
Parameterized Complexity of Small Decision Tree Learning

Sebastian Ordyniak1 and Stefan Szeider2

1University of Leeds, School of Computing, Leeds, UK
2Algorithms and Complexity Group, TU Wien, Vienna, Austria

sordyniak@gmail.com, stefan@szeider.net

Abstract

We study the NP-hard problem of learning a decision tree
(DT) of smallest depth or size from data. We provide the first
parameterized complexity analysis of the problem and draw
a detailed parameterized complexity map for the natural pa-
rameters: size or depth of the DT, maximum domain size of
all features, and the maximum Hamming distance between
any two examples. Our main result shows that learning DTs
of smallest depth or size is fixed-parameter tractable (FPT)
parameterized by the combination of all three of these param-
eters. We contrast this FPT-result by various hardness results
that underline the algorithmic significance of the considered
parameters.

Introduction
Decision Trees have proved to be extremely useful tools
for the description, classification, and generalization of
data (Larose 2005; Murthy 1998; Quinlan 1986). Because
of their simplicity, decision trees are particularly attractive
for providing interpretable models of the underlying data, an
aspect whose importance has been stronly emphasized over
the recent years (Darwiche and Hirth 2020; Doshi-Velez and
Kim 2017; Goodman and Flaxman 2017; Lipton 2018; Mon-
roe 2018). In this context, one prefers small trees (trees of
small size or small depth), as they are easier to interpret
and require fewer tests to make a classification. Small trees
are also preferred in view of the parsimony principle (Oc-
cam’s Razor) since small trees are expected to generalize
better to new data (Bessiere, Hebrard, and O’Sullivan 2009).
However, learning small trees is computationally costly: it
is NP-hard to decide whether a given data set can be rep-
resented by a decision tree of certain size or depth (Hyafil
and Rivest 1976). In view of this complexity barrier, several
constrained-based and SAT-based methods have been pro-
posed for learning small decision trees (Bessiere, Hebrard,
and O’Sullivan 2009; Narodytska et al. 2018; Avellaneda
2020; Schidler and Szeider 2021).

In this paper, we investigate the problem of finding small
decision trees (w.r.t. size or depth) under the framework of
Parameterized Complexity (Downey and Fellows 2013; Got-
tlob, Scarcello, and Sideri 2002; Niedermeier 2006). This

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

framework allows us to achieve a more fine-grained and
qualitative analysis, revealing properties of the input data in
terms of problem parameters that provide runtime guaran-
tees for decision tree learning algorithms. The key notion
of Parameterized Complexity is fixed-parameter tractabil-
ity (FPT) which generalizes the classical polynomial time
tractability by allowing the running time to be exponen-
tial in a function of the problem parameters while remain-
ing polynomial in the input size (we provide more detailed
definitions in Section). Fixed-parameter tractability cap-
tures the scalability of algorithms to large inputs as long
as the problem parameters remain small. Several key prob-
lems that arise in AI have been studied in terms of their
fixed-parameter tractability, including Planning (Bäckström
et al. 2012), SAT and CSP (Bessière et al. 2008; Gaspers
et al. 2014), Computational Social Choice (Bredereck et al.
2017), Machine Learning (Ganian et al. 2018), and Argu-
mentation (Dvorák, Ordyniak, and Szeider 2012).

For decision tree learning, we consider parameterizations
of the following two fundamental NP-hard problems:

MINIMUM DECISION TREE SIZE (DTS): we are given
a set of examples, labeled positive or negative, each over a
set of features; each feature f ranges over a linearly ordered
range of possible values, and an integer s (for size). The task
is to decide whether there exists a decision tree with at most
s tests or report that no such tree exists. Each test determines
whether a certain feature is below a certain threshold or not.

MINIMUM DECISION TREE DEPTH (DTD) is defined
similarly, where instead of the bound s on the total num-
ber of tests, a bound d (for depth) on the number of tests on
any root-to-leaf path is provided.

For technical reasons, we define the problems as decision
problems; however, all our algorithms are constructive in the
sense that if they decide DTS or DTD affirmatively, then
they can output a witnessing decision tree; otherwise, they
report that a decision tree of the required size or depth does
not exist.

For both problems, it is natural to include the solution size
(i.e., s for DTS and d for DTD, respectively) as a parame-
ter, since our objective is to learn decision trees where these
values are small. Another natural parameter is the number of
different values a feature ranges over, we refer to this num-
ber as the maximum domain size (Dmax). It is reasonable to
assume this number to be small, as many features are even

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6454

Name |E| |F | δmax

Append-tis 106 531 14
Australian 690 1164 24
Backache 180 476 31
Car 1728 22 12
Cancer 683 90 18
Colic 368 416 43
Cleve 303 396 23
Haberman 300 93 6

Name |E| |F | δmax

Heart-statlog 270 382 23
Hepatitis 155 362 34
HouseVotes 435 17 16
Hungarian 294 331 24
New-thyroid 215 335 10
Promoters 106 335 106
Shuttle 14500 692 18
Spect 250 23 22

Table 1: Boolean classification instances from Narodytska
et al. (2018) with their number of examples |E|, the number
of features |F |, and their maximum difference δmax. The in-
stances originate from the UCI Machine Learning Reposi-
tory (Dua and Graff 2017).

