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Abstract

In a situation where an agent has to produce specific re-
sources using the available ones, it may not be possible to
achieve the complete goal, but only obtaining some of its
parts. This incompleteness problem calls for reasoning mod-
els to make rational decisions. In this paper, we introduce a
logic-based framework for measuring resource production in-
completeness: the greater the value returned by a measure,
the greater is the intensity of incompleteness. After motivat-
ing our work by describing situations where the incomplete-
ness measures can be applied, we introduce our framework
by using a postulate-based approach. To some extent, the in-
completeness measures can be seen as a counterpart of in-
consistency measures in resource logics. Here, intuitionistic
affine logic is used for representing and reasoning about re-
source consummation and production. Besides, we propose
different notions that are useful for defining different types of
incompleteness measures. We also present several measures
to illustrate the introduced concepts and notions.

Introduction
Resource management is an essential task in several areas,
including economics, social policy, and computer science.
In this work, we focus on the general situation where an
agent has to use available resources to attain a given goal.
One of the main problems that an agent may face in this
context is when the available resources do not allow reach-
ing the entire goal but only some of its parts. Indeed, under
this incompleteness problem, an agent may need to repre-
sent and reason about the difficulty to produce the desired
resources. This explains the interest in defining reasoning
tools for making particularly rational decisions.

The purpose of this paper is to introduce a logic-based
framework for defining measures that can be used for rea-
soning and analyzing the intensity of resource production
incompleteness. Up to a point, these measures can be seen
as a counterpart of inconsistency measures in resource log-
ics. Inconsistency measures are functions that associate
non-negative values with knowledge bases to quantify the
amount of conflicts (e.g. see (Hunter and Konieczny 2010;
Thimm 2016; Bona et al. 2018; Thimm 2018a)). By contrast,
rather than focusing on truth as in the case of inconsistency
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in classical logic, we concentrate in this work on the use
of formulas as resources by dealing with resource availabil-
ity, consummation, and production. To give an illustration of
this point, consider the implication φ = have-one-dollar→
have-a-metro-ticket. Clearly, we obtain in classical logic
have-one-dollar, φ ` have-one-dollar∧have-a-metro-ticket.
This means that we can have a metro ticket without con-
suming the available dollar, which is not appropriate if the
formulas are used to represent resources.

Linear logic is a substructural logic that can be used for
reasoning about resource-sensitive problems (Girard 1987).
The main idea behind the resource-oriented interpretation
is to consider formulas in a proof as resources that can be
consumed or produced. In particular, this logic takes into
account the number of occurrences of formulas (two occur-
rences of a given formula have a different meaning from
a single occurrence of the same formula). The intuitionis-
tic variant of linear logic was defined through the sequent
calculus of linear logic by restricting sequents to have ex-
actly one formula on the right-hand side (Girard and La-
font 1987; Troelstra 1992). This variant allows reasoning
about resources in a more natural way than linear logic and
avoiding some logical connectives that are difficult to ex-
plain in terms of resources (there is particularly no nega-
tion operator). This point can be illustrated by encodings
of problems such as Petri net reachability (Engberg and
Winskel 1990, 1993) and classical AI planning (Kanovich
and Vauzeilles 2001). We consider in this work intuitionis-
tic affine logic, which is obtained from intuitionistic linear
logic by adding the structural rule of weakening. This struc-
tural rule is needed because we are interested in having the
monotonicity property, that is, if resources Γ allow produc-
ing a resource φ, then it is also possible to produce φ by
adding new elements to Γ. It appears in the literature that
intuitionistic affine logic is appropriate for reasoning about
resources in several contexts (e.g. see (Kamide 2006; Porello
and Endriss 2010; Kanovich and Vauzeilles 2011; Bugliesi
et al. 2013; Fermüller and Lang 2017)).

In this paper, we first discuss resource management-
related situations to motivate our proposal and show how in-
completeness measures can be applied for reasoning about
resource consummation and production. Then, we present
our framework for quantifying resource production incom-
pleteness. An incompleteness measure is defined as a func-
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tion that associates non-negative values with pairs that repre-
sent available resources and goals, where each value intends
to describe the degree of difficulty to obtain the considered
goal using the available resources. Intuitionistic affine logic
is used in this context for representing and reasoning about
resources. The definition of incompleteness measures is un-
der guidance of postulates that are used to capture important
rational aspects related to resource consummation and cre-
ation. For instance, our definition uses a postulate that states
that the amount of incompleteness can only grow by adding
new resources to the goal (a more demanding goal). Addi-
tionally, we introduce properties that can be used for em-
phasizing differences between measures. Then, we propose
notions that are useful for defining different types of incom-
pleteness measures and present measures that are based on
them. Intuitively, these notions can be exploited in a similar
way as maximal consistent subsets and minimal inconsis-
tent subsets for defining inconsistency measures in the case
of classical logic (e.g. see (Thimm 2018b)). Particularly, we
introduce the notion of maximal produced sub-multisets that
can be seen as possible optimal solutions of the resource pro-
duction problem, since they are obtained by maximizing the
satisfied part in the goal (the maximality is considered with
respect to multiset inclusion). We also introduce the notion
of minimal adjustment multiset that is defined as a minimal
multiset of positive literals that has to be added to the avail-
able resources to achieve the goal. This notion represents
specific minimal changes that can be applied to the available
resources to attain the objective.

