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Abstract

We bring in the concept of focused inference into the field of
qualitative nonmonotonic reasoning by applying focused in-
ference to System P. The idea behind drawing focused infer-
ences is to concentrate on knowledge which seems to be rele-
vant for answering a query while completely disregarding the
remaining knowledge even at the risk of missing some mean-
ingful information. Focused inference is motivated by mim-
icking snap decisions of human reasoners and aims on rapidly
drawing still reasonable inferences from large sets of knowl-
edge. In this paper, we define a series of query-dependent,
syntactically-driven focused inference relations, elaborate on
their formal properties, and show that the series converges
against System P. We take advantage of this result in form of
an anytime algorithm for drawing inferences which is accom-
panied by a thorough complexity analysis.

Introduction
Knowledge-based systems (Rajendra and Sajja 2009) repre-
sent a subfield of artificial intelligence the essence of which
is to infer novel information of high quality from usually un-
certain or vague knowledge bases. System P (Adams 1975;
Kraus, Lehmann, and Magidor 1990) constitutes a well-
established standard of formal quality criteria which is used
to evaluate such nonmonotonic inferences of knowledge-
based systems. A drawback of high quality inference for-
malisms is that they are typically based on rich epistemic
structures which are computationally expensive. Hence, it
is of great interest from both an epistemic and a computa-
tional point of view to focus on relevant knowledge when
drawing inferences. The most radical way of focusing on
knowledge is to disregard the remaining knowledge com-
pletely. Surprisingly, there is only few work which investi-
gates this idea of focusing on knowledge resp. of limiting be-
liefs (cf., e.g., (Kern-Isberner and Brewka 2017; Schwering
2017; Lakemeyer and Levesque 2020; Rosales and Jaakkola
2005; Chechetka and Guestrin 2010)). Certainly, one reason
is that the high quality of inferences cannot be guaranteed in
general when ignoring information. Nevertheless, in order
to counter ever-growing knowledge bases and time limita-
tion in real-time applications of knowledge-based systems,
it is necessary to develop pragmatic inference strategies.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we define a notion of knowledge in fo-
cus which depends on a syntactical distance to the query,
investigate formal properties of inferences that are drawn
from knowledge in focus, and provide an anytime algorithm
which calculates focused inferences and converges against
System P. A complexity analysis shows that our algorithm is
able to compute System P inferences faster than direct com-
putations if the relevant knowledge is syntactically close to
the query.

Preliminaries
We consider a propositional language L which is defined
over a finite set of (propositional) variables Σ. Formulas in
L are variables or negations (¬A), conjunctions (A∧B), or
disjunctions (A ∨ B) of formulas A,B ∈ L. We abbreviate
¬A with A, and A ∧ B with AB. The semantics of formu-
las is given by interpretations I : L → {0, 1} as usual in
propositional logics. Classical entailment between formulas
A,B is defined by A |= B iff I(A) = 1 implies I(B) = 1
for all interpretations I. If both A entails B and B entails
A, then A and B are logically equivalent, written A ≡ B.
Tautologies (formulas that are true in all interpretations) are
denoted with > and contradictions (formulas that are false
in all interpretations) with ⊥.

Conditionals (B|A) with A,B ∈ L are formal represen-
tations of default options of the form “If A holds, then usu-
ally B holds, too.” and lead to a three-valued evaluation:

I(B|A) =


1 iff I(AB) = 1 (verification)
0 iff I(AB) = 1 (falsification)
u iff I(A) = 1 (non-applicability)

.

A semantics of conditionals is provided by ranking functions
over possible worlds (Spohn 2012). Here, possible worlds
are simply propositional interpretations represented by com-
plete conjunctions of literals, i.e. positive or negated vari-
ables. The set of all possible worlds is denoted with Ω(Σ).
A ranking function κ : Ω(Σ)→ N0 maps possible worlds
to a degree of implausibility and is normalized by the re-
quirement κ−1(0) 6= ∅. Hence, κ−1(0) is the set of the most
plausible worlds. Ranking functions are extended to for-
mulas A 6≡ ⊥ by κ(A) = min{κ(ω) | ω ∈ Ω(Σ), ω |= A}
and to formulas A ≡ ⊥ by κ(A) = ∞. A ranking func-
tion κ is a model of a conditional, written κ |= (B|A), iff
κ(AB) < κ(AB) or A ≡ ⊥.
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Input: Knowledge base ∆
Output: Z-partition of ∆ if ∆ is consistent;

empty list otherwise

1 output← [ ]
2 while ∆ 6= ∅
3 ∆′ ← ∅
4 for r ∈ ∆
5 if ∆ tolerates r then ∆′ ← ∆′ ∪ {r}
6 if ∆′ = ∅ then output← [ ] and break
7 output← output.append(∆′)
8 ∆← ∆ \∆′