Boolean or have a small range (e.g., temperature in a city).
As a first result (Theorem 2), we show that taking solution

size and maximum domain size as parameters alone does
not yield fixed-parameter tractability), even if all the features
are Boolean. The hardness follows by a reduction from the
HITTING SET (HS) problem. Hence one needs an additional
parameter that restricts the input. Following the principle of
deconstruction of intractability (Komusiewicz, Niedermeier,
and Uhlmann 2011; Fellows, Jansen, and Rosamond 2013),
we observe that when the hitting set instance consist of sets
of bounded size, then HS becomes fixed-parameter tractable.
Bounded set size for HS corresponds to a bound on the num-
ber of features two examples with a different classification
can disagree in. We call this number the maximum differ-
ence δmax of the classification instance. What makes this
parameter even more attractive is that it is small for standard
benchmark instances (see Table 1).

Our main positive result (Theorem 8) establishes that, in-
deed, adding the maximum difference as additional parame-
ter to solution size and maximum domain size renders both
problems, DTS and DTD, fixed-parameter tractable. The al-
gorithm consists of two main parts, namely, identifying a
small set of features used by an optimal decision tree (fea-
ture selection) and finding an optimal decision tree that uses
only a small set of features. Both of these steps are non-
trivial and provide interesting insights for our understanding
of decision trees in general. For instance, the feature selec-
tion part shows that only a small subset of all features needs
to be considered to find an optimal decision tree. Similarly,
the second part of our algorithm also shows that the same
holds true for the set of thresholds; while the number of
thresholds in the input instance can grow with the input size,
only a small subset of them needs to be considered to find
an optimal decision tree.

The diagram in Figure 1 visualizes the parameterized
complexity landscape spanned out by the three parameters
under consideration (solution size, maximum domain size,
and maximum difference). The diagram shows that, without
maximum difference included in the parameterization, nei-
ther of the problems is fixed-parameter tractable.

Those parameterizations that do not yield fixed-parameter
tractability can be split into two categories: one where the

fixed-parameter
tractable (FPT)

XP-tractable

paraNP-hard

W[2]-hard
XP-tractable

sol + δmax +Dmax

sol + δmax sol +Dmax δmax +Dmax

sol δmax Dmax

∅

Figure 1: Diagram of the parameterized complexity
of DTS and DTD when parameterized by subsets of
{s, δmax, Dmax} and {d, δmax, Dmax}, where sol = s for
DTS and sol = d for DTD. The stated parameterized com-
plexity results apply to all the combinations of parameters
that are in the same area indicated by the same color.

problems DTS and DTD are already NP-hard when the pa-
rameters are fixed to a constant (paraNP-hard, in terms of
Parameterized Complexity), and those where the problems
are solvable in polynomial-time when the parameters are
fixed to a constant (XP-tractable, in terms of Parameterized
Complexity).

Preliminaries
Classification problems An example e is a function e :
feat(e)→ D defined on a finite set feat(e) of features and a
possibly infinite linearly ordered domain D ⊂ Z. For a set
E of examples, we put feat(E) =

⋃
e∈E feat(e). We say that

two examples e1, e2 agree on a feature f if f ∈ feat(e1), f ∈
feat(e2) and e1(f) = e2(f). If f ∈ feat(e1), f ∈ feat(e2)
but e1(f) 6= e2(f), we say that the examples disagree on f .

A classification instance (CI) (or just instance)E = E+]
E− is the disjoint union of two sets of examples, where for
all e1, e2 ∈ E we have feat(e1) = feat(e2). The examples
in E+ are called positive, the examples in E− are called
negative. A set X of examples is uniform if X ⊆ E+ or
X ⊆ E−; otherwise X is non-uniform.

Given a CI E, a subset F ⊆ feat(E) is a support set of
E if any two examples e1 ∈ E+ and e2 ∈ E− disagree in
at least one feature of F . Finding a support set of minimal
size, denoted by MSS(E), for a classification instance E is
an NP-hard task (Ibaraki, Crama, and Hammer 2011, The-
orem 12.2). For two examples e and e′ in E, we denote by
δ(e, e′) the set of features where e and e′ disagree and we
denote by δmax(E) = maxe+∈E+∧e−∈E− |δ(e+, e−)| the
maximum difference between any non-uniform pair of ex-
amples. For a feature f ∈ feat(E), we denote by DE(f)
the set of domain values for f appearing in any example
of E, i.e., DE(f) = { e(f) | e ∈ E } and we set Dmax

to be the maximum size of DE(f) over all features of E,
i.e., Dmax = maxf∈feat(E) |DE(f)|. If Dmax = 2 the
CI is called Boolean or a partially defined Boolean func-

6455

temp rain time day walk

37 1 10 3 E−

68 0 60 2 E+

53 1 60 4 E−

53 0 15 2 E−

60 0 60 5 E+

51 0 40 3 E+

71 0 35 5 E+

temp, 50◦ F

− rain, 0

time, 30 min −

− +

≤ >

≤ >

≤ >

Figure 2: A CI with seven examples over four features
(temp, rain, time, day), classifying on whether one walks to
work or not, and a DT for it.

tion (Ibaraki, Crama, and Hammer 2011).
We denote by E[α] the set of examples in E that agree

with the assignment α : F ′ → D, where F ′ ⊆ feat(E),
i.e., E[α] = { e | e(f) = α(f) ∧ f ∈ F ′ }. For the
complexity analysis we set the input size ‖E‖ of a CI E
to |E| · (|feat(E)|+ 1) · logDmax.

Decision trees A decision tree (DT) (or classification tree)
is a rooted tree T with vertex set V (T) and arc set A(T),
where each non-leaf node (called a test) v ∈ V (T) is labeled
with a feature feat(v) and an integer threshold λ(v), each
non-leaf node v has exactly two outgoing arcs, a left arc and
a right arc, and each leaf is either a positive or a negative
leaf. We write feat(T) = { feat(v) | v ∈ V (T) }.