Resource Logic
Multiset
In this paper, the multiset structure allows taking into ac-
count the number of formula occurrences. A multiset can
be seen as a set in which every element may have multiple
occurrences. It is thus a generalization of the notion of set.
For instance, {a, b, b, c} is a multiset where b occurs twice.
A multiset S can also be written as a set of elements of the
form n : e where n is a strictly positive integer represent-
ing the number of the occurrences of e in S. For instance,
the previous example corresponds to {1 : a, 2 : b,1 : c}. If
an element e occurs once, 1 : e can be replaced with e. We
use m(e, S) to denote the number of the occurrences of the
element e in the multiset S. Moreover, given a setX , we use
mult(X) to denote the set of finite multisets of elements oc-
curring inX . We also use set(S) to denote the set containing
the elements occurring in the multiset S.

In the same way as in the case of sets, we write e ∈ S
to denote the property that e belongs to the multiset S (e
occurs at least once in S). The size of S, denoted |S|, is
defined as the number of element occurrences in S, that is
|S| =

∑
e∈S m(e, S). Further, S is said to be a sub-multiset

of S′, written S ⊆ S′, iff m(e, S) ≤ m(e, S′) for every
e ∈ S. We say that S is a proper sub-multiset of S′, written
S ⊂ S′, iff S ⊆ S′ and S 6= S′.

The multiset union operator, denoted ], is defined as fol-
lows: S ] S′ = {m(e, S)+m(e, S′) : e | e ∈ S or e ∈ S′}.
For instance, {a, b, b, c} ] {a, b, d} = {a, a, b, b, b, c, d} =

{2 : a, 3 : b, c, d}. In addition, the relative complement of S′

in S, denoted S \ S′, is the multiset {m(e, S) −m(e, S′) :
e | e ∈ S and m(e, S) > m(e, S′)}. For example,
{a, b, b, c, c, c} − {a, a, b, c, d} = {b, c, c}. The multiset in-
tersection operator, denoted ∩, is defined as follows: S ∩
S′ = {min(m(e, S),m(e, S′)) : e ∈ S and e ∈ S′}, where
min stands for the minimum.

Intuitionistic Affine logic
We use multiplicative-additive intuitionistic affine logic
(IMAAL) for representing resources. Intuitively, this logic is
obtained by removing the contraction rule if we formulate it
using the sequent calculus of classical logic. IMAAL is also
defined by adding the weakening rule to intuitionistic linear
logic. Let us recall that the contraction and weakening rules
are defined as follows:

Γ, φ, φ ` ψ
Γ, φ ` ψ

[contraction]
Γ ` ψ

Γ, φ ` ψ
[weakening]

In fact, removing the contraction rules allows attaching im-
portance to the number of occurrences: n occurrences of a
given formula can have a different meaning from n − 1 oc-
currences of the same formula.

The set of formulas, denoted FIMAAL, is defined induc-
tively starting from a set of positive literals, denoted PL,
with additional constants >, 1 and ⊥, and using the binary
connectives ⊗, ∧, ∨ and (1. We call ∧ and ∨ additive con-
nectives, and⊗ and ( multiplicative connectives. Similarly
to conjunction and disjunction in classical logic, ∧, ∨ and
⊗ are associative and commutative. We sometimes use the

notation n : φ inside formulas for

n times︷ ︸︸ ︷
φ⊗ · · · ⊗ φ. We also use⊗

{φ1, . . . , φn} to denote φ1⊗· · · ⊗φn. The set of positive
literals occurring in a formula φ is denoted PLit(φ).

Intuitively, the additive connective ∧ and ∨ can be inter-
preted in the same way as conjunction and disjunction in
classical logic, respectively. The multiplicative connectives
⊗ allows dealing with the formulas as resources. For exam-
ple, the formula $⊗$⊗$ can be used to represent the fact that
an agent has three dollars. The connective ( can be seen as
a resource variant of implication in the sense that φ ( ψ
indicates that the resource ψ can be produced by consuming
the resource φ.

The choice of IMAAL is motivated by several reasons.
First, this logic allows dealing with formulas as resources
since it is sensitive to the number of occurrences (e.g. hav-
ing one dollar is different from having two dollars). Sec-
ond, the inference process of IMAAL integrates the con-
cepts of resource consumption and production: formulas are
consumed in order to produce other formulas. For exam-
ple, we have {$, $ ( coffee} ` coffee without having
{$, $ ( coffee} ` coffee ⊗ $, since the dollar on the left-
hand side is consumed to produce a coffee. Third, IMAAL
satisfy the property of monotonicity: if Γ ` φ then Γ′ ` φ

1In (Girard 1987), the connectives ∧ and ∨ are denoted by &
and ⊕ respectively. However, we use the notational convention of
classical logic to emphasize the fact that these connectives are simi-
lar to conjunction and disjunction in classical logic (this convention
is also used in (Restall 2000; Paoli 2002)).
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φ ` φ
[Id]

`1
[1R]

Γ ` >
[>R]

