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Abstract
We extend DatalogMTL—Datalog with operators from met-
ric temporal logic—by adding stratified negation as failure.
The new language provides additional expressive power for
representing and reasoning about temporal data and knowl-
edge in a wide range of applications. We consider models
over the rational timeline, study their properties, and establish
the computational complexity of reasoning. We show that,
as in negation-free DatalogMTL, fact entailment in our lan-
guage is PSPACE-complete in data and EXPSPACE-complete
in combined complexity. Thus, the extension with stratified
negation does not lead to higher complexity.

Introduction
We consider DatalogMTL (Brandt et al. 2017, 2018; Wałęga
et al. 2019)—a temporal extension of Datalog, where atoms
in rules can mention operators from metric temporal logic
MTL (Koymans 1990) interpreted over the rational timeline.
For example, the metric expression x(0,10s]Sym(x, cough)
states that x coughed at least once in the last 10 seconds,
whereas �(0,10s]Sym(x, cough) states that x coughed con-
tinuously in the described period. By allowing such ex-
pressions in rules, DatalogMTL provides a powerful lan-
guage for representing and reasoning about information in-
volving temporal intervals, which is expressive enough to
capture other well-known temporal rule languages such as
Datalog1S (Chomicki and Imieliński 1988, 1989) and Tem-
plog (Abadi and Manna 1989). As a result, DatalogMTL
has been suggested as a suitable formalism for applications
such as temporal ontology-based data access (Brandt et al.
2018), stream reasoning (Wałęga, Cuenca Grau, and Kamin-
ski 2019), and temporal logic programming (Brzoska 1998).

As a running example, let us consider the formalisation of
some of the COVID-19 self-isolation rules for households in
the United Kingdom1 using DatalogMTL:
Sym(x, cont_cough)← �[0,5m] x(0,10s] Sym(x, cough),

COVIDSym(x)← x[0,24h]Sym(x, cont_cough),

COVIDSym(x)← x[0,24h]Sym(x, fever).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.gov.uk/government/publications/covid-19-stay-
at-home-guidance/stay-at-home-guidance-for-households-with-
possible-coronavirus-covid-19-infection

The first rule defines the continuous cough symptom as a
cough that has occurred at least once every 10 seconds (ex-
pressed using the operator x(0,10s]) within the previous 5
minutes (expressed using �[0,5m]); the remaining rules es-
tablish that anyone with a continuous cough or a fever in the
last 24 hours is displaying COVID-19 symptoms.

An important limitation of DatalogMTL as defined in
prior work is that it does not allow negation in rules.
Non-monotonic negation applied to temporal information is,
however, a very useful feature that has been recently consid-
ered in the contexts of temporal answer set programming
over the integer timeline (Cabalar et al. 2019, 2020) and
stream reasoning (Beck, Dao-Tran, and Eiter 2018; Zaniolo
2012; Das, Gandhi, and Zaniolo 2018).

In this paper, we propose and study the language of
DatalogMTL with stratified negation as failure. Our lan-
guage extends positive (i.e., negation-free) DatalogMTL
(over the rational timeline and under continuous semantics)
as well as plain Datalog with stratified negation. It provides
useful additional expressivity for a wide range of application
scenarios. For instance, consider the guidance that people
with COVID-19 symptoms must remain in home isolation
for 10 days after the onset of their symptoms. We can at-
tempt to represent this policy using the following rule:

�[0,10d]Isol(x)← COVIDSym(x).

Here, the future operator �[0,10d] states that isolation should
continue uninterrupted for 10 days after symptoms are de-
tected. This rule, however, does not faithfully represent the
aforementioned policy; in particular, it implies that a patient
must isolate for 10 days in future for as long as they display
symptoms, where the UK’s guidance dictates that the 10 day
self-isolation is effective from the onset of symptoms; indeed,
a patient can stop isolating after that period since symptoms
like a continuous cough can linger for several weeks after the
infection has gone. Negation as failure, which is denoted by
not, can be used to faithfully capture the requirement that
symptoms must be new for an isolation period to start; in
particular, the following rule states that an isolation period
is triggered whenever a patient first displays symptoms after
a period of 10 days without showing signs of the disease:

�[0,10d] Isol(x)← COVIDSym(x) ∧
notx(0,10d]COVIDSym(x).
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Our contributions in this paper are as follows.
First, we define the syntax and semantics of DatalogMTL

programs with stratified negation. Our semantics is a natural
extension of the semantics of both Datalog with stratified
negation and positive DatalogMTL. Fact entailment for a
program and dataset is decided using a unique interpretation,
called the materialisation, defined as the last element of a
sequence of interpretations, called partial materialisations,
starting with the least model of the data and subsequently
extending them to satisfy higher strata of the program.

In contrast to Datalog with stratified negation, however,
we cannot check fact entailment by simply constructing the
sequence of partial materialisations since each of them can
now be of infinite size. To overcome this difficulty, we de-
fine Büchi automata allowing us to check if a particular
fact holds in a partial materialisation without having to con-
struct the partial materialisation entirely. This, in turn, al-
lows us to establish tight complexity bounds for fact en-
tailment, namely a PSPACE bound in data complexity and
an EXPSPACE bound in combined complexity; thus, fact
entailment in our language is not harder than in positive
DatalogMTL (Brandt et al. 2018; Wałęga et al. 2019) and
the additional expressivity comes at no computational cost.
Our upper bounds transfer also to Datalog1S with stratified
negation.