Consider a CI E and a decision tree T with feat(T) ⊆
feat(E). For each node v of T we define ET (v) as the set
of all examples e ∈ E such that for each left (right, re-
spectively) arc (u,w) on the unique path from the root of
T to v we have e(feat(u)) ≤ λ(u) (e(feat(u)) > λ(u), re-
spectively). T correctly classifies an example e ∈ E if e
is a positive (negative) example and e ∈ ET (v) for a pos-
itive (negative) leaf. We say that T classifies E (or simply
that T is a DT for E) if T correctly classifies every example
e ∈ E. An example for a CI E and a possible DT for E are
illustrated in Figure 2. The size of T , denoted by |T |, is the
number of non-leaf nodes (tests) in T and the depth of T , de-
noted by dep(T), is the maximum number of non-leaf nodes
(tests) in any root-to-leaf path of T . DTS (and DTD) are
now the problems of deciding whether for a given CI E and
an integer s (d), there is a DT for E of size at most s (depth
at most d).

Observation 1. Let T be a DT for a CI E, then feat(T) is a
support set of E.

Proof. Suppose for a contradiction that this is not the case
and there is an example e+ ∈ E+ and an example e− ∈
E− such that e+ and e− agree on all features in feat(T).
Therefore, e+ and e− are contained in the same leaf node
of T , contradicting our assumption that T is a DT.

Parameterized Complexity
We give some basic definitions of Parameterized Com-
plexity and refer for a more in-depth treatment to other

sources (Downey and Fellows 2013). Parameterized com-
plexity considers problems in a two-dimensional setting,
where a problem instance is a pair (I, k), where I is the
main part and k is the parameter (k can be composed of sev-
eral parameters, e.g., k = k1 + k2). A parameterized prob-
lem is fixed-parameter tractable (FPT-tractable) if there ex-
ists a computable function g such that instances (I, k) can
be solved in time g(k)‖I‖O(1). A parameterized problem
is XP-tractable if instances (I, k) can be solved in time
‖I‖g(k). There are different shades of parameterized hard-
ness. A problem is paraNP-hard if fixing the parameter
to a constant gives an NP-hard problem. Many parameter-
ized problems that are XP-tractable but not fixed-parameter
tractable are contained in the complexity classes of the Weft
hierarchy, W[1] ⊆ W[2] ⊆ Hardness for any of these
classes provides a strong theoretical evidence that a problem
is not fixed-parameter tractable. For DTS and DTD we con-
sider mainly the three parameters solution size (s for DTS
and d for DTD), maximum domain size Dmax, and maxi-
mum difference δmax.

Hardness Results
In this section we show our hardness results for DTS and
DTD, i.e., we will show that even restricted to Boolean in-
stances both problems are W[2]-hard parameterized by s or
d and they are paraNP-hard parameterized by δmax(E). Un-
derlying our hardness results is the following (polynomial-
time) reduction from the well-known HITTING SET prob-
lem, which given a family F of sets over some universe U
and an integer k asks whether F has a hitting set of size at
most k, i.e., a subset H of U of size at most k such that
F ∩ H 6= ∅ for every F ∈ F . The maximum arity ∆ of a
HITTING SET instance is the size of a largest set inF . For an
instance I = (F , U, k) of HITTING SET, we letE(I) be the
CI that has a (Boolean) feature for every element in U , one
positive example p with p(u) = 0 for every u ∈ U and one
negative example nF for every F ∈ F such that nF (u) = 1
for every u ∈ F and nF (u) = 0 otherwise.

Theorem 2. DTS parameterized by s and DTD parame-
terized by h are W[2]-hard, even for Boolean instances.

Proof. We use the polynomial-time reduction from HIT-
TING SET defined by E(I) with I = (F , U, k) together
with the fact that HITTING SET is W[2]-hard parameterized
by the size k of the hitting set (Downey and Fellows 2013).
Note that a set H of features of E(I) is a support set if and
only if H is a hitting set for I. Therefore, I has a hitting set
of size at most k if and only if E(I) has a support set of size
k. Because E(I) contains only one positive example, every
support set S gives rise to a DT whose depth and size are
equal to |S|. Together with Observation 1, this implies that
E(I) has a DT of depth/size at most k if and only if E(I)
has a support set of size at most k, which—as we showed
above—is the case if and only if I has a hitting set of size at
most k.

The same reduction also shows that DTS and DTD
are paraNP-hard parameterized by δmax(E), because

6456

δmax(E(I)) = ∆(I) and HITTING SET is NP-complete
even for ∆ = 2.

Theorem 3. DTS and DTD are paraNP-hard parameter-
ized by δmax(E).

The reduction also shows paraNP-hardness for other pa-
rameters such as min#(E) = min{|E+|, |E−|} and the
number of branching nodes of the resulting DT; a node is
a branching node if none of its children is a leaf. This is be-
cause min#(E(I)) = 1 and therefore it suffices to consider
only DTs for E(I) with 0 branching nodes.

Algorithms
In this section, we will provide our algorithmic results for
DTS and DTD. Namely, we will show that both problems
are fixed-parameter tractable parameterized by solution size
(s or d for DTS respectively DTD), δmax, and Dmax. To
complete the complexity map given in Figure 1, we will also
show that both problems can be solved in polynomial-time
when searching for a DT of constant size or depth. To sim-
plify the presentation, we will provide the result only for
DTS and defer the proof for DTD to the supplementary ma-
terial. The algorithm for our main result, i.e., the FPT-result,
consists of two main steps. In the first step, which we call
feature selection and which is provided in Subsection , we
show that one can efficiently enumerate all sets of features
such that every optimal DT only uses the features from one
of the sets. We then show that given such a set of features,
which is small since it can have size at most s, it is possible
to find an optimal DT that uses only those features. We start
with the second step of the algorithm.

