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Abstract

Despite the importance and abundance of temporal knowl-
edge graphs, most of the current research has been focused
on reasoning on static graphs. In this paper, we study the
challenging problem of inference over temporal knowledge
graphs. In particular, the task of temporal link prediction. In
general, this is a difficult task due to data non-stationarity,
data heterogeneity, and its complex temporal dependencies.
We propose Chronological Rotation embedding (ChronoR),
a novel model for learning representations for entities, rela-
tions, and time. Learning dense representations is frequently
used as an efficient and versatile method to perform reason-
ing on knowledge graphs. The proposed model learns a k-
dimensional rotation transformation parametrized by relation
and time, such that after each fact’s head entity is transformed
using the rotation, it falls near its corresponding tail entity. By
using high dimensional rotation as its transformation opera-
tor, ChronoR captures rich interaction between the temporal
and multi-relational characteristics of a Temporal Knowledge
Graph. Experimentally, we show that ChronoR is able to out-
perform many of the state-of-the-art methods on the bench-
mark datasets for temporal knowledge graph link prediction.

1 Introduction
Knowledge Graphs (KGs) organize information around en-
tities (people, countries, organizations, movies, etc.) in the
form of factual triplets, where each triplet represents how
two entities are related to each other, for example (Washing-
ton DC, captialOf, USA).

There exists an ever growing number of publicly avail-
able KGs, for example DBPedia (Auer et al. 2007),
Freebase (Bollacker et al. 2008), Google Knowledge
Graph (Blog 2012), NELL (Carlson et al. 2010), Ope-
nIE (Yates et al. 2007; Etzioni et al. 2011), YAGO (Biega,
Kuzey, and Suchanek 2013; Hoffart et al. 2013; Mahdis-
oltani, Biega, and Suchanek 2013), and UMLS (Burgun
and Bodenreider 2001). This structured way of represent-
ing knowledge makes it easy for computers to digest and
utilize in various applications. For example KGs are used
in recommender systems (Cao et al. 2019; Zhang et al.
2016), the medical domain (Sang et al. 2018; Abdelaziz et al.
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Figure 1: A timeline of events extracted from the ICEWS14
knowledge graph. The events are chronologically sorted
from top to bottom, demonstrating interactions between,
president Obama, NATO, Afghanistan and Russia.

2017), question-answering (Hao et al. 2017), information re-
trieval (Xiong, Power, and Callan 2017), and natural lan-
guage processing (Yang and Mitchell 2017).

Though these graphs are continuously growing, they re-
main particularly incomplete. Knowledge Base Completion
(KBC) focuses on finding/predicting missing relations be-
tween entities. A wide range of work explores various meth-
ods of finding extraction errors or completing KGs (Bor-
des et al. 2013; Yang et al. 2014; Trouillon et al. 2016;
Sadeghian et al. 2019; Sun et al. 2019; Zhang et al. 2019).

Different events and actions cause relations and entities
to evolve over time. For example, Figure 1 illustrates a
timeline of relations and events happening in 2014 involv-
ing entities like Obama (president of USA at the time),
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NATO, Afghanistan, and Russia. Here, an agreement be-
tween Obama and Afghanistan is happening concurrently
with NATO increasing armed forces in Afghanistan; after
Obama made a visit to NATO. A few months later, after
NATO makes some pessimistic comments towards Russia
and Obama wants to de-escalate the conflict, it appears that
he provides military aid to NATO, and in turn, NATO pro-
vides military aid in Afghanistan.

Temporally-aware KGs are graphs that add a fourth di-
mension, namely time t, giving the fact a temporal con-
text. Temporal KGs are designed to capture this tempo-
ral information and the dynamic nature of real-world facts.
While many of the previous works study knowledge graph
completion on static KGs, little attention has been given to
temporally-aware KGs. Though recent work has begun to
solve the temporal link prediction task, these models often
utilize a large number of parameters, making them diffi-
cult to train (Garcia-Duran, Dumančić, and Niepert 2018;
Dasgupta, Ray, and Talukdar 2018; Leblay and Chekol
2018). Furthermore, many use inadequate datasets such as
YAGO2 (Hoffart et al. 2013), which are sparse in the time
domain, or a time augmented version of FreeBase (Bollacker
et al. 2008), where time is appended to some existing facts.