Γ,⊥ ` ψ
[⊥L]

Γ ` ψ
Γ, φ ` ψ

[W ]

Γ, φ1, φ2 ` ψ
Γ, φ1 ⊗ φ2 ` ψ

[⊗L]
Γ1 ` ψ1 Γ2 ` ψ2

Γ1,Γ2 ` ψ1 ⊗ ψ2

[⊗R]
Γ, φ1 ` ψ Γ, φ2 ` ψ

Γ, φ1 ∨ φ2 ` ψ
[∨L]

Γ ` ψi

Γ ` ψ1 ∨ ψ2
[∨i∈{1,2}

R ]

Γ1 ` φ1 Γ2, φ2 ` ψ
Γ1,Γ2, φ1 ( φ2 ` ψ

[(L]
Γ, φ ` ψ

Γ ` φ( ψ
[(R]

Γ, φi ` ψ
Γ, φ1 ∧ φ2 ` ψ

[∧i∈{1,2}
L ]

Γ ` ψ1 Γ ` ψ2

Γ ` ψ1 ∧ ψ2

[∧R]

Figure 1: Sequent Calculus CIMAAL

for every Γ′ ⊇ Γ (it is a consequence of the rule of weak-
ening). To put it another way, this property means that if
the available resources allow producing a resource, then it is
also possible to produce this resource by enriching the avail-
able resources. It is worth noting that (intuitionistic) linear
logic does not satisfy this property of monotonicity. Finally,
in the literature, IMAAL has been shown appropriate for rea-
soning about resources in several contexts (e.g. see (Kamide
2006; Porello and Endriss 2010; Kanovich and Vauzeilles
2011; Bugliesi et al. 2013; Fermüller and Lang 2017)).

In this work, we only use IMAAL without the constant
⊥, denoted IMAAL\⊥. This allows us to avoid the principle
of explosion, that is, any resource can be produced form ⊥.
Avoiding this principle leads to a more natural resource in-
terpretation. To clarify this point, consider the fact that hav-
ing the resource $ ⊗ $ ( ⊥ means that from the resource
$⊗$, anything can be produced. Furthermore, it is difficult to
interpret $⊗$ ( ⊥ in terms of resources: the resource 2 : $
can be transformed into falsehood. Additionally, the use of
IMAAL with ⊥ as the underlying logic invalidates desirable
properties that we consider for quantifying the amount of
production incompleteness. Regarding computational com-
plexity, the provability problem in IMAAL\⊥ is PSPACE-
complete, even the extended Horn fragment ∨-Horn (which
is without the constant ⊥) is PSPACE-complete (Kanovich
1992).

Sequent Calculus
Let us now describe briefly the sequent calculus of IMAAL
used for defining validity. We define an inference rule as a

structure of the following form: P1 · · · Pn

C
[R] , where

R is its name, C its conclusion, and P1, . . . , Pn its premises.
An axiom is a rule without any premise. In the case of
IMAAL, a sequent is a structure of the form Γ ` ψ where Γ is
a multiset of formulas and ψ a formula. The validity of a se-
quent in IMAAL can be defined through the sequent calculus
CIMAAL depicted in Figure 1 (Girard 1987; Troelstra 1992).
Note that we use the standard notational convention in our
description of CIMAAL that uses the comma to represent the
multiset union in every sequent. For instance, the rule [⊗L]

can be rewritten as follows: Γ ] {φ1} ] {φ2} ` ψ

Γ ] {φ1 ⊗ φ2} ` ψ
[⊗L] .

Proof-search in a sequent calculus corresponds to a

bottom-up construction of derivations using its inference
rules, that is, a construction from the conclusion to instances
of axioms (e.g. see (Troelstra and Schwichtenberg 1996)).
For example, the proof of the sequent p, q, p ( r, (r (
q) ∧ (r′ ( s) ` q ⊗ q in CIMAAL is as follows:

[Id]
p ` p

[Id]
r ` r

[Id]
q ` q

[Id]
q ` q

[⊗R]
q, q ` q ⊗ q

[(L]
q, r, r ( q ` q ⊗ q

[(L]
p, q, p( r , r ( q ` q ⊗ q

[∧1
L]

p, q, p( r, (r ( q) ∧ (r′ ( s) ` q ⊗ q

Applications
This work aims at proposing a framework for measuring
the severity of incompleteness of resource production. In
this regard, we define an incompleteness measure as a func-
tion that associates a non-negative value with every or-
dered pair of multisets of formulas; the first multiset rep-
resents the available resources, while the second represents
the goal. Although we use intuitionistic affine logic for re-
source representation, the approach behind our framework
can be adapted to other resource representation formalisms.
In order to motivate our proposal, we describe in this section
situations where quantifying incompleteness can be applied.
The main idea consists in using the preference ordering in-
duced by an incompleteness measure for making a decision
about how the available resources have to be exploited. We
first deal with the case of a user that has to select a service,
among the suggested ones, for producing desired resources.
We then consider the situation where the available resources
have to be shared between a set of agents having different
goals. Finally, we show how the incompleteness measures
can be involved in approaches for agent grouping.