An Algorithm for Instances with Few Features
This subsection is devoted to a proof of the following the-
orem, showing that one can efficiently compute a decision
tree T of minimum size that uses exactly the features of a
given support set S for a CI E. Note that the theorem actu-
ally shows that finding such an optimal decision tree is FPT
parameterized by sol only. This is strictly not required to
show our main result (Theorem 8), however, we find the re-
sult surprising, interesting in its own right, and believe that it
provides a first step towards giving an FPT-result solely for
sol + δmax(E).

Theorem 4. Let E be a CI, S ⊆ feat(E) be a support set
for E, and let s be an integer. Then, there is an algorithm
that runs in time 2O(s2)‖E‖1+o(1) log ‖E‖ and computes a
DT of minimum size among all DTs T with feat(T) = S and
size(T) ≤ s if such a DT exists;otherwise nil is returned.

First note that since feat(T) = S, we have that
k = |S| ≤ s and therefore the size of S, i.e., the number of
features that we need to consider for our DT T , is bounded
in terms of our parameter s. This implies that we can enu-
merate both the tree underlying the DT T but also the pos-
sible assignments of the nodes of T to features (because
there are at most k features) by brute-force; the details of
this procedure can be found in Lemma 5. Unfortunately, the
same is not true for obtaining the thresholds employed by

the DT, since the number of possible thresholds is poten-
tially as large as the input size. However, perhaps suprisingly
Lemma 6 shows that it is possible to find the thresholds ef-
ficiently. We start by introducing the necessary notions and
definitions.

We say that a tree T is a pseudo DT if T is a rooted or-
dered binary tree, where every non-leaf node of T has a left
and a right child, i.e., T has the same structure as a deci-
sion tree. Furthermore, we say that a function α is a feature
assignment for T , if α assigns a feature in feat(E) to every
non-leaf node v of T . Similarly, we say that a function γ is a
threshold assignment for T (and α), if γ assigns a threshold
in DE(α(v)) to every non-leaf node of T . Finally, we say
that a pair (T, α), where T is a pseudo DT and α is a feature
assignment for T can be extended to a DT for E, if there is
a threshold assignment γ for T and α such that T together
with feat = α and λ = γ is a DT for E.

Our first lemma shows that we can efficiently enumerate
all pseudo DTs and feature assignments if the size of the
DT and the set of features that the DT is allowed to use is
small. The lemma can essentially be shown by analysing the
number of pseudo DTs and feature assignments.

Lemma 5. Let E be a CI, S ⊆ feat(E) be a support set for
E with k = |S|, and let s be an integer with s ≥ k. Then,
there is an algorithm that enumerates all pairs (T, α) such
that T is a pseudo DT of size at most s and α is a feature
assignment for T with α(T) = S in time O(ss).

Our next lemma shows that we can efficiently compute
a threshold assignment for a given pseudo DT and feature
assignment.

Lemma 6. Let E be a CI, let T be a pseudo DT of depth
d and let α be a feature assignment for T . Then, there is
an algorithm that runs in time O(2d

2/2‖E‖1+o(1) log ‖E‖)
and decides whether the pair (T, α) can be extended to a DT
for E.

Proof Sketch. Let r be the root of T with f = α(r) hav-
ing left child cl and right child cr. Then, (T, α) can be ex-
tended to a DT for E if and only if there is a threshold
t ∈ DE(f) for f such that: (1) (Tcl , α) can be extended
to a DT for E[(f ≤ t)], where Tcl is the subtree of T
rooted at cl and E[(f ≤ t)] is the set of all examples e in
E with f(e) ≤ t and (2) (Tcr , α) can be extended to a DT
for E[(f > t)], where E[(f > t)] is the set of all exam-
ples e ∈ E with f(e) > t. Therefore, the problem can be
reduced to finding the threshold t for the feature f of the
root r of T . Unfortunately, the number of possible thresh-
olds, i.e., the size of DE(f) can be large and it is there-
fore not possible to try every possible threshold. However,
as it turns out this is not necessary since the influence of
the threshold on the existence of an extension is in a cer-
tain sense monotone. Namely, it holds that if (Tcl , α) can
be extended to a DT for E[(f ≤ t)], then it can also be ex-
tended to a DT for E[(f ≤ t′)] for every t′ ≤ t. This is
because E[(f ≤ t′)] ⊆ E[(f ≤ t)] and therefore every DT
for E[(f ≤ t)] is also a DT for E[(f ≤ t′)]. An analogous
property holds for the right child cr of r, i.e., (Tcr , α) can

6457

Algorithm 1 Algorithm to compute the threshold assign-
ment for a pseudo DT and a feature assignment.
Input: CI E, pseudo DT T , feature assignment α for T
Output: threshold assignment λ for T such that T together with

feat = α and λ is a DT for E; if no such function exists, nil
1: function FINDTH(E, T , α)
2: r ← “root of T ”
3: if r is a leaf then
4: if E is not uniform then
5: return nil
6: return () . “()” is the empty assignment
7: f ← α(r); cl, cr ← “left child and right child of r”
8: t← BINARYSEARCH(E, T , α, cl, f)
9: λr ← FINDTH(E[f > t], Tcr , α)

10: if λr =nil then
11: return nil
12: λl ← FINDTH(E[f ≤ t], Tcl , α)
13: return (f = t) ∪ λl ∪ λr

Algorithm 2 Sub-routine BinarySearch used by Algo-
rithm 1.
Input: CI E, pseudo DT T , feature assignment α for T , feature f

of the root of T , left child cl of the root of T
Output: the largest threshold t in DE(f) for f such that (Tcl , α)

can be extended to a DT for E[f ≤ t]; if no such threshold
exists output the smallest value in DE(f) minus 1