Preliminaries
Time and Intervals. The (rational) timeline is the (or-
dered) set Q of rational numbers, and a time point is an
element of the timeline. An interval, %, is a subset of Q
such that for all t1, t2, t3 ∈ Q satisfying t1 < t2 < t3 and
t1, t3 ∈ % we have t2 ∈ %, if % is bounded below then it has
a greatest lower bound in Q, and if % is bounded above then
it has a least upper bound in Q. The left endpoint %− of % is
the largest rational lower bound of %, if one exists, or −∞
otherwise; the right endpoint %+ of % is the smallest rational
upper bound of % if one exists, or∞ otherwise. An interval
is punctual if it contains exactly one number; it is positive
if it does not contain negative numbers; and it is bounded if
both its left and right endpoints are rational numbers.

We use the standard bracket representation 〈%−, %+〉 for
an interval %, where the left bracket 〈 is either [ or ( and
the right bracket 〉 is either ] or ). Brackets [ and ] indicate
that the corresponding endpoints are included in the interval,
whereas ( and ) indicate that they are excluded. We use the
generic symbols 〈 and 〉 if brackets are not determined, and
we write a punctual interval [t, t] as t. Rational endpoints are
written as (not necessary reduced) fractions with integer nu-
merators and positive integer denominators, both in binary.

Metric Atoms and Interpretations. We consider a signa-
ture consisting of (disjoint) sets of constants and predicates.
A relational atom is an expression P (s) where P is a pred-
icate and s is a tuple of constants and variables of length
matching the arity of P . A metric atom M is an expression
specified by the following grammar, where P (s) ranges over
relational atoms and % over positive intervals:

M ::=>|⊥|P (s)|x%M ||%M |�%M |�%M |MS%M |MU%M.

I, t |= > for each t ∈ Q
I, t |= ⊥ for no t ∈ Q
I, t |= x%M iff I, t′ |= M for some t′ with t− t′ ∈ %
I, t |= |%M iff I, t′ |= M for some t′ with t′ − t ∈ %
I, t |= �%M iff I, t′ |= M for all t′ with t− t′ ∈ %
I, t |= �%M iff I, t′ |= M for all t′ with t′ − t ∈ %
I, t |= M1S%M2 iff I, t′ |= M2 for some t′ with t− t′ ∈ %

and I, t′′ |= M1 for all t′′ ∈ (t′, t)

I, t |= M1U%M2 iff I, t′ |= M2 for some t′ with t′ − t ∈ %
and I, t′′ |= M1 for all t′′ ∈ (t, t′)

Table 1: Semantics of ground metric atoms

A metric atom is ground if it mentions no variables. A met-
ric fact is an expression M@%, with M a ground metric
atom and % a non-empty interval; it is relational if so is M .
A dataset is a finite set of relational facts.

An interpretation I specifies, for each ground relational
atom P (c) and each time point t ∈ Q, whether P (c) is sat-
isfied at t, in which case we write I, t |= P (c). This notion
extends to other ground metric atoms as given in Table 1.
An interpretation I is a model of a metric factM@%, written
I |= M@%, if I, t |= M for all t ∈ %; and it is a model of
a set M of metric facts (e.g., a dataset) if it is a model of all
facts in M. An interpretation I contains an interpretation I′,
written I′ ⊆ I, if I′, t |= P (c) implies I, t |= P (c), for
each ground relational atom P (c) and time point t ∈ Q. Fur-
thermore, I is the least interpretation in a set X of interpre-
tations, if I ⊆ I′ for every I′ ∈ X . Note that we use the con-
tinuous semantics over the rationals (Brandt et al. 2018), but
DatalogMTL has also been studied under the pointwise se-
mantics (Ryzhikov, Wałęga, and Zakharyaschev 2019, 2020)
and over the integer timeline (Wałęga et al. 2020).

DatalogMTL with Stratified Negation
In this section we introduce the syntax and semantics of
DatalogMTL¬, which extends DatalogMTL by adding strat-
ified negation as failure.

The syntax of DatalogMTL¬ is defined analogously to
standard Datalog with negation (Abiteboul, Hull, and Vianu
1995; Dantsin et al. 2001): the rule body is a conjunction
of atoms and negated atoms, and the rule head is a sin-
gle atom distinct from ⊥. The only difference is that, as in
DatalogMTL (Brandt et al. 2017), we allow metric operators
in atoms and disallowx,|, S , and U in rule heads.
Definition 1. A rule is an expression r of the form

M ←M1 ∧ · · · ∧Mk ∧ notMk+1 ∧ · · · ∧ notMk+m, (1)

where k,m ≥ 0, each Mi is a metric atom, and M is a
metric atom specified by the following grammar, where P (s)
ranges over relational atoms and % over positive intervals:

M ::= P (s) | �%M | �%M.
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The metric atom M in Form (1) is the head of r, while the
conjunction therein is the body of r; the atoms M1, . . . ,Mk

are the positive body atoms of r, and Mk+1, . . . ,Mk+m are
its negated body atoms. A rule r is safe if each variable it
mentions occurs in some positive body atom, it is ground
if it has no variables, and it is positive if it has no negated
body atoms. A (DatalogMTL¬) program is a finite set of safe
rules; it is ground or positive if all its rules are.