Service Selection under Incompleteness
Let us consider the situation described in Figure 2. It corre-
sponds to an agent that has to choose a service among four
available ones to produce certain desired resources, that is,
the three files f1, f2 and f3. Moreover, the agent as well as
the services possess resources. In particular, the user has the
following resources that can be used in combination with
the selected service: two dollars (2 : $), three time intervals
(3 : TI) and two memory units (2 : MU ). For instance, the
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R1 =(2 : $)⊗ (1 : TI) ⊸ f2, (3 : $)⊗ (2 : TI) ⊸ f3
R2 = (2 : $)⊗ (2 : TI)⊗ (3 : MU) ⊸ ( f1 ⊗ f2),1 : MU

(2 : $)⊗ (2 : TI)⊗ (2 : MU) ⊸ ( f2 ⊗ f3),R3 = (2 : $)⊗ (3 : TI)⊗ (2 : MU) ⊸ ( f1 ⊗ f2)(2 : $)⊗ (3 : TI) ⊸ ( f1 ⊗ f3)R4 =

R0 = 2 : $, 3 : Time Interval (TI),
2 : Memory Unit (MU)

Goal = Files : f1, f2, f3

S1(R1)

S2(R2)

S3(R3)

S4(R4)

R0,R2 ⊢ f1 ⊗ f2
User

Figure 2: An example of service selection.

user’s resources and the service S2 allow obtaining the files
f1 and f2, since we have 2 : $, 3 : TI, 2 : MU, (2 : $)⊗(2 :
TI)⊗ (3 : MU) ( (f1 ⊗ f2), 1 : MU ` f1 ⊗ f2.

Clearly, it is reasonable to consider that the service S2 is
better than S1 because the latter allows only producing the
file f1: the incompleteness is more severe using S1. How-
ever, it is more difficult to compare S4 and S2 since the for-
mer allows obtaining the file f3 (R0 ]R4 ` f1⊗ f3), which
cannot be produced using S2, and conversely S2 allows pro-
ducing f2, which cannot be obtained using S4.

By inducing an ordering over the available services, a
measure that quantifies the severity of incompleteness can be
helpful for choosing the appropriate service. In our frame-
work, the definition of incompleteness measures is driven by
rationality postulates, which provides a flexible approaches
that can be adapted to the considered context (the suitable
measure is obtained by choosing the suitable properties).

Resource Sharing
We deal here with the problem of sharing resources between
agents having different goals. The principal difficulty occurs
when it is not possible to satisfy all goals. In order to illus-
trate this point, consider that the available resources R are
as follows:

• 2 : Energy Unit (EU), 2 : $, and two raw materials m1

and m2;

• φ1 = EU⊗$ ( p1⊗p2 (the combination of the resources
EU and $ allows producing two products p1 and p2);

• φ2 = m1 ⊗ $ ( p3 (m1 and $ allow producing the prod-
uct p3);

• φ3 = m2 ⊗ EU ( p4 (m2 and EU allow producing the
product p4).

Additionally, consider the following three agent requests:
(a1) the products p1 and p4, (a2) p2 and p3, and (a3) $
and EU . One can see that it is not possible to satisfy these
three requests, since R 0 p1 ⊗ p2 ⊗ p3 ⊗ p4 ⊗ $ ⊗ EU .
To partially satisfy the considered requests, one can share

the resources as follows: R1 = {EU, $, φ1} for the agent
a1, R2 = {m1, $, φ2} for a2, and R3 = {EU} for the
agent a3. Thus, the agents a1, a2 and a3 can obtain p1, p3
and EU respectively (R1 ` p1, R2 ` p3 and R3 ` EU ).
Another way to share the available resources is as follows:
R′

1 = {2 : EU, $,m2, φ1} for a1, R′
2 = {m1, $, φ2} for

a2, and R′
3 = {} for a3, which allows satisfying the goal

of a1 (R′
1 ` p1 ⊗ p4), but at the expense of a3. Incom-

pleteness measurement can be used in this context to pre-
vent imbalance in resource sharing. For example, one can
require the property that the maximum incompleteness value
has to be reduced as far as possible, which can be seen as a
simple way to share the severity of incompleteness between
the agents. More precisely, the previous property can be ex-
pressed as follows: S is an acceptable partition of the avail-
able resources if and only if for every other resource parti-
tion S′, max{M(Ra, Ga) : a ∈ A} ≤ max{M(R′

a, Ga) :
R′

a ∈ S′}, whereM is an incompleteness measure, A is the
set of the considered agents, Ra (resp. R′

a) is the set of the
resources that are given to the agent a in S (resp. S′), and
Ga is the goal of the agent a. In fact, using incompleteness
measurement, it is possible to define other more sophisti-
cated properties for reasoning about resource sharing under
incompleteness.

Agent Grouping
We show that quantifying incompleteness of resource pro-
duction can guide the task of assigning agents to groups.
The main idea consists in using incompleteness measures
to improve the quality of the built groups by reducing the
incompleteness values. In this context, we consider that ev-
ery agent has resources and a goal. The cooperation between
agents aims at achieving their goals. For instance, consider
the following six agents:

• a1: R1 = {2 : $, $ ( Coffee} (the available resources),
G1 = Bus-Ticket (the required goal);

• a2: R2 = {5 : $}, G2 = Bus-Ticket⊗ Book;

• a3: R3 = {$, 3 : $ ( Sandwich, 3 : $ ( Salad}, G3 =
Sandwich;

• a4: R4 = {$ ( Bus-Ticket}, G4 = Coffee;

• a5: R5 = {10 : $}, G5 = Salad⊗ Coffee⊗ Book;

• a6: R6 = {4 : $ ( Book, $ ( Coffee}, G6 = Coffee.

