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Abstract

Abstract argumentation constitutes both a major research
strand and a key approach that provides the core reasoning
engine for a multitude of formalisms in computational argu-
mentation in AI. Reasoning in abstract argumentation is car-
ried out by viewing arguments and their relationships as ab-
stract entities, with argumentation frameworks (AFs) being
the most commonly used abstract formalism. Argumentation
semantics then drive the reasoning by specifying formal cri-
teria on which sets of arguments, called extensions, can be
deemed as jointly acceptable. Such extensions provide a ba-
sic way of explaining argumentative acceptance. Inspired by
recent research, we present a more general class of explana-
tions: in this paper we propose and study so-called strong ex-
planations for explaining argumentative acceptance in AFs. A
strong explanation is a set of arguments such that a target set
of arguments is acceptable in each subframework containing
the explaining set. We formally show that strong explanations
form a larger class than extensions, in particular giving the
possibility of having smaller explanations. Moreover, assum-
ing basic properties, we show that any explanation strategy,
broadly construed, is a strong explanation. We show that the
increase in variety of strong explanations comes with a com-
putational trade-off: we provide an in-depth analysis of the
associated complexity, showing a jump in the polynomial hi-
erarchy compared to extensions.

1 Introduction
Computational models of argumentation in Artificial Intel-
ligence (AI) (Baroni et al. 2018; Bench-Capon and Dunne
2007) provide formal approaches to reason argumentatively,
with a wide variety of application avenues, such as legal rea-
soning, medical sciences, and e-governmental issues (Atkin-
son et al. 2017). Reasoning in this way is carried out
by instantiation of argument structures from a knowledge
base (Bondarenko et al. 1997; Modgil and Prakken 2013;
Garcı́a and Simari 2004; Besnard and Hunter 2008), which
represent all that can be argued for. Inconsistencies within
knowledge bases are then represented by conflicts among ar-
guments, which are modelled via (directed) attacks between
arguments, reflecting a counter argument relation.

For many formal approaches to argumentation in AI,
an abstract representation of arguments and their at-
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Figure 1: Example AF

tacks, together referred to as argumentation frameworks
(AFs) (Dung 1995), is sufficient in order to provide ratio-
nal accounts on what can be argued for (Caminada 2018).
Known as the area of abstract argumentation, such for-
malisms provide so-called argumentation semantics (Ba-
roni, Caminada, and Giacomin 2011) on which sets of ar-
guments can be deemed jointly acceptable together. Multi-
ple argumentation semantics were defined, fitting different
purposes and range from more inclusive to more cautious
modes of reasoning. An important semantics are admissi-
ble sets of arguments, which are non-conflicting sets that
counter-attack any attack from outside the set, providing a
way to argumentatively defend each argument within the set.

Admissible sets, or, more broadly, extensions under a se-
mantics, provide a key feature for argumentation: argumen-
tative explanations in the form of arguments, which can be
used to show acceptability of each argument in the set. For
instance, acceptance of an argument can be specified as be-
ing a member of an admissible set (or an extension of a se-
mantics). This is commonly referred to as credulous accep-
tance of that argument.

Example 1.1. Assume it is 2020 and some agents discuss
whether or not the next conference should be held virtually.
Consider the following arguments which are brought for-
ward during the debate: “The conference should be held vir-
tually in order to avoid a ’super spreader’ event” (e); “This
is not the same experience as a meeting in person” (d); “I
would agree with you, but not in 2020” (c); “I would never
agree with the both of you, because all this flying around de-
stroys our environment” (b); “I think our small community
has an overall low impact on climate change” (a).

Here each argument attacks its predecessor, except for b
which attacks both d and c. This debate thus induces the AF
in Figure 1. Say, we desire to check argumentative (credu-
lous) acceptability of argument e, in favor of a virtual con-
ference. There is one admissible set, {a, c, e}, that contains
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Figure 2: Subframework

e: this set is non-conflicting and defends e against the argu-
ment d and counters b by the attack from a.

Importantly, this admissible set {a, c, e} is sufficient to
show acceptability of e when faced with any possible argu-
ment in the AF. That is, by posing arguments a, c, and e,
one is equipped to always defend the desired argument e.
Interestingly, a closer inspection of the AF F reveals that ar-
gument a is not strictly required in being prepared to defend
e. Consider the subframework in Figure 2 containing only
c and e. If we position ourselves with only these two argu-
ments, we already have sufficient evidence to support e: The
only way to counter argument c is b about the environment.
Although this is a counterattack to c in a certain sense, it
is itself a counterargument to d stating that the conference
should take place in person. So in any case, argument d in
favor of a meeting in person is defeated. Then presence or
absence of the argument a decides whether or not the con-
cerns about climate change are taken seriously in this de-
bate; however (credulously) accepting the issue of holding
the conference virtually in 2020 is not affected.