One of the most popular models used to solve the link
prediction task involves embedding the KG, that is, map-
ping entities and relations in the KG to high dimensional
vectors, in which each entity and relation mapping considers
the structure of the graph as constraints (Bordes et al. 2013;
Yang et al. 2014; Lin et al. 2015). These techniques have
proven to be the state-of-the-art in modeling static knowl-
edge graphs and inferring new facts from the KG based on
the existing ones. Similarly, temporal knowledge graph em-
bedding methods learn an additional mapping for time. Dif-
ferent methods differ based on how they map the elements
in the knowledge graph and their scoring function.

In this paper, we propose ChronoR, a novel temporal link
prediction model based on k-dimensional rotation. We for-
mulate the link prediction problem as learning representa-
tions for entities in the knowledge graph and a rotation op-
erator based on each fact’s relation and temporal elements.
Further, we show that the proposed scoring function is a gen-
eralization of previously used scoring functions for the static
KG link prediction task. We also provide insights into the
regularization used in other similar models and propose a
new regularization method inspired by tensor nuclear norms.
Empirical experiments also confirm its advantages. Our ex-
periments on available benchmarks show that ChronoR out-
performs previous state-of-the-art methods.

The rest of the paper is organized as follows: Section 2
covers the relevant previous work, Section 3 formally de-
fines the temporal knowledge graph completion problem,
in Section 4 we go over the proposed model’s details and
learning procedure, Section 5 details the loss and regulation
functions, Section 6 discusses the experimental setup, and
Section 7 concludes our work.

2 Related Work
2.1 Static KG Embeddings
There has been a substantial amount of research in KG
embedding in the non-temporal domain. One of the earli-
est models, TransE (Bordes et al. 2013), is a translational
distance-based model, which embeds the entities h and t,
along with relation r, and maps them through the function:
h + r = t. There have been several extensions to TransE, in-
cluding TransH (Wang et al. 2014) which models relations
as hyperplanes; TransR (Lin et al. 2015) which embed en-
tities and relations in separate spaces and TransD (Ji et al.
2015) in which two vectors represent each element in a triple
in order to represent the elements and construct mapping
matrices. Other works, such as DistMult (Yang et al. 2014),
represent relations as bilinear functions. ComplEx (Trouil-
lon et al. 2016) extends DistMult to the complex space. Ro-
tatE (Sun et al. 2019) also embeds the entities in the complex
space, and treats relations as planar rotations. QuatE (Zhang
et al. 2019) embeds each element using quaternions.

2.2 Temporal Embeddings
There has been a wide range of approaches to the prob-
lem of temporal link prediction (Kazemi and Goel 2020).
A straightforward technique is to ignore the timestamps and
make a static KB by aggregating links across different times
(Liben-Nowell and Kleinberg 2007), then learn a static em-
bedding for each entity. There have been several attempts
to improve along this direction by giving more weights to
the links that are more recent (Sharan and Neville 2008;
Ibrahim and Chen 2015; Ahmed and Chen 2016; Ahmed
et al. 2016). In contrast to these methods, (Yao et al. 2016)
first learn embeddings for each snapshot of the KB, then
aggregate the embeddings by using a weighted average of
them. Several techniques have been proposed for the choice
of weights of the embedding aggregation, for instance, based
on ARIMA (Güneş, Gündüz-Öğüdücü, and Çataltepe 2016)
or reinforcement learning (Moradabadi and Meybodi 2017).

There have been several attempts to extend sequence
models to TKG. (Sarkar, Siddiqi, and Gordon 2007) em-
ploys a Kalman filter to learn dynamic node embeddings.
(Garcia-Duran, Dumančić, and Niepert 2018) use recurrent
neural nets (RNN) to accommodate for temporal data and
extend DistMult and TransE to TKG. For each relation, a
temporal embedding has been learned by feeding time char-
acters and the static relation embedding to an LSTM. This
method only learns dynamic embedding for relations, not
entities. Furthermore, (Han et al. 2020) utilize a temporal
point process parameterized by a deep neural architecture.

t-TransE (Jiang et al. 2016), learns time-based embed-
dings indirectly by learning the order of time-sensitive rela-
tions, such as wasBornIn followed by diedIn. (Esteban et al.
2016) also impose temporal order constraints on their data
by adding an element to their quadruple s,p,o,t:Bool, where
Bool indicates if the fact vanishes or continues after time t.
However, the model is only demonstrated on medical and
sensory data.