Our purpose is to compose three groups of cooperating
agents with two agents per group. One can see that the group
C1 = {a1, a4} allows their agents to achieve their goals
since we have R1 ] R4 ` G1 ⊗ G4. However, the group
C2 = {a3, a5} allows only satisfying the goal of the agent
a3. Using an incompleteness measureM, the value associ-
ated to the group C2 (M(R3 ] R5, {G3, G5})) can be used
to determine the quality of this group, since, even if C2 does
not allow a5 to achieve the associated goal, it allows satisfy-
ing one of its parts (R3 ]R5 ` G3⊗ Salad). In fact, there is
no agent that can allow a5 to achieve all the parts of the asso-
ciated goal. Thus, the use of an incompleteness measure can
be helpful in improving the quality of the group containing
a5 by reducing the incompleteness value.
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Incompleteness Measures
This section is devoted to the introduction of the notion of
incompleteness measure. We first introduce the notion of re-
source production scenario, which corresponds to an ordered
pair that represents the available resources and the goal.
Then, an incompleteness measure is defined as a function
that associate non-negative values with the resource produc-
tion scenarios and satisfies some rationality postulates.

Definition 1 (RP-Scenario). A resource production scenario
(RP-scenario) is an ordered pair (R,G) of finite multisets of
FIMAAL\⊥ ; R is the multiset of available resources and G the
goal.

Given a function M defined over RP-scenarios and an
RP-scenario S = (R,G), we sometimes write for the sake
of simplicityM(R,G) to refer toM(S) (it does not mean
that M is a function with two parameters). From now on,
we useRPS IMAAL\⊥ to denote the set of RP-scenarios.

Example 1. The RP-scenario ({2 : $, $ ( Coffee, $⊗$ (
Bus-Ticket}, {Coffee,Bus-Ticket}) represents the situation
where the aim is to produce a coffee and a bus ticket using
two dollars and the transformation processes $ ( Coffee
and $ ⊗ $ ( Bus-Ticket. Clearly, two dollars do not allow
us to have both a coffee and a bus ticket, which corresponds
to a situation of incompleteness.

We use R+
∞ to denote the set of positive real number aug-

mented with a greatest element denoted∞.

Definition 2 (Incompleteness Measure). An incompleteness
measureM is a functionRPS IMAAL\⊥ → R+

∞ that satisfies
the following properties:

• COMPLETENESS: ∀(R,G) ∈ RPS IMAAL\⊥ ,M(R,G) =

0 iff R `
⊗
G;

• GOAL ADDITION: ∀(R,G) ∈ RPS IMAAL\⊥ and ∀φ ∈
FIMAAL\⊥ ,M(R,G ] {φ}) ≥M(R,G);

• EXTENSION: ∀(R,G) ∈ RPS IMAAL\⊥ and ∀φ ∈
FIMAAL\⊥ ,M(R ] {φ}, G ] {φ}) ≤M(R,G).

COMPLETENESS says that the incompleteness value is
null if and only if it is possible to produce the entire goal,
which means that an incompleteness measure must allow
differentiating completeness from incompleteness. GOAL
ADDITION means that the amount of incompleteness can
only grow by adding new resources to the goal. Regard-
ing EXTENSION, it states that the amount of incomplete-
ness cannot increase by adding the same resource to both the
available resources and the desired goal. This comes from
the fact that a resource can be used to obtain itself, that is,
φ ` φ holds for every φ ∈ FIMAAL\⊥ .

For instance, the simple function defined as follows is an
incompleteness measure:

Mb(R,G) =

{
0 if R `

⊗
G

1 otherwise

This measure allows only distinguishing completeness from
incompleteness.

The following proposition says that adding formulas to
the available resources cannot increase the amount of incom-
pleteness. The validity of this property explains why it is not
used as a rationality postulate in Definition 2.

Proposition 1. LetM be an incompleteness measure. Then,
for every (R,G) ∈ RPS IMAAL\⊥ and every φ ∈ FIMAAL\⊥ ,
M(R ] {φ}, G) ≤M(R,G) holds.

Proof. Using GOAL ADDITION, we obtain M(R ]
{φ}, G) ≤M(R ] {φ}, G ] {φ}). Furthermore, using EX-
TENSION,M(R] {φ}, G] {φ}) ≤M(R,G) holds. Thus,
M(R ] {φ}, G) ≤M(R,G) ensues.

Let us now examine the following additional properties
on incompleteness measures:

• SUBADDITIVITY: ∀(R ] R′, G ] G′) ∈ RPS IMAAL\⊥ ,
M(R ]R′, G ]G′) ≤M(R,G) +M(R′, G′);

• SEPARABILITY: ∀(R ] R′, G ] G′) ∈ RPS IMAAL\⊥ , if
PLit(R]G)∩PLit(R′ ]G′) = ∅ thenM(R]R′, G]
G′) =M(R,G) +M(R′, G′).