As illustrated in the example, when looking at structural
subframeworks representing a current state of the argumen-
tation, admissible sets do not constitute minimal require-
ments for being prepared to show acceptability of a desired
argument under a credulous viewpoint. Put differently, with
even less arguments than prescribed by admissibility we can
find sufficiently many for our target set to be credulously
accepted under admissibility.

Recent advances termed strong explanations (Brewka and
Ulbricht 2019; Saribatur, Wallner, and Woltran 2020), ini-
tially for strong inconsistency (Brewka, Thimm, and Ul-
bricht 2019), provide us with the key formal ingredient to
identify argumentative explanations on AFs as indicated
above: a strong explanation is a set of arguments such that a
target set of arguments is acceptable in each subframework
containing the explaining set. In the example above the sub-
framework induced by {c, e} is a strong explanation for e
(under admissibility). In this paper we study such strong ex-
planations for credulous acceptability under the most com-
mon semantics for AFs. In particular, our main contributions
are as follows.
• We show that strong explanations (i) offer provably more

variety than extensions under a semantics σ, and (ii) can
lead to smaller sets of arguments that can be used to find
the target arguments acceptable.

• We show that under basic assumptions, any explanation
strategy based on sets of arguments inducing subframe-
works is a strong explanation. We further compare expla-
nations based on extensions and strong explanations, and
find that subset minimal strong explanations are not nec-
essarily conflict-free, in contrast to σ-extensions.

• We show that relative to extensions, strong explanations
have a trade-off in terms of computational complexity:
we pinpoint the complexity of several decision tasks for
strong explanations, indicating higher complexity than for
extensions.

2 Background
We recall background on AFs (Dung 1995) and their seman-
tics.

An AF is a directed graph F = (A,R) whereA represents
a set of (abstract) arguments and R ⊆ A×A models attacks
between them. In this paper we consider finite AFs only. For
a, b ∈ A, if (a, b) ∈ R we say that a attacks b as well as
a attacks (the set) E given that b ∈ E ⊆ A; and E′ ⊆ A
attacks b if a ∈ E′. We let E+ = {a ∈ A | E attacks a} and
E− = {a ∈ A | a attacks E}.
Definition 2.1. Let F = (A,R) be an AF. A set E ⊆ A is
conflict-free in F , denoted byE ∈ cf (F ), iff for no a, b ∈ E
we have (a, b) ∈ R. We say a set E defends an argument a
(in F ) if any attacker of a is attacked by an argument b ∈ E.

In this paper we consider the classical semantics defined
by Dung (1995): admissible, complete, stable, preferred, and
grounded semantics (abbr. ad , co, stb, pr , gr ). Each se-
mantics returns a set of sets of acceptable positions which
are defined as follows (cf. Baroni, Caminada, and Giacomin
(2018) for a recent overview).

Definition 2.2. Let F = (A,R) be an AF and E ∈ cf (A).

1. E ∈ ad(F ) iff E defends all its elements,
2. E ∈ co(F ) iff E ∈ ad(F ) and for any x defended by E

we have x ∈ E,
3. E ∈ stb(F ) iff E attacks each x ∈ A \ E,
4. E ∈ pr(F ) iff E is ⊆-maximal in co(F ), and
5. E ∈ gr(F ) iff E is ⊆-minimal in co(F ).

We refer to an extension under a semantics
σ ∈ {ad , co, pr , stb, gr} also as σ-extension.

The notion of a subframework for a given AF F in-
duced by a set S ⊆ A of arguments is defined by
F ′ = F ↓S= (A ∩ S,R ∩ (S × S)). That is, F ′ contains
all arguments in S and all incident attacks from arguments
in S.

A main reasoning task on AFs is then given by credulous
acceptance of an argument under a semantics σ. For an AF F
and a semantics σ we say an argument a ∈ A is credulously
accepted if a ∈

⋃
σ(F ).

3 Explanation Strategies
A main approach to explanations regarding acceptance of
arguments are σ-extensions. Towards a general viewpoint,
we define general explanation strategies that are argument
based, i.e., focus on sets of arguments as being an explana-
tion (as σ-extensions do). A general argument-explanation
strategy can then be defined as a set of sets of arguments. We
focus on explanation of credulous acceptance, with a slight
generalization of credulous acceptance: for a given set X ,
we aim to explain when X is part of one σ-extension.
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Definition 3.1. Let F = (A,R) be an AF and X ⊆ A. An
argument-explanation strategy for X in F is a set S ⊆ 2A.
A set S ∈ S is called an argument-based explanation (ac-
cording to S).