1: function BINARYSEARCH(E, T , α, f , cl)
2: D ← “array containing all elements in DE(f) in

ascending order”
3: L← 0; R← |DE(f)| − 1; b← 0
4: while L ≤ R do
5: m← b(L+R)/2c
6: if FINDTH(E[f ≤ D[m]], Tcl , α) 6= nil then
7: L← m+ 1; b← 1
8: else
9: R← m− 1; b← 0

10: if b = 1 then
11: return D[m]

return D[m− 1] . assuming that D[−1] = D[0]− 1

be extended to a DT for E[(f > t)], then it can also be ex-
tended to a DT forE[(f > t′)] for every t′ ≥ t. Therefore, it
suffices to find the maximum threshold t ∈ DE(f) such that
(Tcl , α) can be extended to a DT for E[(f ≤ t)] and then to
check (only for this maximum threshold) that also (Tcr , α)
can be extended to a DT for E[(f > t)]. The big advan-
tage of this is that we can now use binary search to find the
largest threshold. This idea leads to the recursive algorithm
illustrated in Algorithm 1.

The run-time of Algorithm 1 can be obtained as the
number of recursive calls to findTH times the time re-
quired for one recursive call. The former can be bounded
by O((log ‖E‖)d) given that findTH calls itself at most
log ‖E‖ + 2 times for a decision tree of smaller depth. To-
gether with the fact that one recursive call needs time at most
O(‖E‖ log ‖E‖), we obtain the stated run-time.

Proof Sketch of Theorem 4. We first use Lemma 5 to enu-
merate all pairs (T, α) such that T is a pseudo DT of size at

most s and α is a feature assignment for T with α(T) = S
in time O(ss). Then, for every such pair (T, α), we employ
Lemma 6, to check whether the pair can be extended to a
DT for E. Finally, we return the DT T with feat = α and
λ = γ, where T is the smallest DT such that (T, α) can be
extended to a DT for E using the threshold assignment γ or
we return nil if no such pair (T, α) exists. The total run-
time of the algorithm is the time required by the algorithm of
Lemma 5 (O(ss)) times the time required by the algorithm
of Lemma 6 (O(2d

2/2(‖E‖)1+o(1) log ‖E‖), where d ≤ s).
Since this expression is dominated by the second term, the
total run-time is O(2s

2/2(‖E‖)1+o(1) log ‖E‖).

Feature Selection
Because of Theorem 4, we know that the problems can be
solved efficiently once we identified the right set of features.
Since they are at most O(|feat(E)|s) possible sets of fea-
tures for a DT of size at most s, we can already employ The-
orem 4 to solve DTS in polynomial-time if s is considered
to be constant.

Theorem 7. DTS and DTD are XP-tractable parameter-
ized by either s or s.

We show next that we can perform the feature selection
step significantly faster if Dmax + δmax are small, which
together with Theorem 4 will establish our FPT-result for
DTS.

Theorem 8. DTS and DTD are fixed-parameter tractable
parameterized byDmax +δmax(E)+s respectivelyDmax +
δmax(E) + d.

We start by showing that, given a CI E and an integer k,
it is possible to enumerate all (inclusion-wise) minimal sup-
port sets of size at most k for E. The result is based on a
well-known result for HITTING SET.

Corollary 9. Let E be a CI and let k be an integer. Then
there is an algorithm that in time O(δmax(E)k|E|) enumer-
ates all (of the at most δmax(E)k) minimal support sets of
size at most k for E.

Because of Observation 1, it holds that the set of features
of any DT forms a support set. One might be tempted to
think that any DT of minimum size or depth uses only fea-
tures contained in some inclusion-wise minimal support set
and that one could use this to find the set of variables used
by an optimal decision tree by enumerating over all mini-
mal support sets of a certain size using Corollary 9. Unfor-
tunately, the following lemma shows that this is not the case.

Lemma 10. There is a CI ED such that feat(T) is not a
minimal support set for any decision T of minimum depth.
Similarily, there is a CI ES such that feat(T) is not a mini-
mal support set for any decision T of minimum size.

Proof Sketch. Figure 3 shows a simple example for ED on
five Boolean variables a1, a2, b1, b2, and x. Note that the set
S = {a1, a2, b1, b2} is the only minimal support set for ED.
It is now straightforward to show that every DT for ED that
uses only the features S has depth at least 4; such a DT is
illustrated in Figure 3. However, ED has a DT of depth at

6458

a1 a2 b1 b2 x
0 0 0 0 0 T
0 1 0 0 0 F
1 0 0 0 0 F
1 1 0 0 0 T
0 0 0 0 1 T
0 0 0 1 1 F
0 0 1 0 1 F
0 0 1 1 1 T

a1

a2 a2

F TFb1

b2

TF

b2

FT

x

a1 b1

a2 a2

T F F T

b2 b2

T F F T

Figure 3: The CI ED used in Lemma 10 to show that the
set of features used by a DT of minimum depth is not nec-
essarily a minimal support set. ED has only one minimal
support set, i.e., the set M = {a1, a2, b1, b2}. The DT in the
centre shows a DT of minimum depth for ED that uses only
the features in M and the DT on the right shows the DT of
minimum depth for ED.

most 3 that additionally uses the variable x. The supplemen-
tary material contains the construction for ES .

Therefore, to solve DTS it is not sufficient to enumer-
ate minimal support sets. Nevertheless, because of Obser-
vation 1, we know that every DT T contains some minimal
support set, say S. Moreover, as we will show next, if T
has minimum size , then the set of features that T uses in
addition to the features in S (i.e., features in feat(T) \ S)
has a special property, which can be exploited to enumerate
all sets of features that can be used by any DT of minimum
size or depth. Namely, we say that a set R of features is use-
ful for a given support set S of E if for every assignment
β : R → D, there is an assignment α : S → D with
E[α] 6= ∅ but E[α ∪ β] = ∅. Informally, R is not useful
for S if at least one assignment of R leaves all equivalence
classes of S intact, where an equivalence class contains all
examples that have the same value for all features in S.