These properties can be used for emphasizing differences
between incompleteness measures. They are not required in
Definition 2 because it may be unsuitable in certain cases.
For example, the basic measureMb does not satisfy them.

SUBADDITIVITY decrees that the incompleteness value
for the result of joining available resources and goals is less
than or equal to the sum of the incompleteness values for the
available resources and goals considered separately. It is mo-
tivated by the fact that joining the available resources may
provide additional possibilities compared to the case where
they are taken independently. SEPARABILITY requires that
if it is possible to partition the available resources and goals
in two parts that do not share any literal, then the incom-
pleteness value is the sum of the incompleteness values of
the two parts. Alternatively stated, joining two multisets of
available resources and goals that have nothing in common
cannot provide any further possibility.

We now show that SUBADDITIVITY is stronger than EX-
TENSION.

Proposition 2. If an incompleteness measure satisfies SUB-
ADDITIVITY then it satisfies also EXTENSION.

Proof. Let M be an incompleteness measure, S =
(R,G) ∈ RPS IMAAL\⊥ and φ ∈ FIMAAL\⊥ . Using SUB-
ADDITIVITY, we haveM(R ] {φ}, G ] {φ}) ≤ M(S) +
M({φ}, {φ}). Thus, M(R ] {φ}, G ] {φ}) ≤ M(R,G)
holds.

The decomposition of RP-scenarios in the same way as
in SEPARABILITY deserves much attention. Indeed, certain
decomposition-based properties may seem intuitively appro-
priate while they are not satisfied by any incompleteness
measure. To clarify this point, consider the following prop-
erty:

• MULTIPLICITY: ∀(R,G) ∈ RPS IMAAL\⊥ ,M(R]R,G]
G) = 2×M(R,G).
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Even if MULTIPLICITY might seem intuitively suitable in
some cases, we formally show in the following proposition
that it cannot be satisfied by any measure.

Proposition 3. There is no incompleteness measure that sat-
isfies MULTIPLICITY.

Proof. Let M be an incompleteness measure and S =
({p, p ⊗ p ( q ⊗ q, p, p ⊗ p ( q ⊗ q}, {2 : q}) an RP-
scenario. Clearly, we have {p, p ⊗ p ( q ⊗ q, p, p ⊗ p (
q⊗q} ` q⊗q. Consequently, using COMPLETENESS, we ob-
tainM(S) = 0. Assume thatM satisfies MULTIPLICITY.
Then, we haveM(S) = 2×M({p, p⊗ p( q ⊗ q}, {q}).
Using COMPLETENESS,M({p, p⊗ p ( q × q}, {q}) > 0
holds, since {p, p ⊗ p ( q ⊗ q} 0 q. Therefore, we have
alsoM(S) > 0 and we obtain a contradiction.

Syntactic Incompleteness Measures
In this section, we propose notions that are useful for defin-
ing syntactic incompleteness measures and describe sev-
eral measures that are based on them. Intuitively, these no-
tions can be exploited in a similar way to maximal consis-
tent subsets and minimal inconsistent subsets for defining
inconsistency measures in the case of classical logic (e.g.
see (Thimm 2018b)).

Definition 3 (Maximal Produced Sub-multiset). Let S =
(R,G) be an RP-scenario. A multiset G′ of formulas in
FIMAAL\⊥ is a maximal produced sub-multiset (MPS) of S
iff (i) G′ ⊆ G, (ii) R `

⊗
G′, and (iii) ∀G′′ ⊆ G with

G′ ⊂ G′′, R 0
⊗
G′′.

We use MPS(S) to denote the set of all the MPSes of S.
An MPS can be seen as a possible optimal solution of the

resource production problem, since it is obtained by maxi-
mizing the satisfied part in the desired goal (the maximality
is considered with respect to multiset inclusion). In a sense,
the notion of MPS can be seen as the counterpart of that of
maximal consistent subset in classical logic.

In order to show that MPSes can be used for quantifying
and reasoning about incompleteness, consider the following
incompleteness measures:
for every S = (R,G) ∈ RPS IMAAL\⊥ ,

• MMPS
max (S) = |G| −max{|G′| : G′ ∈ MPS(S)},

• MMPS
cov (S) = min{|Γ| − 1 : Γ ∈ mult(MPS(S))

and G ⊆
⊎

Γ} with MMPS
cov (S) = ∞ if ∀Γ ∈

mult(MPS(S)), G 6⊆
⊎

Γ holds.

Following MMPS
max , the amount of incompleteness cor-

responds to the minimum number of resources that cannot
be produced. This measure corresponds, probably, to the
most intuitive and direct manner for quantifying incomplete-
ness. Indeed, in many cases involving resource production,
the aim consists in maximizing the quantity of acquired re-
sources. The measureMMPS

cov counts the minimum number
of MPSes that cover the desired goal. Intuitively, it corre-
sponds to the repeated effort needed to achieve the goal. We
use∞ for the case where it is not possible to cover the entire
resources.