Two very basic requirements for explanation strategies are
that they are, what we call, σ-basic and satisfy σ-existence,
when explaining X under semantics σ.

σ-basic S ∈ S implies X ⊆ E for some E ∈ σ(F↓S).
σ-existence If X ⊆ E for some E ∈ σ(F ) then S 6= ∅.

That is, σ-basic states that if S ∈ S for an explanation
strategy S , then there must be a σ-extension containing X
(at least) in the subframework induced by the explanation
S. An explanation strategy satisfies σ-existence if there is at
least one explanation whenever each argument in X is part
of one σ-extension.

Another basic property is monotonicity.
Monotonicity If S ∈ S , then S′ ∈ S for any S′ with
S ⊆ S′ ⊆ A.

That is, an explanation strategy S satisfies Monotonicity if
for each explanation S we find each superset S′ of S in S .

We next view extensions as an argument-explanation
strategy, and subsequently provide the main notion studied
in this paper: strong explanations.

Extensions as Explanations
Extensions under a semantics σ are the (nowadays classi-
cal) approach to explaining why an argument (or a set of
arguments) is credulously acceptable. We next phrase σ-
extensions straightforwardly as explanation (strategies) for
a set X . Due to the usefulness, we explicate in the subse-
quent definition ⊆-minimal σ-extensions.
Definition 3.2. Let F = (A,R) be an AF, X ⊆ A and σ
any semantics. A set S ⊆ A is called a (minimal) extension-
based σ-explanation for X if (it is minimal s.t.) X ⊆ S and
S ∈ σ(F ).

It follows that if there is an extension-based σ-explanation
for X for a given AF F , then every argument in X is cred-
ulously accepted under σ, and the set of all extension-based
σ-explanations forms an explanation strategy. By definition,
extension-based σ-explanations are σ-basic and satisfy σ-
existence. We summarize satisfaction of properties of expla-
nation strategies in Table 1.

Extension-based σ-explanations do not satisfy Mono-
tonicity: for all semantics considered in this paper we can
find an AF F such that if E ∈ σ(F ) then there is an E′ ) E
with E′ not being a σ-extension. Nevertheless, σ-extensions
are robust in a different sense: if E is a σ-extension in an
AF F , then E remains being part of a σ-extension in any
subframework F ′ that includes at least E.
Definition 3.3. A semantics σ is called robust if for each
AF F = (A,R) it holds that E ∈ σ(F ) implies that there is
an E′ ∈ σ(F↓S) with E ⊆ E′ for each S with E ⊆ S ⊆ A.

Several main semantics of AFs are robust.
Proposition 3.4. It holds that admissible, complete,
grounded, stable, and preferred semantics are robust.

If we strengthen Definition 3.3 by requiring that in each
subframework F↓S , we findE exactly as a σ-extension, then
satisfaction is different.
Definition 3.5. A semantics σ is called strongly robust if for
each AF F = (A,R) it holds that E ∈ σ(F ) implies that
E ∈ σ(F↓S) for each S with E ⊆ S ⊆ A.
Proposition 3.6. It holds that admissible and stable seman-
tics are strongly robust.

On the other hand, complete, grounded, and preferred are
not strongly robust.
Example 3.7. Let F = (A,R) be an AF with A = {a, b, c}
and R = {(c, b), (c, c)}, i.e., we have three arguments and
an attack from c to b with c a self-attacking argument. It
holds that {a} is the unique preferred (grounded) extension
of F . However, for S = {a, b} we find that {a, b} is pre-
ferred (grounded, complete) in F↓S (since the attack from c
onto b is removed).

Upward-closed Extensions
We want to mention that there is a natural way to artificially
make extensions as explanations monotonic: one might sim-
ply accept any superset S′ of an extension S ∈ σ(F ) with
X ⊆ S as an explanation as well. Formally, this yields:
Definition 3.8. Let F = (A,R) be an AF, X ⊆ A and
σ any semantics. A set S′ ⊆ A is called an upward-
closed extension-based σ-explanation for X if there is some
S ∈ σ(F ) with X ⊆ S ⊆ S′.

Although this approach ensures monotonicity by defini-
tion (and both σ-basic as well as σ-existence can be seen
with reasonable effort), it is clear that from an intuitive point
of view, upward-closed extension-based σ-explanations do
not provide novel information compared to the extension-
based σ-explanation we introduced before. We will thus
continue our investigation with a more informative ap-
proach.