The semantics of Datalog programs with negation is not
straightforward and there have been many proposals over the
years. There is, however, a general consensus on the seman-
tics of stratifiable programs, which can be organised in lay-
ers of sub-programs, called strata, so that, for each rule in a
stratum, every predicate appearing in a positive body atom
does not appear in the heads in the strata above and every
predicate appearing in a negated atom does not appear in
the heads either in the same stratum or in the strata above.
We adopt an analogous semantics for DatalogMTL¬, and so,
we can reuse the well-known techniques to check in polyno-
mial time whether a program is stratifiable and to compute a
corresponding stratification (Dantsin et al. 2001). We note,
however, that alternative definitions of stratifiable programs
in temporal logics have been considered which are based, for
example, on the notions of local and temporal stratifications
(Przymusiński 1988; Nomikos, Rondogiannis, and Gergat-
soulis 2005; Koutras and Nomikos 2000).

Definition 2. A stratification of a program Π is a function
σ mapping predicates mentioned in Π to positive integers
such that the following holds, for each rule r ∈ Π, and all
predicates P , P+ and P− mentioned in the head, positive
body atoms and negated body atoms of r, respectively:

σ(P+) ≤ σ(P ) and σ(P−) < σ(P ).

A program is stratifiable if it has a stratification.
For each s ∈ N, the s-th stratum Πσ

s of Π with respect
to a stratification σ is the (possibly empty) subset of Π con-
taining each rule with σ(P ) = s for the predicate P in the
head. We also let Πσ

≤s = Πσ
1 ∪ · · · ∪ Πσ

s .

In what follows, we define the semantics of stratifiable
programs, which generalises not only the semantics of Dat-
alog with stratified negation, but also of DatalogMTL. First,
we extend the semantics of ground metric atoms from Ta-
ble 1 to capture the meaning of negated atoms, as well as
define models of DatalogMTL¬ programs.

Definition 3. For every interpretation I, time point t ∈ Q,
and ground metric atom M , the interpretation I satisfies
notM at t, denoted by I, t |= notM , if I, t 6|= M . An
interpretation I is a model of a rule r of Form (1) if,
for every assignment ν of variables to constants making r
ground and for every t ∈ Q, we have I, t |= ν(M) whenever
I, t |= ν(Mi) for each i ∈ {1, . . . , k} and I, t |= not ν(Mi)
for each i ∈ {k + 1, . . . , k +m}. An interpretation I is a
model of a program Π if I is a model of each rule in Π.

For each stratifiable program and dataset, we define a
unique model, which we call their materialisation. We de-
fine this model as in Datalog: given a stratification, we in-
troduce a finite sequence of interpretations starting with the

least model of the dataset and subsequently extending, in a
minimal way, the valuation of predicates defined by a given
stratum (i.e., predicates P such that σ(P ) = s for the stra-
tum number s) to satisfy this stratum. The existence of such
extensions follows from the following proposition.

Proposition 4. Let Π be a program with a stratification σ,
let s ≥ 1, and let I be an interpretation. Then, there exists a
unique least interpretation amongst the set of interpretations
I′ satisfying the following:

– I ⊆ I′;
– I′ agrees with I on all predicates P with σ(P ) 6= s; and
– I′ is a model of Πσ

s .

Proof sketch. The required interpretation can be obtained by
extending I with only those facts over predicates P with
σ(P ) = s that are necessary to satisfy Πσ

s . To show that
there is a unique such an interpretation, recall that � and �
are the only metric operators allowed in rule heads. Thus, if
r is a rule in Πσ

s whose body holds in some interpretation at
a time point t, then there is a unique way of extending this
interpretation with facts over the predicate P ′ in the head
of r so that the head holds at t. Since σ(P ′) = s, the new
interpretation agrees with the original interpretation on pred-
icates P with σ(P ) 6= s. The other two conditions hold by
construction.

It is worth noting that the second condition of Propo-
sition 4 does not imply the first one, since I may inter-
pret predicates which are defined by the s-th stratum. Let
Lσs (Π, I) denote the unique least interpretation guaranteed
by Proposition 4, which we will use to define a sequence of
partial materialisations. Their definition is similar to Data-
log; however in DatalogMTL¬ each partial materialisation
is potentially infinite.

Definition 5. Let Π be a program with a stratification σ
and letD be a dataset. Then, for each s ∈ N, the s-th partial
materialisation Mσ

s (Π,D) of Π and D with respect to σ is

– the least model of D, if s = 0, and
– the interpretation Lσs (Π,Mσ

s−1(Π,D)), if s > 0.

The materialisation Mσ(Π,D) of Π and D with respect to
σ is Mσ

n(Π,D), for n the greatest number in the range of σ
(or 0, when Π = ∅ and hence the range of σ is empty).

Clearly, the materialisation Mσ(Π,D) is a model of D as
Mσ

0 (Π,D) already is. Moreover, Mσ(Π,D) is a model of Π
as, by the construction, each Mσ

s (Π,D) is a model of Πσ
≤s.

