,y).
locatedIn(x,y) :- neighborOf(x,z), locatedIn(z,y).
locatedIn(x,y) :- neighborOf(x,z),

neighborOf(z,w), locatedIn(w,y).

However, the expected solution is not, in fact, globally op-
timal. Since GENSYNTH is not dependent on templates, it
finds the following more optimal solution, which also scores
a higher F1 score on the test dataset:
locatedInCR out(x,y) :- neighborOf(z,x),

locatedInCS(z,w), locatedInSR(w,y).
locatedInCR out(x,y) :- locatedInCR(x,y).

3.4 Scalability
We next investigate how GENSYNTH’s running time is af-
fected by the size of the input-output data and the number of
threads. Again, since we test on a noise-free benchmark, we
require a solution with an F1 score of 1.0.

Setup. We consider the SCC benchmark from the set of 42
tasks described in Section 3.1. This benchmark contains one
relation Edge with 10 tuples. We use SCC since it is easier
to control its size while still remaining a complex benchmark
requiring recursion and invented predicates.

Methodology. We create three variants of the SCC bench-
mark: 1x, 10x, and 100x, containing 10, 100 and 1,000 tuples
respectively, the latter two variants representing unions of
multiple disjoint graphs. We then run each of these variants
using different numbers of threads, each 8 times, and take
the median of these 8 runs. We require that all runs simulate
the same number of populations so that the quality of result
is not affected. Note then that runs with fewer threads must
simulate some populations in sequence.

Results. Figure 4c shows the result of this experiment. We
observe that GENSYNTH scales very well over size of input-
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output data, with only about a 5x slowdown in synthesis time
for an 100x increase in input-output data size. Almost all
of this slowdown occurs in the Datalog interpreter, Souffle,
which generally accounts for over 90% of the running time
of GENSYNTH. Since GENSYNTH only interacts with the
output of the interpreter, it is possible to use faster interpreters
than Souffle to better handle large input-output data.

We also observe that GENSYNTH benefits from its par-
allelism immensely; since populations can be run indepen-
dently of one another, we are able to consider many more
candidate programs than non-parallelizable approaches.

3.5 Limitations
We discuss some limitations of GENSYNTH in aspects of ex-
pressiveness, termination, and efficiency. First, GENSYNTH
does not support aggregation operations (e.g., sum and
count) nor negation, although such operations could be incor-
porated as carefully crafted mutations with some effort. Sec-
ond, as Algorithm 2 indicates, it runs until it finds a solution
with an F1-Score above the desired threshold. This means
that GENSYNTH is potentially non-terminating, especially
in cases where a solution above the threshold does not exist.
However, we have not experienced such non-termination in
practice. Third, GENSYNTH incurs heavy resource consump-
tion due to its significant use of parallelization. Moreover,
since GENSYNTH interacts with a Datalog solver, a signifi-
cant amount of time is spent in I/O processing.

4 Related Work
Cropper, Dumancic, and Muggleton (2020) provide a com-
prehensive survey of the relevant literature over the last
three decades. We briefly discuss and compare representative
works in ILP, ASP, program synthesis, and neural learning.
Genetic Approaches. The idea of using genetic approaches
for program synthesis has been explored in previous works.
For example, (Wong and Leung 1997) alters the deriva-
tion tree of the current candidate program at each step with
cross-over being the primary genetic operation. (Tamaddoni-
Nezhad and Muggleton 2002) starts with a seed clause and
considers mutations which merge variables. This can be seen
as a more sophisticated version of our minimize arguments
mutation. On the other hand, both these approaches require
some form of background knowledge and lack a reduction
phase, which GENSYNTH uses as a regularization mechanism
to prevent the synthesized program from overfitting. Finally,
(Wu 2019) describes several directions for future research,
such as learning of existential rules, rules with negation and
aggregation, and selection of the fitness function.
ILP and ASP. ILP techniques take besides input-output ex-
amples the background knowledge in the form of a logic
program. They target Prolog which is more expressive than
Datalog. Older ILP systems such as FOIL and Progol work by
bottom clause construction (Muggleton 1995) and struggle
to synthesize recursive programs, especially from few exam-
ples. Modern ILP systems such as Metagol overcome this
limitation by using meta-interpretive learning (Muggleton,
Lin, and Tamaddoni-Nezhad 2015) but require the user to
provide templates. Lastly, compared to GENSYNTH, Metagol
supports higher-order programs, but cannot handle noise.

ASP programs are declarative akin to Datalog programs
but more expressive. Modern ASP systems such as ILASP
(Law, Russo, and Broda 2020) and FastLAS (Law et al. 2020)
can handle noise, but still require language bias in the form
of mode declarations, which also specify a recall—the maxi-
mum number of times that declaration can be used in each
rule. Popper (Cropper and Morel 2020), a more recent system
which combines ILP with ASP, requires predicate declara-
tions for invented predicates and cannot handle noise.

Program Synthesis. These techniques are based on enumer-
ative search, such as ALPS (Si et al. 2018), or constraint
solving, such as Zaatar (Albarghouthi et al. 2017), or hy-
brid, such as ProSynth (Raghothaman et al. 2020). ALPS
and ProSynth search for the target program as a subset of
templates whereas Zaatar encodes the templates as an SMT
formula whose solution yields the target program. Besides
the language bias, they cannot handle noise, and cannot ex-
ploit parallelism as easily as GENSYNTH. GENSYNTH also
produces smaller and more interpretable programs. On the
other hand, these techniques are more efficient at learning
from failures and pruning the search space than GENSYNTH.

Neural Learning. Recent works cast logic program synthe-
sis as a neural learning problem in order to handle tasks that
involve noise or require subsymbolic reasoning. These works
differ from GENSYNTH in a few key aspects.

NeuralLP (Yang, Yang, and Cohen 2017), NLM (Dong
et al. 2019), and ∂ILP (Evans and Grefenstette 2018) model
relation joins as a form of matrix multiplication, which lim-
its them to binary relations. NTP (Rocktäschel and Riedel
2017) constructs a neural network as a learnable proof (or
derivation) for each output tuple up to a predefined depth
(e.g. ≤ 2) with a few (e.g. ≤ 4) templates, where the network
could be exponentially large when the depth or number of
templates grows. The predefined depth and a small number
of templates could significantly limit the class of learned
programs. In contrast, GENSYNTH can synthesize programs
with relations of arbitrary arity, and supports rich features like
recursion and predicate invention. Lastly, neural approaches
face challenges of generalizability and data efficiency.

Difflog (Si et al. 2019) overcomes the above hurdles but
scales poorly by reasoning about all candidate programs si-
multaneously, which not only overwhelms the Datalog solver
but also requires MCMC-based random sampling to avoid
being stuck in local minima in the complex search surface.

5 Conclusion
We proposed a technique and tool, called GENSYNTH, to
learn Datalog programs from input-output examples. GEN-
SYNTH overcomes the need for the user to tune language
bias mechanisms or restrict expressiveness. It employs an
evolutionary search strategy that effectively navigates the
unconstrained space of programs by mutating them and eval-
uating their fitness on the examples using an off-the-shelf
Datalog interpreter. We demonstrated the ability of GEN-
SYNTH to learn correct programs in diverse domains from
few examples, including for tasks that require recursion and
invented predicates, and in the presence of noise.
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