Strong Explanations
Let us now turn to define our main notion of strong
σ-explanations. They are inspired by recent related no-
tions (Brewka and Ulbricht 2019; Brewka, Thimm, and Ul-
bricht 2019; Saribatur, Wallner, and Woltran 2020).
Definition 3.9. Let F = (A,R) be an AF, X ⊆ A a set
of arguments and σ any semantics. A set S ⊆ A is called
a (minimal) strong σ-explanation for X if (it is minimal
s.t.) for each AF F ′ = F ↓A′ with S ⊆ A′ ⊆ A, there is
E′ ∈ σ(F ′) with X ⊆ E′.

Speaking in terms of the concepts we considered through-
out the present paper so far, the definition of strong σ-
explanations is inspired by the σ-basic property and addi-
tionally requires monotonicity.

Let us consider the following basic examples of strong
explanations.
Example 3.10. Let F be the AF from Figure 3. Assume
X = {c}. Then S = {a1, c} is a strong ad -explanation for
X in F . That is, given a1 and c, no matter with arguments
we include, X will always occur in at least one admissible
extension.
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Figure 3: Strong explanation

Having established Definition 3.9 in a formal way, let us
now reconsider our motivating example.

Example 3.11 (Example 1.1 ctd.). We formally show that
{c, e} is a minimal strong ad -explanation for e: it is easy
to see that c is required because otherwise the subframe-
work consisting of the arguments d and e would not con-
tain e as a credulously accepted argument. However, the
subframework induced by {b, c, e} possesses {b, e} as an
admissible extension and in the whole AF we get {a, c, e}
as admissible extension. In summary, for each A′ satisfy-
ing {c, e} ⊆ A′ ⊆ A, there is an admissible extension
E′ ∈ ad(F↓A′) with X ⊆ E′.

Let us now collect some basic properties of strong expla-
nations which will be useful throughout the paper:

Proposition 3.12. Let F = (A,R) be an AF, S ⊆ A,
X ⊆ A, and σ ∈ {ad , co, gr , stb, pr} a semantics.

• There is a strong σ-explanation S for X iff there is some
E with X ⊆ E ∈ σ(F ).

• If S is a strong σ-explanation for X , then X ⊆ S.
• S is a strong ad -explanation for X iff S is a strong co-

explanation for X iff S is a strong pr -explanation for X .

Another necessary condition for S to be a strong σ-
explanation is defeating all attackers of X . Formally:

Proposition 3.13. Let F = (A,R) be an AF, X ⊆ A, and
σ ∈ {ad , co, gr , stb, pr}. If S is a strong σ-explanation for
X , then X− ⊆ S+.

Extensions and strong explanations are related in that
each σ-extension containing a set X is a strong σ-
explanation for X , in case σ is robust.

Theorem 3.14. Let F = (A,R) be an AF, X ⊆ A a set of
arguments and σ a semantics that is robust. If E ∈ σ(F ) s.t.
X ⊆ E, then E is a strong σ-explanation for X .

Proof. Let E ⊆ S ⊆ A and consider the subframework
F ↓S . Since σ is robust, there is some E′ ∈ σ(F ↓S) with
E ⊆ E′. By X ⊆ E, we find X ⊆ E′ as well.

Further, strong explanations form a strictly larger class of
explanations. We now show several results in this direction.
First, strong σ-explanations satisfy Monotonicity, directly
by definition. Thus, any superset of a σ-extension contain-
ing a set X of arguments is also a strong σ-explanation, but
not necessarily also a σ-extension (e.g., if attacks occur in a
superset of a σ-extension).

More broadly, any argument-based explanation strategy
that satisfies Monotonicity and is σ-basic is a strong σ-
explanation.

Theorem 3.15. Let F = (A,R) be an AF and X ⊆ A, and
S be an argument-explanation strategy for X in F . If S is
σ-basic and satisfies Monotonicity, then S ∈ S is a strong
σ-explanation for X .

Proof. Assume that S satisfies Monotonicity and is σ-basic,
and let S ∈ S . Let F ↓A′ be a subframework induced by
S ⊆ A′ ⊆ A. By Monotonicity, we have A′ ∈ S . By being
σ-basic, we can infer that there is an E ∈ σ(F ↓A′) with
X ⊆ E. Thus, S is a strong σ-explanation for X .

We want to emphasize that strong σ-explanations are σ-
basic and satisfy Monotonicity themselves; thus we found
two rather mild properties which already suffice to charac-
terize them:

Corollary 3.16. Let F = (A,R) be an AF andX ⊆ A, and
S be an argument-explanation strategy for X in F . Then S
is the greatest set in 2A satisfying σ-basic and Monotonicity
iff it is the set of all strong σ-explanations for X .