The following proposition says that, as in Datalog (Abite-
boul, Hull, and Vianu 1995), our materialisations are inde-
pendent of the choice of a stratification.

Proposition 6. For each program Π, datasetD, and stratifi-
cations σ1 and σ2 of Π, we have Mσ1(Π,D) = Mσ2(Π,D).

Thus, in what follows, given a stratifiable program Π we
will restrict attention to its single stratification σΠ that as-
signs the smallest possible number to each predicate (sim-
ilarly to Datalog, such a stratification is uniquely defined).
Furthermore, we will say that Π admits n strata if n is the
greatest number in the range of σΠ (or 0, when Π = ∅).
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In the remainder of the paper we assume that σΠ is implicit
in all our definitions and technical results, and we will no
longer mention the stratifications explicitly; for example, we
write M(Π,D) instead of MσΠ(Π,D).

We are ready to define fact entailment in DatalogMTL¬.

Definition 7. A stratifiable program Π and a dataset D
entail a metric fact M@%, written (Π,D) |= M@%, if
M(Π,D) |= M@%.

We conclude this section by showing that our semantics of
stratifiable programs extends the semantics of positive pro-
grams by Brandt et al. (2018).

Proposition 8. Let Π be a positive program, D a dataset,
and M@% a metric fact. Then, M(Π,D) |= M@% if and
only if every model of Π and D is also a model of M@%.

Proof. It is known that each pair consisting of a positive pro-
gram and a dataset has a unique least model, referred to as
the canonical interpretation (Brandt et al. 2018). Hence, the
canonical interpretation is a model of M@% if and only if
so is each model of Π and D. Since Π is positive it admits
exactly one stratum, so M(Π,D) = M1(Π,D). By Defini-
tion 5, M1(Π,D) is the least interpretation satisfying D and
Π; so it coincides with the canonical interpretation of Π and
D, which implies the claim.

Automata for Partial Materialisations
We next introduce generalised Büchi automata that will al-
low us to check which facts hold in a partial materialisation.

In this section we restrict ourselves to programs in a nor-
mal form where each rule satisfies the following additional
requirements: its head is a relational atom, there is neither
nesting of metric operators nor occurrences of x and | in
its body, and the left endpoints of all unbounded intervals it
mentions are 0. This normal form extends that proposed by
Wałęga et al. (2019) for positive programs.

Proposition 9. Each stratifiable program Π can be trans-
formed in polynomial time into a stratifiable program Π′

in normal form such that, for each dataset D and rela-
tional fact P (c)@% with P in the signature of Π, we have
(Π,D) |= P (c)@% if and only if (Π′,D) |= P (c)@%.

Thus, from now, we assume that each program is in nor-
mal form. Moreover, until the end of the section we assume
that Π is a stratifiable program admitting n strata and D is a
dataset. We will use the following notions.

Definition 10. Let div(Π) = 1
k , where k is the product of

all denominators in rational endpoints of intervals in Π (for
definiteness we set k = 1 if Π has no intervals with rational
endpoints). The (Π,D)-ruler is the set of all time points of
the form t+i·div(Π), for t a rational number mentioned inD
and i an integer. A (Π,D)-interval is either a (punctual) in-
terval containing a single point in the (Π,D)-ruler, or an in-
terval (t1, t2), where t1 and t2 are consecutive points in the
(Π,D)-ruler. An interpretation I is a (Π,D)-interpretation
if it satisfies the following property for each t ∈ Q and for
each ground relational atom P (c): if I, t |= P (c), then
I, t′ |= P (c) for each t′ in the same (Π,D)-interval as t.

To ensure that the (Π,D)-ruler and the set of (Π,D)-
intervals are non-empty, we assume that each dataset men-
tions at least one rational number (which can always be
achieved by introducing a dummy relational fact in D). It
is known that if Π is positive then the unique least common
model of Π and D (called their materialisation) is a (Π,D)-
interpretation (Wałęga et al. 2019). We generalise this result
to DatalogMTL¬ programs and all partial materialisations.
Lemma 11. For every s ∈ {0, . . . , n}, the s-th partial ma-
terialisation is a (Π,D)-interpretation.

Proof sketch. We proceed by induction on s. The base case
holds since M0(Π,D) is the least model of D and all ra-
tionals mentioned in facts of D are in the (Π,D)-ruler. The
inductive step holds by a similar argument to the one used
by Wałęga et al. (2019) to show that the canonical interpreta-
tion of a positive program Π′ and a dataset D′ is a (Π′,D′)-
interpretation.

In the remainder of this section, for every s ∈ {1, . . . , n},
we will define a family of pairs of generalised Büchi au-
tomata that will allow us to check which metric facts hold
in the s-th partial materialisation. States of these automata,
called windows, describe which metric facts are satisfied
in specified bounded intervals. Then, for each initial win-
dow W0, we will introduce two automata whose accepting
runs determine, by means of metric facts in their states, all
(Π,D)-interpretations that simultaneously satisfy all facts in
W0, extend Ms−1(Π,D), agree with Ms−1(Π,D) on predi-
cates not defined by Πs, and are models of Πs. In particular,
each such interpretation can be divided into a fragment to
the left (i.e., in the past) ofW0, the windowW0 itself, and a
fragment to the right (i.e., in the future) ofW0. The first au-
tomaton is responsible for determining the left fragments of
the interpretations, while the second automaton for the right
fragments. Then, Ms(Π,D) is the least among interpreta-
tions determined by these automata, and thus, we can check
if a fact holds in Ms(Π,D) by examining accepting runs of
all relevant pairs of our automata.