Inspired by the success of diachronic word embeddings,
some methods have tried to extend them to the TKG prob-
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lem (Garcia-Duran, Dumančić, and Niepert 2018; Dasgupta,
Ray, and Talukdar 2018). Diachronic methods map every
(node, timestamp) or (relation, timestamp) pair to a hid-
den representation. (Goel et al. 2020) learn dynamic em-
beddings by masking a fraction of the embedding weights
with an activation function of frequencies and (Xu et al.
2019) embed the vectors as a direct function of time. Two
con-current temporal reasoning methods TeRo (Xu et al.
2020) and TeMP (Wu et al. 2020) are also included in the
empirical comparison table in Section 6.

Other methods, like (Ma, Tresp, and Daxberger 2019; Jain
et al. 2020; Lacroix, Obozinski, and Usunier 2020), do not
evolve the embedding of entities over time. Instead, by us-
ing a representation for time, learn the temporal behavior.
For instance, (Ma, Tresp, and Daxberger 2019) change the
scoring function based on the time embedding and (Lacroix,
Obozinski, and Usunier 2020) perform tensor decomposi-
tion based on the time representation.

3 Problem Definition
In this section, we formally define the problem of temporal
knowledge graph completion and specify the notations used
throughout the rest of the paper.

We represent scalars with lower case letters a, vectors and
matrices with bold lower case letters a, higher order tensors
with bold upper case letters A, and the ith element of a vec-
tor a as ai. We use a ◦ b to denote the element wise product
of two vectors and [A|B] to denote matrix or vector con-
catenation. We denote the complex norm as | · | and || · ||p
denotes the vector p-norm; we drop p when p = 2.

A Temporal Knowledge Graph is referred to a set of
quadruples K = {(h, r, t, τ) | h, t ∈ E , r ∈ R, τ ∈ T }.
Each quadruple represents a temporal fact that is true in a
world. E is the set of all entities and R is the set of all rela-
tions in the ontology. The fourth element in each quadruple
represents time, which is often discretized. T represents the
set of all possible time stamps.

Temporal Knowledge Graph Completion (temporal
link prediction) refers to the problem of completing a TKGE
by inferring facts from a given subset of its facts. In this
work, we focus on predicting temporal facts within the ob-
served set T , as opposed to the more general problem which
also involves forecasting future facts.

4 Temporal KG Representation Learning
In this section, we present a framework for temporal knowl-
edge graph representation learning. Given a TKG, we want
to learn representations for entities, relations, and times-
tamps (e.g., h, r, t, τ ∈ Rn×k) and a scoring function
g(h, r, t, τ ) ∈ R, such that true quadruples receive high
scores. Thus, given g, the embeddings can be learned by op-
timizing an appropriate cost function.

Many of the previous works use a variety of different ob-
jectives and linear/non-linear operators to adapt static KG
completion’s scoring functions to the scoring function g( ·)
in the temporal case (see Section 2).

One example, RotatE (Sun et al. 2019) learns embeddings
h, r, t ∈ Cn by requiring each triplet’s head to fall close
to its tail once transformed by an (element-wise) rotation
parametrized by the relation vector: h ◦ r = t, where |ri| =
1. Thus, RotatE defines g(h, r, t) = λ − ||h ◦ r − t||, for
some λ ∈ R.

Our model is inspired by the success of rotation-based
models in static KG completion (Sun et al. 2019; Zhang
et al. 2019). For example, to carry out a rotation by an an-
gle θ in the two dimensional space, one can use the well
known Euler’s formula eiθ = cos(θ) + i sin(θ), and the fact
that if (x, y) ∈ R2 is represented by its dual complex form
z = x + iy ∈ C, then Rθ(x, y) ⇔ eiθz. We represent rota-
tion by angle θ in the 2-dimensional space with Rθ(.).