Proof. (⇒) By Theorem 3.15, each S ∈ S is a strong
σ-explanation. Now assume there is some strong σ-
explanation S which does not occur in S . Since strong σ-
explanations are σ-basic and satisfy Monotonicity, S ∈ S
must hold; a contradiction.

(⇐) Clearly, the set of all strong σ-explanations for X
is σ-basic and satisfies Monotonicity. Now assume there is
S ∈ S , but S is no strong σ-explanation. This contradicts
Theorem 3.15. Hence the set of all strong σ-explanations is
the greatest with the two mentioned properties.

In addition to inclusion of σ-extensions and their (proper)
supersets also proper subsets of a σ-extension can form a
strong σ-explanation. Hence strong σ-explanations can pro-
vide smaller explanations than given by σ-extensions.

Moreover, a strong σ-explanation for a set X does not
necessarily conform to the requirements imposed by the
semantics σ. Formally, consider the following property of
argument-based explanation strategies.

(Min-)CF If S is (minimal) in S , then S ∈ cf (F ).

That is, according to an argument-based explanation strat-
egy S , if S is an explanation (for a set X), then the preced-
ing property requires that S is conflict-free in the underlying
AF F . Weakening the requirement, an argument-based ex-
planation strategy S satisfies Min-CF, if subset minimal ex-
planations S ∈ S are conflict-free. While σ-extensions sat-
isfy (Min-)CF by definition for the main semantics, strong
σ-explanations are more varied: they do not satisfy Min-CF
(and, thus, also not CF).

Example 3.17. Consider the AF F from Figure 4 and any
semantics. Let us verify that S = {f, g, d, b} is a minimal
explanation for X = {b}. Consider F ↓A′ with c ∈ A′.
Then e attacks b and requires the counterattack provided by
g; E = {c, g, b} is an extension containing b. If c /∈ A′,
then f must attack a and thus, d must attack e; in this case,

6499



edc

baf

g

Figure 4: Minimal strong explanation not conflict-free

E = {d, f, b} is the desired extension. From the cases dis-
cussed here it can be inferred that S /∈ cf (F ) is minimal.

In general terms, supposing both Monotonicity and
conflict-freeness for explanations does not lead to useful
argument-based explanation strategies. We show that only
trivialized explanation strategies can satisfy both properties.
Proposition 3.18. Let F = (A,R) be an AF and X ⊆ A,
and S be an argument-explanation strategy for X in F . If S
satisfies Monotonicity and CF, then S = ∅ or R = ∅.

Proof. Assume S satisfies both Monotonicity and CF. If
S 6= ∅, then let S ∈ S . By Monotonicity we get A ∈ S , and
by CF, we can infer that A ∈ cf (F ), implying R = ∅.

Another basic requirement which is inherent for
admissible-based extensions, but not satisfied by strong ex-
planations is Defense (Example 3.17 is a counterexample):
Defense If S ∈ S , then S defends itself in F .

The last formal property we are going to discuss within
this section is called independence. It formalizes that an ex-
planation S should not rely on any argument which is not
contained in S, that is, should provide sufficient evidence
for X independent of the remainder of the AF.
Independence If S is an explanation in F and a /∈ S, then
S is an explanation in F \ {a}.

As one can easily infer, Independence is satisfied by
extension-based σ-explanations, whenever σ is strongly ro-
bust: Simply consider the definition of strongly robust se-
mantics, let S = A \ {a} and use that there must be
E ∈ σ(F↓S):
Lemma 3.19. For any strongly robust σ, each extension-
based σ-explanation for any set X satisfies Independence.

Moreover, strong explanations satisfy Independence by
definition and we thus end up with the following:
Proposition 3.20. Let F = (A,R) be an AF, X ⊆ A,
σ ∈ {ad , co, gr , stb, pr}, and τ ∈ {ad , stb}. Then each

1. strong σ-explanation S for X satisfies Independence,
2. extension-based τ -explanation S for X satisfies Indepen-

dence.
A counterexample for the second item in the above propo-

sition for τ ∈ {co, gr , pr} can be obtained as follows:
Example 3.21. Consider again the AF from Example 3.7.
If we let X = {a}, then of course S = {a} itself is an
extension based σ-explanation for X . However, in F↓{a,b},
S is not a complete extension anymore.

strategy σ-extensions strong σ-expl.
σ-basic X X

σ-existence X X
Monotonicity X X

Min-CF X X
Defense X X

Independence {ad , stb} X

Table 1: Summary of properties of explanation strategies for
σ ∈ {ad , co, gr , stb, pr}.

A summary of the compliance of our explanation strate-
gies with the desirable properties we developed is reported
in Table 1.