Lemma 11. Let T be a DT of minimum size for E and let
S be a support set contained in feat(T) (which exists due to
Observation 1). Then, the set R = feat(T) \ S is useful.

Proof. If R = ∅, then there is nothing to show. Hence, as-
sume that R 6= ∅ and suppose for a contradiction that the
statement of the lemma does not hold. Then, there is an as-
signment β : R → D such that E[α ∪ β] 6= ∅ for every
assignment α : S → D with E[α] 6= ∅. We will show a
contradiction to our assumption that T has minimum size.
To achieve this, consider the tree T ′ obtained from T as fol-
lows. (1) For every node t in T with f = feat(t) ∈ R and
λ = λ(t), let t′ be the left child of t if β(f) > λ and let t′
be the right child of t otherwise. Remove the subtree rooted
at t′ from T and let T ′′ be the tree obtained from T after
applying this step exhaustively. Note that every node t of T ′′
with feat(t) ∈ R has exactly one child node. (2) Let P be
a path of maximum length in T ′′ consisting only of nodes t
with feat(t) ∈ R. We obtain the tree T ′′|P by contracting
the path P in T , i.e., we remove all nodes on P from T ′′ and
add an edge between the unique parent and the unique child
of the two endpoints of P in T ′′. Then T ′ is the tree obtained
from T ′′ after exhaustively contracting all maximal paths P
in T ′′ that only consists of nodes t with feat(t) ∈ R.

Note that every non-leaf node t in T ′ has exactly two chil-
dren and moreover feat(t) ∈ S. We now show that T ′ is
also a DT for E, which, because R 6= ∅, contradicts our
assumption that T had minimum size. Suppose for a contra-
diction that T ′ is not a DT. Then there is a leaf l of T ′ such
that ET ′(l) is not uniform, i.e., it contains at least one ex-
ample from e+ from E+ and at least one example e− from
E−. Let α+ : S → D be the unique assignment agree-
ing with e+ on S, i.e., α+(f) = e+(f) for every f ∈ S,
and similarly let α− : S → D be the unique assignment
agreeing with e− on S. Then, E[α+] and E[α−] are non-
empty, E[α+], E[α−] ⊆ ET ′(l), and moreover because S
is a support set the former only contains positive examples
while the latter only contains negative examples. But then
E[α+ ∪ β] and E[α− ∪ β] are also non-empty and are con-
tained in ET (l′) for the unique leaf l′ in T corresponding to
l in T ′. Therefore, ET (l′) is not uniform, contradicting our
assumption that T is a DT for E.

We say that a set R0 is a branching set for S if every
useful set R for S contains at least one feature in R0. To
exploit Lemma 11, we will show next that we can efficiently
compute a small branching set for S. Consider an arbitrary
assignment β : R → D for some useful set R for S. Then,
becauseR is useful, there must be an assignment α : S → D
with E[α] 6= ∅ such that E[α ∪ β] = ∅. In other words, for
every example e in E[α], the set R must contain at least
one feature f for which e disagrees with β. Therefore, every
useful set has to contain at least one feature from the set
δ(e, β), i.e., the set of features where e disagrees with β.

Lemma 12. Let E(S) be an arbitrary set of examples that
contains exactly one example from E[α] for every assign-
ment α : S → D with E[α] 6= ∅. Then, every useful set
R for S has to contain at least one feature from the set⋃

e∈E(S) δ(e, β) for every β : R→ D.

Unfortunately, the set δ(e, β) for some e ∈ E(S) can be
arbitrary large in general (i.e., cannot be bounded by our
parameters). However, the following lemma shows that there
is a “global assignment” γ : feat(E) → D such that every
example inE disagrees with γ in at most 2δmax(E) features.

Lemma 13. Let E be a CI. Then, there is an assignment
γ : feat(E) → D such that every example e in E disagrees
with γ in at most 2δmax(E) features. Moreover, γ can be
computed in polynomial-time.

Proof Sketch. Setting γ(f) = e(f) for an arbitary example
e ∈ E is sufficient because any example in E can differ
from e in at most 2δmax(E) features.

Therefore, after setting β in Lemma 12 equal to the
global assignment γ from Lemma 13, we obtain that the set
{ δ(e, β) | e ∈ E(S) } contains at most 2δmax(E) features
for all (of the at most D|S|max) examples in E(S).

Lemma 14. There is a polynomial-time algorithm that
given a support set S computes a branching set R0 for S
of size at most D|S|max2δmax(E).

6459

Algorithm 3 Main method for finding a DT of minimum
size.
Input: CI E and integer s
Output: DT for E of minimum size (among all DTs of size at

most s) if such a DT exists, otherwise nil
1: function MINDT(E, d)
2: “compute γ using Lemma 13”
3: S ← ”set of all minimal support sets for E of

size at most s”
4: B ← nil
5: for S ∈ S do
6: T ← MINDTS(E, s, S)
7: if (T 6= nil) and (B = nil or |B| > |T |) then
8: B ← T
9: if B 6= nil and |B| ≤ s then

10: return B
11: return nil

Algorithm 4 Method for finding a DT of minimum size us-
ing at least the features in a given support set S.