We start by defining ground metric atoms which will oc-
cur in windows, and so, which will be used to reconstruct
interpretations from accepting runs.
Definition 12. Given Π′ ⊆ Π, gr(Π′,D) is the set of all
ground rules that can be obtained from rules in Π′ by assign-
ing variables to constants from Π′ andD. Then, gma(Π′,D)
is the set of all relational atoms in D, all metric atoms men-
tioned in rules in gr(Π′,D), and all metric atoms of the form
�〈0,∞)P (c) and �〈0,∞)P (c), with P (c) a relational atom
occurring in the rules in gr(Π′,D).

We are ready to define the windows.
Definition 13. For s ∈ {1, . . . , n}, a (Π,D)s-window is
a pair (%,W ), where % is a non-empty interval with all its
rational endpoints in the (Π,D)-ruler, and W is a set of
metric facts M@%′, with M ∈ gma(Π≤s,D) and %′ ⊆ % a
(Π,D)-interval, satisfying the following conditions:

– for every M ∈ gma(Π≤s−1,D) and every (Π,D)-
interval %′ ⊆ %, we have M@%′ ∈ W if and only if
Ms−1(Π,D) |= M@%′,
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– there is a (Π,D)-interpretation I such that, for every
M ∈ gma(Π≤s,D) and every (Π,D)-interval %′ ⊆ %, we
have M@%′ ∈W if and only if I |= M@%′.

The length of a window is the (possibly infinite) number of
(Π,D)-intervals contained in %.

The first item in the definition ensures that the restriction
of a (Π,D)s-window (%,W ) to predicates not defined by Πs

agrees with Ms−1(Π,D). The second item ensures that W
can be extended to an interpretation (which is not necessarily
Ms(Π,D)).

The following definition describes the class of windows
that will constitute the states of our automata, where we say
that a window is over an interval % if it is of the form (%,W ).

Definition 14. A (Π,D)s-window (%,W ) locally satisfies
Πs if, for each ground rule of Form (1) in gr(Πs,D), and
each (Π,D)-interval %′ ⊆ %, we haveM@%′ ∈W whenever
Mi@%

′ ∈ W for each i ∈ {1, . . . , k} and Mi@%
′ 6∈ W for

each i ∈ {k + 1, . . . , k +m}.
We are now ready to define the automata. To this end, let

the left-shift ←% of a bounded interval % with both endpoints
in the (Π,D)-ruler be the interval (%′ ∪ %) \ %′′ with %′ the
first (Π,D)-interval to the left of % and %′′ the right-most
(Π,D)-interval contained in %; then let the right-shift →% of %
be defined symmetrically.

Definition 15. Let s ∈ {1, . . . , n} and let W0 = (%0,W0)
be a (Π,D)s-window of finite length locally satisfying Πs.
The left automatonA←W0

for Πs is the generalised Büchi au-
tomaton (Q,Σ, δ,W0,F) with the following components:

– the setQ of states is the set of all (Π,D)s-windows of the
same length asW0 locally satisfying Πs;

– the alphabet Σ is the powerset of gma(Π≤s,D);
– the transition function δ is a partial function fromQ×Σ to
Q such that, for each stateW = (%,W ) and each A ∈ Σ,
the value δ(W, A) is the pair

(
←
%, {M@%′ ∈W | %′ ⊆ % ∩ ←%} ∪

{M@(
←
% \ %) |M ∈ A}),

if this pair is a state, and undefined otherwise;
– W0 is the initial state;
– the accepting condition F is a family containing, for each

�%∞M ∈ gma(Π≤s,D) with %∞ = 〈0,∞), the set

{(%,W ) ∈ Q | there is a (Π,D)-interval %′ ⊆ %
such that �%∞ M@%′ ∈W or M@%′ /∈W},

and, for each M1S%∞M2 ∈ gma(Π≤s,D), the set

{(%,W ) ∈ Q | there is a (Π,D)-interval %′ ⊆ %
such that M1S%∞M2@%′ /∈W or M2@%′ ∈W}.

The automaton A←W0
accepts an infinite Σ-word A0A1 . . . if

there is a sequenceW0,W1, . . . of states, called an accept-
ing run, such that Wi+1 = δ(Wi, Ai) for each i ∈ N, and
the sequence contains, for each F ∈ F , an infinite number
of occurrences of states belonging to F .

The right automaton A→W0
for Πs is defined in the same

way, except that in the definition of δ the right-shift →% is used
instead of the left-shift ←% , and in the definition of F , � and
U are used instead of � and S , respectively.

As we will show, for a (Π,D)s-windowW0 = (%0,W0),
the pairs of accepting runs of A←W0

and A→W0
for Πs deter-

mine all (Π,D)-interpretations which are models of Πs as
well as extend Ms−1(Π,D) and agree with it on predicates
not defined by Πs. By Definition 5, each such model con-
tains Ms(Π,D), so a fact holds in Ms(Π,D) if it holds in
all interpretations determined by A←W0

and A→W0
.