4 Computational Complexity
In this section we investigate the complexity of reasoning via
strong σ-explanations under all semantics considered in this
paper. To keep this section within reasonable space, we fo-
cus on the following natural computational (decision) tasks.

VER-EXPLσ
Input: (F , S,X) where F = (A,R) and S,X ⊆ A
Output: TRUE iff S is a strong σ-explanation for X in F

VER-MIN-EXPLσ
Input: (F , S,X) where F = (A,R) and S,X ⊆ A
Output: TRUE iff S is a minimal strong σ-expl. for X in F

So given an AF F = (A,R), a semantics σ, and X ⊆ A
as well as S ⊆ A, the tasks are to decide whether (i) S is a
strong σ-explanation forX in F , and (ii) whether in addition
S is subset minimal. Similarly as in the case of σ-extensions,
both tasks give crucial insights into computational properties
of strong σ-explanations.

Before delving into our results, we first remark that ex-
istence results, i.e., tasks that ask whether a strong σ-
explanation exists, boil down to complexity of credulous
acceptance in AFs under semantics σ (with the minor dif-
ference that instead of querying a single argument we ask
for a set of arguments to be credulously accepted in a sin-
gle σ-extension). It was already established that deciding
credulous acceptance of an argument is decidable in poly-
nomial time for grounded semantics and NP-complete for
admissible, complete, preferred, and stable semantics. It is
straightforward to see that the same complexity bounds hold
for asking whether there is a σ-extension containing all argu-
ments in a queried argument set X . Moreover, the decision
tasks of verifying whether a given set E is a σ-extension
are, likewise, established. We recall the corresponding re-
sults in Table 2, see also Dvořák and Dunne (2018). Verify-
ing whether a set of arguments E (i) contains a set X , and
(ii) is a subset minimal σ-extension containing X (i.e., there
is no σ-extension E′ containing X and E′ ( E) is decid-
able in polynomial time for grounded and stable semantics:
the grounded extension unique and if a set is stable all other
stable extensions are incomparable. The problem is coNP-
complete for preferred and complete semantics: If a set is
preferred (and contains X), then each other preferred ex-
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tension is incomparable; if a set is complete (and contains
X), there might be a smaller complete extension which also
contains X . The latter claim requires a formal reduction to
establish hardness, which we do not give here due to space
restrictions. For admissible semantics, the problem is in P,
as we show next.
Proposition 4.1. Deciding whether a given set of arguments
is subset minimally admissible such that a given set of argu-
ments is contained is in P.

Proof. For given sets E,X ⊆ A and AF F = (A,R), for
each a ∈ E perform the following

1. E′ := E \ {a}
2. E′ := E′ \ {a ∈ E′ | a not defended by E′ in F}
3. if E′ = ∅ or E′ ∈ ad(F ) terminate, otherwise go to 2.

The above algorithm terminates if A is finite. If a returned
E′ is admissible and X ⊆ E′, then E is not minimal. Oth-
erwise, if for each a ∈ E either an empty set or an ad-
missible E′ not containing X is returned, we claim that E
is subset minimal under the stated conditions. Suppose E
is not subset minimal, but there is an E′ ∈ ad(F ) with
E′ ( E and X ⊆ E′. There exists an a ∈ E \ E′. Let
def F (S) = {a ∈ S | s defended by S in F}. Iterating
def F (E\{a}) results in an admissible set that containsE′: it
holds thatE′ = def F (E′) (is a fixed-point), for any T ⊇ E′
we have E′ ⊆ def F (T ) (since defense is monotonic), and
applying def F (T ) either yields a fixed-point (then the result
is admissible and a superset of E′), or a proper subset T ′
of T is returned for which it holds that E′ ⊆ T ′. Thus, it-
eratively applying def F (E \ {a}) results in a superset (not
necessarily proper) of E′ that is admissible.

Let us now turn to strong explanations. As already pointed
out in the introduction, in comparison to σ-extensions we
have to accept a higher computational complexity in gen-
eral. As the following result shows, already for grounded
extensions the verification problem is coNP-complete.

We want to mention that the following result can also be
inferred via (Baumeister, Neugebauer, and Rothe 2018, The-
orem 14)1, but we decided to sketch a novel proof here in
order to hint at the technique which is required to infer the
subsequent complexity results.
Theorem 4.2. The problem VER-EXPLgr is coNP-
complete.