9 return output

Algorithm 1: Consistency test for a knowledge base ∆
which returns the Z-partition of ∆ in case of consistency.

A finite set of conditionals is called knowledge base. With
Σ(∆) we denote the signature that is induced by the knowl-
edge base ∆, i.e., Σ(∆) is the set of variables which are
mentioned in at least one conditional in ∆. Analogously, we
write Σ(X) for the signature of X , whether X is a formula,
a conditional, or a query. A ranking function over Ω(Σ(∆))
is a model of a knowledge base ∆ iff it is a model of every
conditional in ∆. A knowledge base is consistent iff it has at
least one model. Otherwise, it is inconsistent.

A query ?A |∼B with A,B ∈ L asks whether B can
be inferred from A. The answer depends on the underlying
inference formalism which reflects the reasoner’s inference
behavior. Here, we rely on the nonmonotonic inference re-
lation |∼∆ ∈ L × L which is defined wrt. a knowledge
base ∆:

A |∼∆B iff κ |= (B|A) for all models κ of ∆.

For any fixed inference relation |∼x , we denote the respec-
tive instance of the query ?A |∼B by ?A |∼xB. The in-
stance ?A |∼∆B is answered with true iff A |∼∆B holds
and with false otherwise. The inference relation |∼∆ is
of high relevance in nonmonotonic reasoning as it is a se-
mantical characterization of System P (Adams 1975; Kraus,
Lehmann, and Magidor 1990) which provides an important
standard for plausible nonmonotonic inference.
Definition 1 (System P). Let |∼ ⊆ L × L be an inference
relation, and let A,B,C ∈ L. Then, System P is the collec-
tion of the following inference rules:

A |∼A, (Reflexivity)

AB |∼ C, A |∼B imply A |∼ C, (Cut)

A |∼B, A |∼ C imply AB |∼ C, (Cautious Monotony)

A |∼B, B |= C imply A |∼ C, (Right Weakening)

A |∼ C, B |∼ C imply A ∨B |∼ C, (Or)

A ≡ B, B |∼ C imply A |∼ C. (Left Logical Equivalence)

The inference relation |∼ satisfies System P iff it satisfies all
inference rules in System P.

It is well known that A |∼∆B holds iff ∆ ∪ {(B|A)} is
inconsistent (Goldszmidt and Pearl 1991). (In-)consistency

of a knowledge base can be decided with Algorithm 1
which makes use of the notions tolerance and Z-partition.1
A knowledge base ∆ tolerates a conditional r = (B|A) iff
there is a possible world in which r is verified and no condi-
tional from ∆ is falsified, i.e., iffAB∧

∧
(B′|A′)∈∆(A′∨B′)

is satisfiable. An ordered partition (∆0,∆1, . . . ,∆m) of ∆
is a tolerance partition of ∆ iff, for i = 0, . . . ,m, every con-
ditional in ∆i is tolerated by

⋃m
j=i ∆j . We call m the rank

of the tolerance partition. The Z-partition of ∆ is the unique
tolerance partition of ∆ where the rank is minimal.
Proposition 1. (Goldszmidt and Pearl 1991) A knowledge
base ∆ is consistent iff it has a tolerance partition.

Consequently, A |∼∆B holds iff Algorithm 1 applied to
∆ ∪ {(B|A)} returns no Z-partition, i.e., iff it returns an
empty list. Algorithm 1 takes O(|∆|2)-many SAT tests.

Focused Inference
When drawing inferences in practice, human reasoners typ-
ically do not take their whole knowledge into account but
focus on that part of their knowledge which they rate as rel-
evant for the query. Ignoring knowledge which is suspected
of being irrelevant reduces complexity and allows humans to
make snap decisions in a short period of time. On the down-
side, if one narrows the focus too much, then one probably
misses information which turns out to be relevant in the end.