4.1 ChronoR
In this paper, we consider a subset of the group of general
linear transformations GL(k,R) over the k-dimensional real
space, consisting of rotation and scaling and parametrize the
transformation by both time and relation. Intuitively, we ex-
pect that for true facts:

Qr,τ (h) = t (1)

where h, t ∈ Rn×k and Qr,τ represents the (row-wise)
linear operator in k-dimensional space, parametrized by r
and τ . Note that any orthogonal matrix Q ∈ Rn×n (i.e.,
QTQ = QQT = I) is equivalent to a k-dimensional rota-
tion. However, we relax the unit norm constraint, thus ex-
tending rotations to a subset of linear operators which also
includes scaling.

As previous work has noted, for 2 or 3 dimensional ro-
tations, one can represent Q using complex numbers C
and quaternions H (k = 2 and 4), respectively. Higher di-
mensional transformations can also be constructed using
the Aguilera-Perez Algorithm (Aguilera and Pérez-Aguila
2004) followed by a scalar multiplication.

4.2 Scoring Function
Unlike RotatE, that uses a scoring function based on the Eu-
clidean distance of Qr(h) and t, we propose to use the angle
between the two vectors.

Our motivations comes from observations in a variety
of previous works (Aggarwal, Hinneburg, and Keim 2001;
Zimek, Schubert, and Kriegel 2012) showing that in higher
dimensions, the Euclidean norm suffers from the curse
of high dimensionality and is not a good measure of the
concept of proximity or similarity between vectors. We use
the following well-known definition of inner product to
define the angle between Qr,τ (h) and t.

Definition 1. IfA andB are matrices in Rn×k we define:

〈A,B〉 := tr(ABT) (2)

cos(θ) :=
〈A,B〉√

〈A,A〉 〈B,B〉
(3)
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Based on the above definition, the angle between two ma-
trices is proportional to their inner product. Hence, we define
our scoring function as:

g(h, r, t, τ) :=
〈
Qr,τ (h) , t

〉
(4)

That is, we expect the cos of the relative angle between
Qr,τ (h) and t to be higher (i.e., their angle close to 0) when
(h, r, t, τ) is a true fact in the TKG.

Some of the state of the art work in static KG comple-
tion, such as quaternion-based rotations QuatE (Zhang et al.
2019), complex domain tensor factorization (Trouillon et al.
2016), and also recent works on temporal KG completion
like TNTComplEx (Lacroix, Obozinski, and Usunier 2020),
use a scoring function similar to

g(h, r, t) = Re{h ◦ r ◦ t̄} (5)
for h, r, t ∈ C or H

and motivate it by the fact that the optimisation function re-
quires the scores to be purely real (Trouillon et al. 2016).

However, it is interesting to note that this scoring method
is in fact a special case of Equation 4. The following the-
orem proves the equivalence for scoring functions used in
ComplEx1 to Equation 4 when k = 2.

Theorem 1. If a, b ∈ Cn and A,B ∈ Rn×2 are their
equivalent matrix forms, then Re(a ◦ b̄) = 〈A,B〉 (proof
in Appendix)

To fully define g we also need to specify how the linear
operator Q is parameterized by h, τ . In the rest of the paper
and experiments, we simply concatenate the head and rela-
tion embeddings to get Qr,τ = [r|τ ], where r ∈ Rnr×k and
τ ∈ Rnτ×k are the representations of the fact’s relation and
time elements and nr + nτ = n. Since in many real world
TKGs, there are a combination of static and dynamic facts,
we also allow an extra rotation operator parametrized only
by r, i.e., an extra termR2 ∈ Rn×k in Q to better represent
static facts.

To summarize, our scoring function is defined as:

g(h, r, t, τ) := 〈h ◦ [r|τ ] ◦ r2, t〉 (6)

where r ∈ Rnr×k, τ ∈ Rnτ×k and r2 ∈ Rn×k.

5 Optimization
Having an appropriate scoring function, one can model the
likelihood of any ti ∈ E , correctly answering the query
g(h, r, ?, τ) as:

P (t = ti | h, r, τ) =
exp(g(h, r, ti, τ))∑K
k=1 exp(g(h, r, tk, τ))

(7)

and similarly for P (h = hi | r, t, τ).