To guarantee that the pairs of accepting runs represent in-
terpretations satisfying Πs, we need to ensure that the ini-
tial windowW0 is not too short. Otherwise, even when each
state in an accepting run locally satisfies Πs, the interpre-
tation represented by the whole run may not satisfy Πs. In
particular the length ofW0 cannot be smaller than the num-
ber of (Π,D)-intervals contained in %(Π,D) = [tD, tD + tΠ],
where tΠ and tD are the largest rational numbers mentioned
in Π and D, respectively (if Π has no intervals with rational
endpoints, then we take tΠ = 1 for definiteness).
Theorem 16. The following are equivalent for each
s ∈ {1, . . . , n}, M ∈ gma(Π≤s,D), and (Π,D)-interval %:

1. Ms(Π,D) |= M@%;
2. for each (Π,D)s-windowW0 over %(Π,D) locally satisfy-

ing Πs and each pair of accepting runs of the automata
A←W0

andA→W0
for Πs, there is a state (%′,W ′) in the runs

such that M@% ∈W ′.

Proof sketch. Assume W0 = (%(Π,D),W0) is a (Π,D)s-
window. First, we will show that if W0,W−1, . . . and
W0,W1, . . . , with Wi = (%i,Wi), are accepting runs of
the automataA←W0

andA→W0
, respectively, then their ‘union’

W∞ = ((−∞,∞),
⋃
i∈ZWi) is a (Π,D)s-window (of infi-

nite length) locally satisfying Πs. The union W∞ satisfies
the first item from Definition 13 trivially since each Wi al-
ready satisfies it. To show that it also satisfies the second
item, we first define the interpretation I of W∞ as fol-
lows: for each relational atom P (c) and (Π,D)-interval %
we have I |= P (c)@% if and only if P (c)@% ∈

⋃
i∈ZWi.

We can show that I is a witness for the second item from
Definition 13. Indeed, we can show that the condition therein
holds for metric atoms with bounded intervals using the fact
that Π is in normal form and each window in an accepting
run is long enough (since it has the same length as %(Π,D)).
For atoms with unbounded intervals, we use the fact that
the accepting runs satisfy the accepting conditions of the au-
tomata, which are designed to mimic the semantics of op-
erators with unbounded intervals. Once this has been estab-
lished, we can easily prove thatW∞ locally satisfies Πs us-
ing the fact that so does each window in the runs.

Let XW0 be the set containing each (Π,D)-interpretation
that satisfies the following conditions: (i) it is a model ofW0,
(ii) it contains Ms−1(Π,D), (iii) it agrees with Ms−1(Π,D)
on all predicates P with σΠ(P ) 6= s, and (iv) it is a model
of Πs. We claim that (?) an interpretation I belongs to
XW0

if and only if there are accepting runs W0,W−1, . . .
and W0,W1, . . . of A←W0

and A→W0
, respectively, such that
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I is the interpretation of W∞ = ((−∞,∞),
⋃
i∈ZWi), for

Wi = (%i,Wi). Indeed, if I ∈ XW0 , then it is straightfor-
ward to show that there exists a unique (Π,D)s-window of
infinite length locally satisfying Πs such that I is the inter-
pretation of W∞. Then, we can divide W∞ into windows
of the same length asW0 to obtain states in accepting runs
of A←W0

and A→W0
. For the opposite direction, let I be the

interpretation ofW∞. We need to show that I satisfies Con-
ditions (i)–(iv). Clearly, W0 ⊆

⋃
i∈ZWi, so Condition (i)

holds. Conditions (ii) and (iii) hold directly by the fact that
each Wi is a (Π,D)s-window. As we have shown, W∞ is
a (Π,D)s-window locally satisfying Πs, so I is a model of
Πs. Thus Condition (iv) also holds.

By Proposition 4 and Definition 5, Ms(Π,D) is
the unique least interpretation satisfying Conditions (ii)–
(iv). Moreover, by Lemma 11, Ms(Π,D) is a (Π,D)-
interpretation, and so Ms(Π,D) |= M@% if and only if
I |= M@% for each (Π,D)s-window W0 = (%(Π,D),W0)
and I ∈ XW0 . The latter is equivalent to the second state-
ment in the theorem by Claim (?).

Theorem 16 suggests the following method of checking
whether Ms(Π,D) |= M@%. Consider the (finite) set X
of all (Π,D)s-windows W0 over %(Π,D). Then, check if
there is W0 ∈ X such that A←W0

and A→W0
for Πs have ac-

cepting runs but M@% does not occur in these runs. If so,
then Ms(Π,D) 6|= M@%; otherwise, Ms(Π,D) |= M@%.
By Definitions 5 and 7, checking whether Π and D entail
M@% reduces to checking if Mn(Π,D) |= M@% which, as
we have argued, is feasible using our automata.

There are, however, two main obstacles to use this ap-
proach. First, each automaton has infinitely many states
(since there are infinitely many intervals containing the same
number of (Π,D)-intervals as %(Π,D)); as we will show, this
problem can be addressed by defining an equivalence rela-
tion on the states with a finite quotient set. A more signifi-
cant problem is how to determine states of the automata for
Πs. Such states need to agree with the previous partial ma-
terialisation, which we cannot explicitly construct as it may
be infinite. We will show in the next section that this prob-
lem can be overcome by constructing on the fly only essen-
tial fragments of partial materialisations. This will give us a
worst-case optimal procedure for checking fact entailment.