The vast majority of formal approaches to nonmonotonic
reasoning does not provide the feature of focusing on a cer-
tain part of knowledge. While most approaches certainly aim
on working out the relevant knowledge, they usually do not
disregard irrelevant knowledge completely but give lower
weight to it. This way of handling relevance is meaningful
when drawing very well-considered inferences but results in
rather costly calculations. One possibility of disregarding ir-
relevant knowledge completely is provided by the concept
of syntax splitting (Parikh 1999). The idea behind syntax
splitting is to partition the knowledge base ∆ into syntac-
tically independent subsets and to exploit only those subsets
that are syntactically linked to the query when drawing in-
ferences. Formally, (∆1, . . . ,∆m) is a syntax splitting of a
knowledge base ∆ iff {∆1, . . . ,∆m} is a partition of ∆ and
{Σ(∆1), . . . ,Σ(∆m)} is a partition of Σ(∆).
Example 1. Consider ∆ = {r1, . . . , r6} from Table 1.
{∆penguin,∆amphibian} is a syntax splitting of ∆ because
{Σ(∆penguin),Σ(∆amphibian)} = {{b, f, p, w}, {a, s}} is a
partition of Σ(∆). Due to {p, f} ∩ Σ(∆amphibian) = ∅, the
knowledge in ∆amphibian should be irrelevant when asking
for ?f |∼ p, i.e. if flying individuals are usually not penguins.
We later show that this is indeed the case in System P and
the query ?f |∼ p can be answered solely based on ∆penguin.

Syntax splitting is a powerful tool when organizing
knowledge bases which address several rather independent
topics. However, in practice, knowledge bases are usually
fully connected and syntax splitting becomes futile as the
finest syntax splitting of a fully connected knowledge base
∆ is {∆}.

1Z-partitions are named after System Z (Pearl 1990) as they can
be used to establish System Z.
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Conditional Meaning and appearance

r1 = (b|>) An individual is usually a bird.
r2 = (f |b) Birds are usually able to fly.
r3 = (w|b) Birds usually have wings.

∆bird = {r1, r2, r3}
r4 = (b|p) Penguins are usually birds.
r5 = (f |p) Penguins are usually not able to fly.

∆penguin = {r1, . . . , r5}
r6 = (a|s) Salamanders are usually amphibians.

∆amphibian = {r6}
r7 = (e|b) Birds usually lay eggs.
r8 = (e|a) Amphibians usually lay eggs.

∆oviparous = {r1, . . . , r8}

Table 1: Conditionals that are used in the examples.

Example 2. We recall the knowledge bases ∆penguin and
∆amphibian from Example 1. Adding the knowledge that both
birds and amphibians usually lay eggs results in the knowl-
edge bases ∆bird ∪ {r7} and ∆amphibian ∪ {r8} (cf. Table 1)
which are no longer syntactically separated as they share
the variable e, and performing syntax splitting on the whole
knowledge base ∆ = ∆bird ∪ {r7} ∪∆amphibian ∪ {r8} does
not create added value. Nevertheless, the knowledge about
amphibians should still not be relevant for the query ?f |∼ p.

Example 2 suggests that syntax splitting is too coarse in
some cases. For this reason, we work out more precise foci
on knowledge. In compliance with syntax splitting, we de-
fine foci on a syntactical level, i.e., a focus is a set of vari-
ables. This makes foci easy to compute.
Definition 2 (Direct Focus; Knowledge in Focus). Let ∆ be
a knowledge base, and let A ⊆ L. The direct focus on A is

F0(A) =
⋃

A∈A
Σ(A),

and the knowledge in the direct focus on A is

∆0(A) = {r ∈ ∆ | Σ(r) ∩ F0(A) 6= ∅}.

According to Definition 2, the focus F0(A) is the signa-
ture of the formulas in A and ∆0(A) consists of those con-
ditionals from ∆ which share at least one variable with A.

When drawing inferences we are interested in the knowl-
edge that is linked to a query ?A |∼B and, hence, we focus
on A = {A,B}. The focus F0(A,B)2 solely consists of
those variables that are mentioned in the query ?A |∼B and
therefore is the smallest reasonable focus for answering this
query.
Example 3. Consider ∆oviparous (cf. Table 1). The direct fo-
cus on the query ?f |∼ p isF0(f, p) = {f, p} and the knowl-
edge in this focus is ∆0(f, p) = {(f |b), (b|p), (f |p)}.