Proposition 4. The functionsMMPS
max andMMPS

cov are in-
completeness measures that satisfy SUBADDITIVITY and
SEPARABILITY.

Proof. We only consider the case of MMPS
max , the case of

MMPS
cov being similar.

- COMPLETENESS. ∀S = (R,G) ∈ RPS IMAAL\⊥ , we have
MMPS

max (S) = 0 iff MPS(S) = {G}. Thus,MMPS
max (S) =

0 iff R `
⊗
G.

- GOAL ADDITION. Let S = (R,G) ∈ RPS IMAAL\⊥ ,
φ ∈ Res and G′ ∈ MPS(R,G ] {φ}) s.t.MMPS

max (R,G ]
{φ}) = |G ] {φ}| − |G′|. Clearly, there exists an MPS
G′′ ∈ MPS(S) s.t. G′ \ {φ} ⊆ G′′. Hence, |G ] {φ}| −
|G′| ≤ |G| − |G′′| holds. As a consequence, we have
M(R,G ] {φ}) ≥M(R,G).
- SUBADDITIVITY. Let (R ] R′, G ] G′) ∈ RPS IMAAL\⊥ .
For every MPS G1 ∈ MPS(R,G) and every G2 ∈
MPS(R′, G′), there exists an MPS G3 ∈ MPS(R]R′, G]
G′) s.t. G1 ] G2 ⊆ G3. Indeed, we have R ] R′ `⊗

(G1 ] G2) since R `
⊗
G1 and R′ `

⊗
G2. There-

fore,M(R]R′, G]G′) ≤M(R,G) +M(R′, G′) holds.
- EXTENSION. A consequence of Proposition 2.
- SEPARABILITY. Let (R ] R′, G ] G′) ∈ RPS IMAAL\⊥

s.t. PLit(R ] G) ∩ PLit(R′ ] G′) = ∅. Thus, for every
G1 ⊆ G, R ] R′ `

⊗
G1 iff R `

⊗
G1. Similarly, for

every G2 ⊆ G′, R ]R′ `
⊗
G2 iff R′ `

⊗
G2. Hence, for

every G3 ∈ MPS(R ] R′, G ]G′), G3 \G ∈ MPS(R,G)
and G3 \ G′ ∈ MPS(R′, G′). Consequently, we obtain
M(R ]R′, G ]G′) =M(R,G) +M(R′, G′).

We now use the notion of MPS to define an additional
notion that can be used for defining properties on incom-
pleteness measures.

Definition 4 (Assured Subgoal). Given an RP-scenario S =
(R,G), the assured subgoal of S is the intersection of all the
MPSes of S, i.e.,

⋂
MPS(S).

We use AS(S) to denote the assured subgoal of S.
In other words, the assured subgoal is the part of the de-

sired resources that is in every solution obtained by maxi-
mizing the produced resources (w.r.t. multiset inclusion). To
some extent, the assured subgoal can be considered as the
part of the goal that is not involved in the causes of incom-
pleteness. This property can be expressed as follows:

• ASSURED SUBGOAL: ∀(R,G) ∈ RPS IMAAL\⊥ ,
M(R,G) =M(R,G \ AS(R,G)).

Proposition 5. The incompleteness measures MMPS
max and

MMPS
cov satisfy ASSURED SUBGOAL.

Proof. Let S = (R,G) ∈ RPS IMAAL\⊥ .
- Case of MMPS

max . Let G′ ∈ MPS(R,G \ AS(S)) s.t.
MMPS

max (R,G \ AS(S)) = |G \ AS(S)| − |G′|. Assume
that R 0

⊗
(G′ ] AS(R,G)). Then, there exists an MPS

of S s.t. AS(S) 6⊆ MPS(S) (that including G′), and we
obtain a contradiction with the definition of assured sub-
goal. Thus, R `

⊗
(G′ ] AS(S)) holds, and we obtain

MMPS
max (R,G \ AS(S)) ≥ MMPS

max (S). In addition, using
Proposition 1,MMPS

max (R,G\AS(S)) ≤MMPS
max (S) holds.
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- Case of MMPS
cov . If MMPS

cov (R,G \ AS(S)) = ∞
then MMPS

cov (R,G) = ∞ holds since MMPS
cov (R,G \

AS(S)) ≤ MMPS
cov (S) (see Proposition 1). Otherwise,

let Γ ∈ mult(MPS(R,G \ AS(S))) s.t. G ⊆
⊎

Γ and
MMPS

cov (R,G \ AS(S)) = |Γ|. Using the definition of as-
sured subgoal, it holds R `

⊗
(G′ ]AS(S)) for every G′ ∈

MPS(R,G \AS(S)) (see the proof in the case ofMMPS
max ).

As a consequence, we obtain MMPS
cov (R,G) ≤ |Γ|. Fur-

thermore, MMPS
cov (R,G) ≥ |Γ| is obtained using Proposi-

tion 1.

In the following definition, we introduce a notion de-
fined through adding positive literals, which are the building
blocks of any formula, to the available resources to reach the
goal.

Definition 5 (MAM). Let S = (R,G) be an RP-scenario.
A minimal adjustment multiset (MAM) of S is a multiset X
of positive literals where (i)R]X `

⊗
G and (ii) for every

multiset of positive literals Y with Y ⊂ X , R ] Y 0
⊗
G.