1A similar theorem holds for quaternions when k=4, see Ap-
pendix

To learn appropriate model parameters, one can mini-
mize, for each quadruple in the training set, the negative log-
likelihood of correct prediction:

L(K;θ) =
∑

(h,r,t,τ)∈K

 ∑
ti,hi∈E

− log(Pti)− log(Phi)


(8)

where θ represents all the model parameters.
Formulating the loss function following Equation 8 re-

quires computing the denominator of Equation 7 for every
fact in the training set of the temporal KG; however it does
not require generating negative samples and has been shown
in practice to perform better.

5.1 Regularization
Various embedding methods use some form of regulariza-
tion to improve the model’s generalizability to unseen facts
and prevent from overfitting to the training data. TNTCom-
plEx (Lacroix, Obozinski, and Usunier 2020) treats the TKG
as an order 3 tensor by unfolding the temporal and predi-
cate mode together and adopts the regularization derived for
static KGs in ComplEx (Lacroix, Usunier, and Obozinski
2018). Other methods, for example TIMEPLEX (Jain et al.
2020), use a sample-weighted L2 regularization penalty to
prevent overfitting.

We also use the tensor nuclear norm due to its connec-
tion to tensor nuclear rank (Friedland and Lim 2018). How-
ever, we directly consider the TKG as an order 4 tensor with
E,R,T containing the rank-one coefficients of its decom-
position, and where E,R,T are the tensors containing en-
tity, relation and time embeddings. Based on this connection,
we propose the following regularization:

Λ4(θ) =
∑

(h,r,t,τ)∈K

(||h||44 + ||r2||44 + ||[r|τ ]||44 + ||t||44)

(9)

We empirically compare different regularizations in Sec-
tion 6 and show that Λ4(θ) outperforms other methods. We
provide the theoretical theorems required to drive Equation 9
in the Appendix.

5.2 Temporal Regularization
In addition, one would like the model to take advantage of
the fact that most entities behave smoothly over time. We
can capture this smoothness property of real datasets by
encouraging the model to learn similar transformations for
closer timestamps. Hence, following (Lacroix, Obozinski,
and Usunier 2020) and (Sarkar and Moore 2006), we add
a temporal smoothness objective to our loss function:

ΛΓ =
1

|T | − 1

|T |−1∑
i=1

||τi+1 − τi||44 (10)

Tuning the hyper-parameter λ2 is related to the scale of ΛΓ

and other components of the loss function and finding an
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ICEWS14 ICEWS05-15 YAGO15K
Model MRR Hit@1 Hits@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
TransE (2013) 28.0 9.4 - 63.70 29.4 8.4 - 66.30 29.6 22.8 - 46.8
DistMult (2014) 43.9 32.3 - 67.2 45.6 33.7 - 69.1 27.5 21.5 - 43.8
SimpIE (2018) 45.8 34.1 51.6 68.7 47.8 35.9 53.9 70.8 - - - -
ComplEx (2016) 47.0 35.0 54.0 71.0 49.0 37.0 55.0 73.0 36.0 29.0 36.0 54.0
ConT (2018) 18.5 11.7 20.5 31.50 16.4 10.5 18.9 27.20 - - - -
TTransE (2016) 25.5 7.4 - 60.1 27.1 8.4 - 61.6 32.1 23.0 - 51.0
TA-TransE (2018) 27.5 9.5 - 62.5 29.9 9.6 - 66.8 32.1 23.1 - 51.2
HyTE (2018) 29.7 10.8 41.6 65.5 31.6 11.6 44.5 68.1 - - - -
TA-DistMult (2018) 47.7 - 36.3 68.6 47.4 34.6 - 72.8 29.1 21.6 - 47.6
DE-SimpIE (2020) 52.6 41.8 59.2 72.5 51.3 39.2 57.8 74.8 - - - -
TIMEPLEX (2020) 60.40 51.50 - 77.11 63.99 54.51 - 81.81 - - - -
TNTComplEx (2020) 60.72 51.91 65.92 77.17 66.64 58.34 71.82 81.67 35.94 28.49 36.84 53.75
TeRo (concurrent work) 56.2 46.8 62.1 73.2 58.6 46.9 66.8 79.5 - - - -
TeMP-SA (concurrent work) 60.7 48.4 68.4 84.0 68.0 55.3 76.9 91.3 - - - -
ChronoR (k=3) 59.39 49.64 65.40 77.30 68.41 61.06 73.01 82.13 36.50 29.16 37.63 53.53
ChronoR (k=2) 62.53 54.67 66.88 77.31 67.50 59.63 72.29 82.03 36.62 29.18 37.92 53.79