Proof. (Sketch). For hardness, let us assume we are given a
formula Φ = ∃Xφ(X) with φ = {C1, . . . , Cr} in CNF over
variables in X = {x1, . . . , xn}. We adapt the well-known
standard translation (see e.g. (Dvořák and Dunne 2018, Re-
duction 3.6)): We let

A ={ϕ} ∪ {ϕ̄} ∪ {Ci | i = 1, . . . , r}∪
X ∪ {x̄ | x ∈ X} ∪ {⊥j | j = 1, . . . , n}∪
{dj | j = 1, . . . , n} ∪ {d̄j | j = 1, . . . , n}

1The set S is a strong σ-explanation for X in F iff X is nec-
essarily credulously accepted in the incomplete AF (S,A \ S,R)
where the arguments in S are definite and the other ones uncertain.

ϕ

c1 c2 c3

ϕ̄

x1 x̄1 x2 x̄2 x3 x̄3

d1
⊥1

d̄1 d2
⊥2

d̄2 d3
⊥3

d̄3

Figure 5: Illustration of the AF F from Theorem 4.2, applied
to φ with clauses {{x1, x2, x3}, {x̄2, x̄3}, {x̄1, x̄2}}.

and the set R of attacks is given via
R ={(ϕ, ϕ̄)} ∪ {(Ci, ϕ) | i = 1, . . . , r}∪
{(x,Ci) | x ∈ Ci, i = 1, . . . , r}∪
{(x̄, Ci) | ¬x ∈ Ci, i = 1, . . . , r}∪
{(xj , dj), (x̄j , d̄j) | j = 1, . . . , n}∪
{(dj ,⊥j), (d̄j ,⊥j) | j = 1, . . . , n}∪
{(⊥j , ϕ) | j = 1, . . . , n}.

An example of this construction is depicted in Figure 5. Note
that the usual mutual attacks between the X-variables are
omitted. Let F = (A,R). We have: S := A \ (X ∪ X̄) is
a gr -explanation for {ϕ̄} iff Φ = ∃X : φ(X) evaluates to
false.

(⇒) Suppose the contrary, i. e. Φ evaluates to true. Con-
sider a satisfying assignment ω : X → {0, 1} and let Xω

be the corresponding set of X-variables, i. e. xi ∈ Xω iff
ω(xi) = 1 and x̄i ∈ Xω iff ω(xi) = 0. It is easy to see that
by construction, ϕ is contained in the grounded extension of
F↓S∪Xω

. That is, all Ci arguments are attacked (because the
assignment satisfies φ) and all ⊥j are attacked (because the
assignment is well-defined). Thus ϕ̄ is rejected in this sub-
framework and we hence see that S is no gr -explanation.

(⇐) Suppose the contrary, i. e. S is no gr -explanation for
{ϕ̄}. Then there must be a setXω ⊆ X∪X̄ s.t. the grounded
extension of F ↓S∪Xω

does not contain ϕ̄. In this case, ϕ is
contained. This means no ⊥j occurs in the grounded exten-
sion which in turn means Xω corresponds to a well-defined
(partial) assignment ω : X → {0, 1}. Since ϕ is defended
by Xω , ω must even be a satisfying assignment.

Utilizing either an analogous adaptation of the standard
construction (Dvořák and Dunne 2018, Reduction 3.6) or
(Baumeister, Neugebauer, and Rothe 2018, Theorem 16) we
establish the complexity for the remaining semantics.
Theorem 4.3. The problem VER-EXPLσ is Πp

2-complete for
σ ∈ {ad , co, stb, pr}.

In order to tackle the verification problem which also asks
for minimality of the explanation at hand in an elegant way,
we exploit the expressive power of explanations as follows:
Consider an AF F = (A,R) and assume X ⊆ A. The fol-
lowing gadget GF (S,X) = (AG , RG) makes sure that any
σ-explanation for X in F ∪ GF (S,X) necessarily contains
S := {s1, . . . , sn}: We let

AG ={gi, bi, vi, ci | i = 1, . . . , n}
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a b c d

b1 v1 g1

c1

Figure 6: Illustration of the AF F ∪ GF ({d}, {c}) for
F = ({a, b, c, d}, {(a, b), (b, a), (b, c)}).

strategy σ-extensions strong σ-expl.
verification gr in P coNP-c

verification ad , co, stb in P Πp
2-c

verification pr coNP-c Πp
2-c

ver-min gr in P Dp1-c
ver-min ad and stb in P Dp2-c
ver-min co and pr coNP-c Dp2-c

Table 2: Complexity of explanation strategies.