We use MAM(S) to denote the set of all the MAMs of S.
Alternatively stated, a MAM corresponds to what is

needed in terms of building blocks of resources (positive lit-
erals) to attain the considered goal.

The following proposition shows that there exists a mul-
tiset of positive literals that allows having completeness for
every RP-scenario.

Proposition 6. For every S = (R,G) ∈ RPS IMAAL\⊥ ,
there exists a finite multisetX of positive literals s.t.R]X `⊗
G.

Proof. We consider w.l.o.g. thatG contains a single formula
φ. Our proof is by induction of the size of φ (the number of
symbols occurring in φ). If φ is a positive literal then the
property is obtained with X = {φ}: R ] {φ} ` φ. We now
consider only the case where φ corresponds to a formula
of the form φ1 ∧ φ2, the other cases begin similar. Using
induction hypothesis, we know that there exist finite multi-
sets X1 and X2 of positive literals s.t. R ] X1 ` φ1 and
R ] X2 ` φ2. Then, using the weakening rule, we obtain
both R]X1 ]X2 ` φ1 and R]X ]X2 ` φ2. By applying
the rule [∧R], R ]X1 ]X2 ` φ1 ∧ φ2 holds.

Let us consider the following incompleteness measures:
for every S ∈ RPS IMAAL\⊥ ,

• MMAM
min (S) = min{|X| : X ∈ MAM(S)}

• MMAM
min,set(S) = min{|set(X)| : X ∈ MAM(S)}.

The amount of incompleteness usingMMAM
min is equal to

the minimum number of positive literal occurrences that are
needed with the available resources to obtain the entire goal.
The measureMMAM

min,set(S) is defined in the same way as the
previous one, except that it takes into account the number
of distinct positive literals instead of the number of occur-
rences.

Proposition 7. The functions MMAM
min and MMAM

min,set are
incompleteness measures that satisfy SUBADDITIVITY and
SEPARABILITY.

Contrary to the MPS-based measures, MMAM
min and

MMAM
min,set do not satisfy ASSURED SUBGOAL. For instance,

consider the RP-scenario S = ({p ∧ (p ( 3 : q)}, {p, 3 :
q}), which has a single MPS: {p}; hence, we have AS(S) =
{p}. Additionally, {p} is also the smallest MAM of S′ =
(R,G \ {p}), and consequently MMAM

min (S′) = 1 holds.
However, the multiset {2 : p} is the unique smallest MAM
of S, and we obtainMMAM

min (S) = 2.
Note that interesting measures can also be obtained

without involving the previous notions. For example, con-
sider the following measure: for every S = (R,G) ∈
RPS IMAAL\⊥ ,

• Mnc(S) = |G| − max{k : ∀G′ ⊆ G, if |G′| =
k then R `

⊗
G′}.

This measure is inspired by the inconsistency measure in-
troduced in (Doder et al. 2010) (see also (Thimm 2016)).
The value v = max{k : ∀G′ ⊆ G, if |G′| = k then R `⊗
G′} corresponds to the maximum value v so that any

part from the goal of size v can be obtained from the avail-
able resources. The function Mnc is an incompleteness
measure that satisfies SUBADDITIVITY and SEPARABILITY.
This measure shows also that some concepts used in defin-
ing inconsistency measures can be adapted to define incom-
pleteness measures.

Example 2. Consider R = {p, (2 : p) ( p⊗ q, r, r ( (2 :
s), s ( (2 : s), t ( (2 : t)} and G = {p, q, r, 2 : s, 2 : t}.
There are only two MPSes: G1 = {p, r} and G2 = {p, 2 :
s}. Thus, we haveMMPS

max (R,G) = 4. Furthermore, there
is no combination of G1 and G2 that can cover the entire
goal; hence,MMPS

max (R,G) = ∞ holds. In addition, using
the fact that the MAMs are {p, r, t}, {q, r, t}, {p, s, t}, and
{q, s, t}, we obtain MMAM

min (R,G) = MMAM
min,set(R,G) =

3. Moreover, we have max{k : ∀G′ ⊆ G, if |G′| =
k then R `

⊗
G′} = 0, which means thatMnc(R,G) = 7.

Conclusion and Perspectives
The ability to reason about resource production incomplete-
ness is a key point to make rational decisions in many con-
texts. In this paper, using intuitionistic affine logic for re-
source representation and reasoning, we have introduced a
logic-based framework for quantifying the intensity of re-
source production incompleteness through a postulate-based
approach. Additionally, we have proposed syntactic notions
that can be used to build different types of measures and pre-
sented several measures based on them. Besides, we have
described situations where incompleteness measures can be
applied.

There are several perspectives for future work related to
the measurement of resource production incompleteness. In-
deed, it is interesting to adapt the proposed framework to
other resource-sensitive logics such as the logic of bunched
implications (O’Hearn and Pym 1999). Additionally, it is
worthwhile to study further properties on the incomplete-
ness measures that correspond to aspects related to resource
management (e.g. the presence of infinite resources). The
definition of other types of incompleteness measures is as
well an interesting perspective.
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