Input: CI E, integer s, support set S for E with |S| ≤ s
Output: DT of minimum size among all DTs T for E of size at

most s such that S ⊆ feat(T); if no such DT exists, nil
1: function MINDTS(E, s, S)
2: B ← “compute a DT of minimum size for E using exactly

the features in S using Theorem 4”
3: R0 ← “compute the branching set R0 for S

using Lemma 14”
4: for f ∈ R0 do
5: T ← MINDTS(E, s, S ∪ {f})
6: if T 6= nil and |T | < |B| then
7: B ← T
8: if |B| ≤ s then
9: return B

10: return nil

Proof Sketch of Theorem 8. We start by presenting the algo-
rithm for DTS, which is illustrated in Algorithm 3 and Algo-
rithm 4. The algorithm for DTD is similar and can be found
in the supplementary material.

Given a CI E and an integer s, the algorithm returns a DT
of minimum size among all DTs of size at most s if such
a DT exists and otherwise the algorithm returns nil. The
algorithm starts by computing the global assignment γ in
polynomial-time using Lemma 13. The algorithm then com-
putes the set S of all minimal support sets for E of size at
most s, which because of Corollary 9 results in a set S of
size at most (δmax(E))s. In Line 5 the algorithm then inter-
ates over all sets S in S and calls the function minDTS given
in Algorithm 4 for E, s, and S, which returns a DT of mini-
mum size among all DTs T for E of size at most s such that
S ⊆ feat(T). It then updates the currently best decision tree
B if necessary with the DT found by the function minDTS.
Moreover, if the best DT found after going through all sets in
S has size at most s, it is returned (in Line 10), otherwise the
algorithm returns nil. Finally, the function minDTS given
in Algorithm 4 does the following. It first computes a DT
T of minimum size that uses exactly the features in S us-
ing Theorem 4. It then tries to improve upon T with the
help of useful sets. That is, it uses Lemma 14 to compute

the branching set R0. It then interates over all (of the at
mostD|S|max2δmax(E)) features v ∈ R0 (using the for-loop in
Line 4), and calls itself recursively on the feature set S∪{v}.
If this call finds a smaller DT, then the current best DT B is
updated. Finally, after the for-loop the algorithm either re-
turns B if its size is less then s or nil otherwise.

Towards showing the correctness of Algorithm 3, consider
the case thatE has a DT of size at most s and let T be a such
a DT of minimum size. Because of Observation 1, feat(T)
is a support set for E and therefore feat(T) contains a mini-
mal support set S of size at most s. Because the for-loop in
Line 5 of Algorithm 3 interates over all minimal support sets
of size at most s for E, it follows that Algorithm 4 is called
with parameters E, s, and S. If feat(T) = S, then B is set
to a DT for E of size |T | in Line 2 of Algorithm 4 and the
algorithm will output a DT of size at most |T | for E. If, on
the other hand, feat(T) \ S 6= ∅, then because T has mini-
mum size and S is a support set for E with S ⊆ feat(T), we
obtain from Lemma 11 that the setR = feat(T)\S is useful
for S. Therefore, because of Lemma 14, R has to contain
a variable v from the set R0 computed in Line 3. It follows
that Algorithm 4 is called with parametersE, s, and S∪{v}.
From now onwards the argument repeats and since R0 6= ∅
the process stops after at most s − |S| recursive calls after
which a DT for E of size at most |T | will be computed in
Line 2 of Algorithm 4. Finally, it is easy to see that if Algo-
rithm 3 outputs a DT T , then it is a valid solution. This is be-
cause, T must have been computed in Line 2 of Algorithm 4,
which implies that T is a DT for E. Moreover, T has size at
most s, because of Line 9 in Algorithm 3. The run-time of
the algorithm can be obtained by noting that the algorithm
can be seen as a branching algorithm with recursion depth at
most s and at most Ds

max2δmax(E) branches per call, using
at most 2O(s2)‖E‖1+o(1) log ‖E‖ time per call.

Conclusion
We have carried out the first analysis of the parameterized
complexity of learning DTs of small depth or size, provid-
ing an almost comprehensive map of this problem’s parame-
terized complexity w.r.t. natural parameters. While our algo-
rithmic results open up the opportunity for the development
of practically more efficient exact (or heuristic) algorithms,
our lower-bound results provide a formal and rigorous jus-
tification for the use of heuristics or approximation algo-
rithms. Moreover, the developed techniques provide novel
and useful insights into the problem of learning DTs.

For future work, we leave the only remaining open ques-
tion from our analysis: whether our FPT-result still holds
without the parameter Dmax. We conjecture that this is in-
deed the case, since the second part of our algorithm (i.e.,
learning the DT and thresholds for a small set of features) is
already FPT parameterized by solution size and δmax alone.

We hope that our work stimulates further investigations on
the parameterized complexity of DT learning, for instance
by considering other structural parameters that have previ-
ously been employed for various problems in AI, includ-
ing decompositional parameters (Gottlob, Pichler, and Wei
2006) and backdoor sets size (Gaspers and Szeider 2012).

6460

Acknowledgements
Stefan Szeider acknowledges support by the Austrian Sci-
ence Fund (FWF, project P32441) and the Vienna Science
and Technology Fund (WWTF, project ICT19-065). Sebas-
tian Ordyniak acknowledges support from the Engineering
and Physical Sciences Research Council (EPSRC, project
EP/V00252X/1).