The idea of knowledge in focus can be generalized by it-
eration: In the focus F1 not only conditionals are taken into

2Note that we omit set braces if the set occurs as the only argu-
ment of a mapping in order to shorten expressions.

account which are directly linked to the query but also con-
ditionals that share variables with other conditionals which
are directly linked to the query, and so on.
Definition 3 (Iterated Focus; Iterated Knowledge in Focus).
Let ∆ be a knowledge base, and let A ⊆ L. For i ∈ N, the
i-th focus on A is

Fi(∆,A) = F0(A) ∪
⋃

r∈∆i−1(A)
Σ(r),

which depends on the (i − 1)-th knowledge in focus on A,
namely ∆i−1(A). The i-th knowledge in focus on A is

∆i(A) = {r ∈ ∆ | Σ(r) ∩ Fi(∆,A) 6= ∅}.

We omit the argument ∆ in Fi(∆,A) and write Fi(A)
instead if the respective knowledge base is clear from the
context.
Example 4. We abbreviate ∆ = ∆oviparous (cf. Table 1). The
first iterated foci on the query ?f |∼ p and the knowledge in
these foci are

F1(f, p) = {b, f, p}, ∆1(f, p) = {r1, . . . , r5, r7},
F2(f, p) = {b, e, f, p, w}, ∆2(f, p) = ∆1(f, p) ∪ {r8},
F3(f, p) = Σ \ {s}, ∆3(f, p) = ∆oviparous,

F4(f, p) = Σ.

One has Fi(A) ⊆ Fi+1(A) and ∆i(A) ⊆ ∆i+1(A) for
i ∈ N0 and A ⊆ L. Because every focus and knowledge in
focus is bounded above by a finite set, namely by Σ resp. ∆,
the series (Fi(A))i∈N0

and (∆i(A))i∈N0
become stationary

after at most min{|Σ|, |∆|}-many iterations. The limits are

F∞(A) =
⋃

i∈N0

Fi(A),

∆∞(A) =
⋃

i∈N0

∆i(A).

Example 5. Consider ∆oviparous and the query ?f |∼ p (cf.
Example 4). One has F∞(f, p) = F4(f, p) = Σ and
∆∞(f, p) = ∆3(f, p) = ∆oviparous.

Note that the focus in the limit F∞ and the knowledge in
the focus in the limit ∆∞ are not necessarily Σ resp. ∆ but
are the focus and the knowledge in focus which are obtained
by syntax splitting.
Definition 4 (Focused Inference). Let ∆ be a knowledge
base. For i ∈ N∞0 , we define the focused inference relation

|∼i
∆ = {(A,B) ∈ L × L | A |∼∆i(A,B)B}.

If A |∼i
∆B holds, we say that B follows from A in the i-th

focus.

Every query instance ?A |∼i
∆B can be answered based

on an inference relation which satisfies System P, namely
|∼∆i(A,B) . However, this does not mean that |∼i

∆ satisfies
System P because the focus of ∆i(A,B) is query-dependent
and the inference relation which is selected to answer the
query can differ from query to query.
Example 6. From ∆ = ∆oviparous (cf. Table 1) the inference
f |∼0

∆ p can be drawn because ∆′ = ∆0(f, p) ∪ {(p|f)} =
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{(f |b), (b|p), (f |p), (p|f)} is inconsistent (no conditional in
∆′ is tolerated by ∆′). Some further inferences that can be
drawn from ∆ by direct applications of inference rules from
System P are a ∨ b |∼0

∆ e, bf |∼0
∆ w, and p |∼0

∆ b ∨ f . An
inference that cannot be drawn in the direct focus isw |∼0

∆ f

because ∆0(f, w)∪{(f |w)} = {(f |b), (w|b), (f |p), (f |w)}
is consistent (consider any ranking function with κ−1(0) =
{bfpw} and κ−1(1) = {bfpw}). However, w |∼1

∆ f holds
because ∆1(f, w) ∪ {(f |w)} = ∆penguin ∪ {r7} ∪ {(f |w)}
is inconsistent: In the most plausible worlds b holds (due to
r1) and then f (due to r2) and w (due to r3) hold as well.