RG ={(gi, ci), (gi, vi), (ci, bi), (ci, vi) | i = 1, . . . , n}∪
{(vi, a) | i = 1, . . . , n, a ∈ A}∪
{(gi, a) | i = 1, . . . , n, a ∈ A \ (X ∪ {si})}∪
{(bi, x) | x ∈ X}∪
{(si, bi) | i = 1, . . . , n}∪
{(gi, gj), (gi, bj), (gi, vj) | 1 ≤ j < i, 2 ≤ i ≤ n}

Formally, we obtain the following:
Lemma 4.4. Let F = (A,R) be an AF and let S be a
σ-explanation for X . Let S′ ⊆ S. Let S′ = {s1, . . . , sn}
with (si, si) /∈ R for any i and S′ does not attack
X . Then S ∪ {ci | i = 1, . . . , n} is a strong σ-
explanation for X in F ∪ GF (S′, X) and for each s ∈ S′,
S ∪ {ci | i = 1, . . . , n} \ {s} fails to explain X . Moreover,
S ∪ {ci | i = 1, . . . , n} \ {ci} fails to explain X for each
i ∈ {1, . . . , n}.

Equipped with the gadget G we are now ready to control
whether or not a certain explanation is minimal. In the fol-
lowing, we augment the previous constructions and make
sure that all but one additional argument, say >, are neces-
sary in the considered explanations, whereas > is required
iff a certain condition is met. This yields more expressive
power and thus Dp1 and Dp2-hardness, respectively.
Theorem 4.5. The problem VER-MIN-EXPLgr is Dp1-
complete.
Theorem 4.6. The problem VER-MIN-EXPLσ is Dp2-
complete for σ ∈ {ad , co, stb, pr}.

A summary of these results can be found in Table 2.
Finally, let us demonstrate how to utilize Theorem 3.14 to

compute strong explanations in polynomial time in certain
cases. Since gr is robust and hence grounded explanations
can be computed in polynomial time (Theorem 3.14), the
following can act as a starting point for σ ∈ {ad , co, pr}.

Proposition 4.7. Let F = (A,R) be an AF, X ⊆ A a set
of arguments and σ ∈ {ad , co, pr}. If S is a gr -explanation
for X , then it is a strong σ-explanation for X .

Via Proposition 3.12 (item 3), this yields the following
tractability result.

Corollary 4.8. If X is contained in the grounded extension
G of F , a σ-explanation of size |G| can be computed in poly-
nomial time for σ ∈ {gr , ad , co, pr}.

5 Related Work
Studies of explanations and (computational) argumentation
naturally come together; we discuss research related to
strong explanations. Fan and Toni (2015b) consider (min-
imal) removal of sets of arguments or attacks such that
the induced subframework credulously accepts an argu-
ment to show non-acceptance of arguments. Alfano et al.
(2020) study a notion of explanations defined as a se-
quence of choices (arguments) by considering the strongly
connected components of an AF. Explanations within (ab-
stract) argumentation were connected to the notion of dis-
pute trees (Cyras et al. 2018; Fan and Toni 2015a). Ad-
missible extensions, under certain minimality criteria, were
studied by Caminada, Dvořák, and Vesic (2016), and corre-
spondences to game-theoretic notions were shown. Abduc-
tion (Sakama 2018) reflecting modifications to an AF such
that an argument can be labeled in, out or undecided (under
labeling-based semantics (Caminada and Gabbay 2009)),
and diagnoses (Baumann and Ulbricht 2019) were proposed
for AFs. The notion of (belief) revision was applied to ex-
planations in argumentation theory (Rotstein et al. 2008;
Falappa, Kern-Isberner, and Simari 2002). So-called criti-
cal sets (Booth et al. 2014) were proposed, which are sub-
sets of the arguments in an AF s.t. each (complete) labeling
that assigns the same labels to the arguments in the subset
also label the remaining arguments the same. Moreover, as
discussed before, reasoning in incomplete AFs (Baumeis-
ter, Neugebauer, and Rothe 2018) is connected to strong ex-
planations. More broadly, explanations were studied using
formal machinery from argumentation (Seselja and Straßer
2013; Rago, Cocarascu, and Toni 2018; Cyras et al. 2019).
In contrast, we study strong σ-explanations, which are in-
spired by recent research on strong explanations in non-
monotonic reasoning (Brewka and Ulbricht 2019), strong
inconsistency (Brewka, Thimm, and Ulbricht 2019), and
strongly rejecting subframeworks (Saribatur, Wallner, and
Woltran 2020; Niskanen and Järvisalo 2020). Our notion dif-
fers from these works by focusing on positive acceptance
and directly operating on AFs.

6 Conclusions
In this paper we proposed strong explanations as a wide
class of explanations for positive (credulous) acceptance for
AFs. We showed that, under mild assumptions, argument-
based explanation strategies are strong explanations, and
we proved the computational complexity of reasoning un-
der strong explanations, indicating a complexity trade-off
between strong explanations and extensions.
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