References
Avellaneda, F. 2020. Efficient Inference of Optimal Deci-
sion Trees. In Proceedings of the The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI-20. AAAI Press,
Palo Alto, California USA.
Bäckström, C.; Chen, Y.; Jonsson, P.; Ordyniak, S.; and
Szeider, S. 2012. The Complexity of Planning Revisited - A
Parameterized Analysis. In Hoffmann, J.; and Selman, B.,
eds., Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada. AAAI Press.
Bessière, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; Quimper,
C.-G.; and Walsh, T. 2008. The Parameterized Complexity
of Global Constraints. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008, 235–240. AAAI
Press.
Bessiere, C.; Hebrard, E.; and O’Sullivan, B. 2009. Min-
imising Decision Tree Size as Combinatorial Optimisation.
In Gent, I. P., ed., Principles and Practice of Constraint Pro-
gramming - CP 2009, 173–187. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Bredereck, R.; Chen, J.; Niedermeier, R.; and Walsh, T.
2017. Parliamentary Voting Procedures: Agenda Control,
Manipulation, and Uncertainty. J. Artif. Intell. Res. 59: 133–
173. doi:10.1613/jair.5407.
Darwiche, A.; and Hirth, A. 2020. On The Reasons Be-
hind Decisions. In Giacomo, G. D.; Catalá, A.; Dilkina,
B.; Milano, M.; Barro, S.; Bugarı́n, A.; and Lang, J., eds.,
ECAI 2020 - 24th European Conference on Artificial In-
telligence, 29 August-8 September 2020, Santiago de Com-
postela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial In-
telligence (PAIS 2020), volume 325 of Frontiers in Artificial
Intelligence and Applications. IOS Press.
Doshi-Velez, F.; and Kim, B. 2017. A Roadmap for a Rig-
orous Science of Interpretability. CoRR abs/1702.08608.
Downey, R. G.; and Fellows, M. R. 2013. Fundamentals
of parameterized complexity. Texts in Computer Science.
Springer Verlag.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. http://archive.ics.uci.edu/ml. Last accessed: 1.9.2020.
Dvorák, W.; Ordyniak, S.; and Szeider, S. 2012. Augment-
ing tractable fragments of abstract argumentation. Artificial
Intelligence 186: 157–173.
Fellows, M. R.; Jansen, B. M.; and Rosamond, F. 2013.
Towards fully multivariate algorithmics: Parameter ecology

and the deconstruction of computational complexity. Euro-
pean J. Combin. 34(3): 541–566.

Ganian, R.; Kanj, I.; Ordyniak, S.; and Szeider, S. 2018. Pa-
rameterized Algorithms for the Matrix Completion Problem.
In Proceeding of ICML, the Thirty-fifth International Con-
ference on Machine Learning, Stockholm, July 10–15, 2018,
1642–1651. JMLR.org. ISSN: 1938-7228.

Gaspers, S.; Misra, N.; Ordyniak, S.; Szeider, S.; and Zivny,
S. 2014. Backdoors into Heterogeneous Classes of SAT and
CSP. In Brodley, C. E.; and Stone, P., eds., Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27 -31, 2014, Québec City, Québec, Canada.,
2652–2658. AAAI Press.

Gaspers, S.; and Szeider, S. 2012. Backdoors to Satisfac-
tion. In Bodlaender, H. L.; Downey, R.; Fomin, F. V.; and
Marx, D., eds., The Multivariate Algorithmic Revolution and
Beyond - Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday, volume 7370 of Lecture Notes
in Computer Science, 287–317. Springer Verlag.

Goodman, B.; and Flaxman, S. R. 2017. European Union
Regulations on Algorithmic Decision-Making and a “Right
to Explanation”. AI Magazine 38(3): 50–57.

Gottlob, G.; Pichler, R.; and Wei, F. 2006. Bounded
Treewidth as a Key to Tractability of Knowledge Represen-
tation and Reasoning. In 21st National Conference on Ar-
tificial Intelligence and the 18th Innovative Applications of
Artificial Intelligence Conference. AAAI Press.

Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
parameter complexity in AI and nonmonotonic reasoning.
Artificial Intelligence 138(1-2): 55–86.

Hyafil, L.; and Rivest, R. L. 1976. Constructing Optimal
Binary Decision Trees is NP-Complete. Information Pro-
cessing Letters 5(1): 15–17.

Ibaraki, T.; Crama, Y.; and Hammer, P. L. 2011. Partially
defined Boolean functions, 511–563. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press.

Komusiewicz, C.; Niedermeier, R.; and Uhlmann, J. 2011.
Deconstructing intractability - A multivariate complexity
analysis of interval constrained coloring. J. Discrete Algo-
rithms 9(1): 137–151.

Larose, D. T. 2005. Discovering knowledge in data. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ. ISBN 0-
471-66657-2. An introduction to data mining.

Lipton, Z. C. 2018. The mythos of model interpretability.
Communications of the ACM 61(10): 36–43.

Monroe, D. 2018. AI, explain yourself. AI Communications
61(11): 11–13. doi:10.1145/3276742.

Murthy, S. K. 1998. Automatic Construction of Deci-
sion Trees from Data: A Multi-Disciplinary Survey. Data
Min. Knowl. Discov. 2(4): 345–389. doi:10.1023/A:
1009744630224.

Narodytska, N.; Ignatiev, A.; Pereira, F.; and Marques-Silva,
J. 2018. Learning Optimal Decision Trees with SAT. In Pro-
ceedings of the Twenty-Seventh International Joint Confer-

6461

ence on Artificial Intelligence, IJCAI-18, 1362–1368. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation. doi:10.24963/ijcai.2018/189.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford Lecture Series in Mathematics and its Ap-
plications. Oxford: Oxford University Press.
Quinlan, J. R. 1986. Induction of Decision Trees. Machine
Learning 1(1): 81–106. doi:10.1023/A:1022643204877.
Schidler, A.; and Szeider, S. 2021. SAT-based Decision Tree
Learning for Large Data Sets. In Proceedings of AAAI’21,
the Thirty-Fifth AAAI Conference on Artificial Intelligence.
AAAI Press.

6462