Table 1: Evaluation on the YAGO15k, ICEWS14, and ICEWS05-15 datasets. Results reported for previous related works are
the best numbers reported in their respective paper2.

appropriate λ2 can become difficult in practice if each com-
ponent follows a different scale. Since we are using the 4-
norm regularization in Λ4(θ), we also use the 4-norm for
ΛΓ . Similar phenomenal have been previously explored in
other domains. For example, in (Belloni et al. 2014) the au-
thors propose

√
Lasso, where they use the square root of

the MSE component to match the scale of the 1-norm used
in the sparsity regularization component of Lasso (Tibshi-
rani 1996) and show improvements in handling the unknown
scale in badly behaved systems.

Since we used a 4-norm in Λ4, we also use the 4-norm for
ΛΓ . We saw that in practice using the same order makes it
easier to tune the hyperparameters λ1 and λ2 in L(K).

5.3 Loss Function
To learn the representations for any TKG K, the final train-
ing objective is to minimize:

L(K; θ) = L(K;θ) + λ1Λ4(θ) + λ2ΛΓ (11)

where the first and the second terms encourage an accu-
rate estimation of the edges in the TKG and the third term
incorporates the temporal smoothness behaviour.

In the next section, we provide empirical experiments and
compare ChronoR to various other benchmarks.

6 Experiments
We evaluate our proposed model for temporal link predic-
tion on temporal knowledge graphs. We tune all the hyper-
parameters using a grid search and each dataset’s provided
validation set. We tune λ1 and λ2 from {10i| − 3 ≤ i ≤ 1}
and the ratio of nr

nτ
from [0.1, 0.9] with 0.1 increments. For

a fair comparison, we do not tune the embedding dimen-
sion; instead, in each experiment we choose n such that our

2The original results for TNTComplex were reported on the val-
idation set, we use the code and hyper-parameters from the official
repository re-run the model and report test set values.

models have an equal number of parameters to those used
in (Lacroix, Obozinski, and Usunier 2020). Table 3, in the
Appendix, shows the dimensions used by each model for
each of the datasets.

Training was done using mini-batch stochastic gradient
descent with AdaGrad and a learning rate of 0.1 with a batch
size of 1000 quadruples. We implemented all our models in
Pytorch and trained on a single GeForce RTX 2080 GPU.
The source code to reproduce the full experimental results
will be made public on GitHub.

6.1 Datasets
We evaluate our model on three popular benchmarks for
Temporal Knowledge graph completion, namely ICEWS14,
ICEWS05-15, and Yago15K. All datasets contain only pos-
itive triples. The first two datasets are subsets of Integrated
Crisis Early Warning System (ICEWS), which is a very pop-
ular knowledge graph used by the community. ICEWS14 is
collected from 01/01/2014 to 12/31/2014, while ICEWS15-
05 is the subset occurring between 01/01/2005 and
12/31/2015. Both datasets have timestamps for every fact
with a temporal granularity of 24 hours. It is worth men-
tioning that these datasets are selected such that they only
include the most frequently occurring entities (in both head
and tail). Below are examples from ICEWS14:

(John Kerry, Praise or endorse,
Lawmaker (Iraq), 2014-10-18)

(Iraq, Receive deployment of peacekeepers,
Iran, 2014-07-05)

(Japan, Engage in negotiation,
South Korea, 2014-02-18)

To create YAGO15K, Garcia-Duran, Dumančić, and
Niepert (2018) aligned the entities in FB15K (Bordes et al.
2013) with those from YAGO, which contains temporal in-
formation. The final dataset is the result of all facts with
successful alignment. It is worth noting that since YAGO
does not have temporal information for all facts, this dataset
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is also temporally incomplete and more challenging. Below
are examples from this dataset3:

(David_Beckham, isAffiliatedTo, Man_U)
(David_B, isAffiliatedTo, Paris_SG)
(David_B, isMarriedTo, Victoria_Beckham,

occursSince, "1999-##-##")

ICEWS14 ICEWS05-15 YAGO15k
Entities 7,128 10,488 15,403
Relations 230 251 34
Timestamps 365 4,017 198
Facts 90,730 479,329 138,056
Time Span 2014 2005 - 2015 1513 - 2017

Table 2: Statistics for the various experimental datasets.