Computational Complexity
Now, we will use the automata from the previous section
to establish the computational complexity of fact entail-
ment in DatalogMTL¬, namely, the problem of checking
whether a relational fact is entailed by a stratifiable program
and a dataset. We will consider the combined complexity of
the problem, where the fact, the program, and the dataset
all form an input, and two variants of the data complex-
ity, which is a standard measure in data-intensive applica-
tions: in the first variant, only the dataset is treated as an
input while the program and the fact are fixed; in the sec-
ond, the fact is also a part of an input. We will first show
that both variants of the data complexity of fact entailment
are in PSPACE. Then, we will show that the combined com-
plexity of the problem is in EXPSPACE. The matching lower

bounds hold already for positive programs (Wałęga et al.
2019; Brandt et al. 2017) and so our bounds are tight.

First, we will show that there exists a polynomial space
procedure that uses the automata from the previous section
to construct a fragment of a partial materialisation restricted
to a given (bounded) interval. Such fragments can be seen as
windows of a special form, as defined below.

Definition 17. Let Π be a stratifiable program which admits
n strata, let s ∈ {1, . . . , n}, and let D be a dataset. A ma-
terialisation (Π,D)s-window is a (Π,D)s-window that sat-
isfies a modification of the first item in Definition 13, where
occurrences of s− 1 are replaced with s.

It follows that for every interval % whose rational end-
points are in the (Π,D)-ruler, there exists a unique materi-
alisation (Π,D)s-window over %.

Lemma 18. Let Π be a stratifiable program admitting n
strata, let s ∈ {1, . . . , n}, let D be a dataset, and let %
be a bounded interval whose endpoints are in the (Π,D)-
ruler. Computing the materialisation (Π,D)s-window over
% is feasible in exponential space in general and in polyno-
mial space in the size of (the representations of) D and %.

Proof sketch. We address the polynomial space case, while
the argument for the general case is similar. We show,
by mutual induction on s ∈ {1, . . . , n}, the following two
claims: (i) given Π, n, s, and D as in the lemma, and a
(Π,D)s-window W0 of finite length locally satisfying Πs,
checking whether the languages of A←W0

and A→W0
for Πs

are non-empty is feasible in polynomial space in the size of
D andW0, and (ii) the statement from the lemma.

To show the base case for Claim (i), let W0 = (%0,W0)
be a (Π,D)1-window of a finite length locally satisfying Π1.
Let %0, %1, . . . be a sequence of intervals such that %i+1 =

←
%i

and let %k be the first interval in this sequence which is to the
left of all rational numbers mentioned in %0 and D. Clearly,
the left automaton A←W0

for Π1 has an accepting run if and
only if there is a state Wk = (%k,Wk) such that A←W0

has
a run from W0 to Wk, and the left automaton A←Wk

for Π1

has an accepting run. We show how to check these two con-
ditions in PSPACE.

First, we guess Wk, which is feasible in PSPACE due to
the fact that the endpoints of %k have polynomial representa-
tions. By definition,Wk is a state of A←W0

if it is a (Π,D)1-
window locally satisfying Π1, which can be checked in
PSPACE by first scanning D to verify the first item in Def-
inition 13, then guessing a polynomial representation of an
interpretation satisfying the second item of Definition 13,
and finally verifying thatWk locally satisfies Π1. Next, we
guess states in a run ofA←W0

fromW0 toWk one by one. As
in the case ofWk, each of them can be guessed and checked
against being a state in PSPACE. Furthermore, checking if
A←W0

has transitions between consecutive states is also fea-
sible in PSPACE. It remains to check if A←Wk

has an accept-
ing run. This cannot be done by guessing states, since end-
points of intervals %i with i > k can have arbitrarily long
representations. Instead, we use the idea of Wałęga et al.
(2019) to construct a finite Büchi automaton equivalent to
A←Wk

(by merging states ofA←Wk
which differ only by a shift
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of intervals they mention) which has exponentially many
states, each polynomial in size, and for which checking non-
emptiness of its language is feasible in PSPACE. The non-
emptiness of the language of the right automaton A→W0

for
Π1 can be checked in PSPACE analogously.

Now, we show the base case for Claim (ii) by construct-
ing in PSPACE the materialisation (Π,D)1-window over %.
Therefore, for every M@%′ such that M ∈ gma(Π≤1,D)
and %′ ⊆ % is a (Π,D)-interval, we need to check whether
M1(Π,D) |= M@%′. There are exponentially many such
M@%′ and for each of them we perform the check sepa-
rately as follows. Let %′′ be the (unique) interval with end-
points in the (Π,D)-ruler that contains the same number of
(Π,D)-intervals as %(Π,D) and such that %′ is the leftmost
(Π,D)-interval contained in %′′. Then, we can use Theo-
rem 16 to show that M1(Π,D) 6|= M@%′ if and only if there
is a (Π,D)1-window W = (%′′,W ) locally satisfying Π1

such that the languages of A←W and A→W for Π1 are non-
empty andM@%′ /∈W , which as we have shown in the base
case for Claim (i), can be checked in PSPACE in the size of
D andW . The interval %′′ is polynomially representable in
the size of D and %, and so is W , thus construction of the
materialisation (Π,D)1-window over % is in PSPACE in the
size of D and %.

In the inductive step we show that Claims (i) and (ii) hold
for s > 1 if they hold for s − 1. To show Claim (i) let
W0 = (%0,W0) be a (Π,D)s-window of a finite length
locally satisfying Πs. To check if A←W0

and A→W0
for Πs

have accepting runs we proceed as in the base case. Though,
we face an additional obstacle while checking whether a
guessed Wi = (%i,Wi) is a (Π,D)s-window, as verifying
the first item of Definition 13 no longer can be achieved by
scanning D. Instead, we need to construct the materialisa-
tion (Π,D)s−1-window over %i, which by the inductive hy-
pothesis for Claim (ii), is feasible in PSPACE. In a similar
way we can overcome the problem of checking in PSPACE
whether the finite automaton obtained from A←Wk

over Πs

has an accepting run. Verifying that A→W0
has an accepting

run is symmetric.
Finally, we show the inductive step for Claim (ii) by con-

structing the materialisation (Π,D)s-window over %. First,
we construct the materialisation (Π,D)s−1 window over %,
which is feasible in PSPACE by the inductive hypothesis
for Claim (ii). Then we check, for each M@%′ such that
M ∈ gma(Πs,D) and %′ ⊆ % is a (Π,D)-interval, whether
Ms(Π,D) |= M@%′. We can do this using Theorem 16 in
a similar way as in the base case, except that now we use
automata for Πs and not for Π1. By the inductive step for
Claim (i) checking if such automata have non-empty lan-
guages is in PSPACE, and so the whole procedure can be
performed in polynomial space.

Next, we will use Lemma 18 to establish tight bounds for
(both variants of) the data complexity of fact entailment.

Theorem 19. Checking fact entailment in DatalogMTL¬ is
PSPACE-complete in both variants of the data complexity.

Proof. The lower bound follows from Proposition 8 and
from the PSPACE-completeness in the data complexity of

fact entailment for positive programs (Wałęga et al. 2019).
For the upper bound, it is sufficient to concentrate on the

variant of data complexity where a fact is part of the input.
Assume that we are checking if a relational fact P (c)@% is
entailed by a stratifiable program Π admitting n strata and a
dataset D. For simplicity, we assume that P (c) ∈ gr(Π,D)
(which does not increase complexity) and that % is bounded
(otherwise we need to use metric atoms �〈0,∞)P (c) and
�〈0,∞)P (c), which are guaranteed to occur in gma(Π,D)).
Let X be the least set of (Π,D)-intervals whose union
entirely covers %. By Lemma 11, checking if (Π,D) |=
P (c)@% reduces to verifying if (Π,D) |= P (c)@%′ for each
(Π,D)-interval %′ ∈ X . Since % is bounded, X is finite and
each %′ is polynomially representable. Now, for %′ ∈ X ,
let %′′ be the interval with endpoints in the (Π,D)-ruler that
contains the same number of (Π,D)-intervals as %(Π,D) and
such that %′ is the leftmost (Π,D)-interval contained in %′′.
It remains to construct the materialisation (Π,D)n-window
(%′′,W ) and check if P (c)@%′ ∈ W , which by Lemma 18
is feasible in polynomial space.

Now, we will consider the combined complexity; in this
case the program is a part of the input, which results in an
increase of the complexity.
Theorem 20. Checking fact entailment in DatalogMTL¬ is
EXPSPACE-complete in combined complexity.

Proof. The lower bound holds already for positive pro-
grams (Brandt et al. 2017). To prove the upper bound, we
use the same procedure as in the proof of Theorem 19.
The main difference is that, since a program is a part of
an input, the materialisation (Π,D)n-window (%′′,W ) con-
structed therein is now exponentially big. Indeed, the num-
ber of (Π,D)-intervals contained in %′′ (as well as in %(Π,D))
is exponential and the number of facts over each (Π,D)-
interval contained in %′′ also can be exponential. This yields
the EXPSPACE upper bound.

Conclusions and Future Work
We have introduced DatalogMTL¬, which is a first ex-
tension of DatalogMTL with non-monotonic (in particular
stratified) negation. The obtained language allows us to per-
form reasoning over the rational timeline, with use of metric
operators, and negative information, which makes it attrac-
tive for many practical applications. As we have shown, such
an extension of DatalogMTL does not increase its complex-
ity: reasoning remains PSPACE- and EXPSPACE-complete
in data and combined complexity, respectively.

It is worth noting that our language can be treated as an
extension of Datalog1S with stratified negation, which al-
lows metric operators (instead of only the successor opera-
tor) and is interpreted over the rational (and not over the in-
teger) timeline. Thus, our complexity results imply the same
upper bounds for Datalog1S with stratified negation.

In future we plan to investigate syntactical fragments of
DatalogMTL¬, for example similar to those constructed by
Wałega et al. (2020). We also want to consider other seman-
tics for non-monotonic negation by exploiting local and tem-
poral stratifications, and stable models.
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