ICEWS14 ICEWS05-15 YAGO15k
ChronoR k=2 1600 1350 1900
ChronoR k=3 800 700 950

Table 3: The embedding dimension (n) for each dataset used
in our experiments.

To adapt YAGO15 to our model, following (Lacroix,
Obozinski, and Usunier 2020), for each fact we group the
relations occureSince/occureUntil together, in turn doubling
our relation size. Note that this does not effect the evaluation
protocol. Table 2, summarizes the statistics of used temporal
KG benchmarks.

Figure 2: Comparison of various regularizers with different
weights on a ChronoR(k=2) trained on ICEWS14.

6.2 Evaluation Metrics and Baselines
We follow the experimental set-up described in (Garcia-
Duran, Dumančić, and Niepert 2018) and (Goel et al.
2020). For each quadruple (h, r, t, τ) in the test set, we fill

3Some strings shortened due to space.

(h, r, ?, τ) and (?, r, t, τ) by scoring and sorting all possible
entities in E . We report Hits@k for k = 1, 3, 10 and fil-
tered Mean Reciprocal Rank (MRR) for all datasets. Please
see (Nickel, Rosasco, and Poggio 2016) for more details
about filtered MRR.

We use baselines from both static and temporal KG em-
bedding models. From the static KG embedding models, we
use TransE, DistMult, SimplE, and ComplEx. These models
ignore the timing information. It is worth noting that when
evaluating these models on temporal KGs in the filtered set-
ting, for each test quadruple, one must filter previously seen
entities according to the fact and its time stamp, for a fair
comparison.

To the best of our knowledge, we compare against every
previously published temporal KG embedding models that
have been evaluated on these datasets, which we discussed
the details of in Section 2.

6.3 Results
In this section we analyze and perform a quantitative com-
parison of our model and previous state-of-the-art ones. We
also experimentally verify the advantage of using Equation 9
for learning temporal embeddings.

Table 1 demonstrates link prediction performance com-
parison on all datasets. ChronoR consistently outperforms
all competitors in terms of link prediction MRR and is
greater than or equal to the previous work in terms of
Hits@10 metric.

Our experiments with rotations in 3-dimensions show an
improvement over ICEWS05-15, but lower performances
compared to planar rotations on the other two datasets. We
believe this is due to the more complex nature of this dataset
(the higher number of relations and timestamps) compared
to YAGO15K and ICEWS14. We do not see any significant
gain on these three datasets using higher dimensional rota-
tions. Similar to the observations in some static KG bench-
marks (Toutanova and Chen 2015), this might suggest the
need for more sophisticated detests. However, we leave fur-
ther studying of these datasets for future work.

In Figure 2, we plot a detailed comparison of our pro-
posed regularizer to Ω3, the regularizer used in TNTCom-
plEx (Lacroix, Obozinski, and Usunier 2020). Ω3, is a vari-
ational form of the nuclear 3-norm and is based on folding
the TKG (as a 4-tensor) on its relation and temporal axis to
get an order 3 tensor.

We drive Λ4 by directly linking the scoring function to the
4-tensors factorization and show that it is the natural regu-
larizer to use when penalizing by tensor nuclear norm. Note
that Λ4 increases MRR by 2 points and carefully selecting
regularization weight can increase MRR up to 7 points.

7 Conclusion
We propose a novel k-dimensional rotation based embed-
ding model to learn useful representations from tempo-
ral Knowledge graphs. Our method takes into account the
change in entities and relations with respect to time. The
temporal dynamics of both subject and object entities are
captured by transforming them in the embedding space
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through rotation and scaling operations. Our work general-
izes and adopts prior rotation based models in static KGs
to the temporal domain. Moreover, we highlight and estab-
lish previously unexplored connections between prior scor-
ing and regularization functions. Experimentally, we showed
that ChronoR provides state-of-the-art performance on a va-
riety of benchmark temporal KGs and that it can model
the dynamics of temporal and relational patterns while be-
ing very economical in the number of its parameters. In fu-
ture work, we will investigate combining other geometrical
transformations and rotations and also explore other regu-
larization techniques as well as closely examine the current
temporal datasets as discussed in the experiment section.
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