From an intuitive point of view, the inference behavior
of |∼i

∆ should become “better” with increasing i, i.e., the
larger the focus is and, hence, the more knowledge is taken
into account. In the next section, we investigate this conjec-
ture based on formal criteria.

Formal Properties of Focused Inference
We investigate the quality of the focused inference relations
|∼i

∆ for i ∈ N∞0 with regard to System P. We begin with the
inference relation |∼∞∆ . Before we show that |∼∞∆ equals
|∼∆ and, hence, satisfies System P, we prove some technical

lemmas.
Lemma 1. Let ∆1 and ∆2 be knowledge bases, and let
A,B ∈ L. Then, A |∼∆1

B and ∆1 ⊆ ∆2 imply A |∼∆2
B.

This property is known as the semi-monotony of |∼∆ .

Proof. From A |∼∆1
B it follows that ∆1 ∪ {(B|A)} is in-

consistent. As every superset of an inconsistent knowledge
base is inconsistent and ∆1 ∪ {(B|A)} ⊆ ∆2 ∪ {(B|A)}
holds, ∆2 ∪ {(B|A)} is inconsistent, too. Consequently, it
follows that A |∼∆2

B is true as well.

We now show that the models of syntactically indepen-
dent knowledge bases ∆1 and ∆2 define a model of ∆1∪∆2.
Lemma 2. Let ∆ be a consistent knowledge base which syn-
tactically splits into {∆1,∆2}, and let κi : Ω(Σ(∆i))→ N0

be a model of ∆i for i = 1, 2. Then, the sum of both, i.e.
(κ1 + κ2)(ω1ω2) = κ1(ω1) + κ2(ω2), is a model of ∆.

Proof. Let A be a formula which is defined over Σ1. Then,

(κ1 + κ2)(A) = min
ω1ω2|=A

ω1∈Ω(Σ(∆1)), ω2∈Ω(Σ(∆2))

(κ1 + κ2)(ω1ω2)

= min
ω1|=A

ω1∈Ω(Σ(∆1)), ω2∈Ω(Σ(∆2))

(
κ1(ω1) + κ2(ω2)

)
= min
ω1|=A, ω1∈Ω(Σ(∆1))

κ1(ω1) = κ1(A).

The third equality holds because κ2 is normalized and the
minimum is built over all possible worlds in Ω(Σ(∆2)).
As a consequence, one has (κ1 + κ2)(AB) = κ1(AB) <
κ1(AB) = (κ1+κ2)(AB) for all conditionals (B|A) ∈ ∆1.
The proof for conditionals in ∆2 is analogous.

We eventually prove |∼∞∆ = |∼∆ .
Proposition 2. Let ∆ be a consistent knowledge base. Then,
|∼∞∆ = |∼∆ . In particular, |∼∞∆ satisfies System P.

Proof. FromA |∼∞∆ B it follows thatA |∼∆∞(A,B)B holds.
With ∆∞(A,B) ⊆ ∆ and Lemma 1, A |∼∆B follows.
Now, let A |∼∆B. We define ∆′ = ∆ \ ∆∞(A,B) such
that ∆ syntactically splits into {∆′,∆∞(A,B)} (otherwise
∆∞(A,B) would not be the limit of (∆i(A,B))i∈N0

).
Let κ be a model of ∆∞(A,B) and let κ′ be a model
of ∆′. Lemma 2 states that κ + κ′ is a model of ∆.
Hence, A |∼∆B implies (κ + κ′)(AB) < (κ + κ′)(AB).
Because of Σ(A |∼∆B) ⊆ Σ(∆∞(A,B)), one has
κ(AB) = (κ+ κ′)(AB) < (κ+ κ′)(AB) = κ(AB) (cf.
the proof of Lemma 2), i.e., κ |= (B|A). As this result holds
for arbitrary models κ of ∆∞(A,B), both A |∼∆∞(A,B)B

and A |∼∞∆ B follow.

Now, we investigate the inference relations |∼i
∆ with

i <∞. Example 6 gives reason to expect that these in-
ference relations do not satisfy System P. Actually, for all
knowledge bases ∆, there is a minimal i ∈ N0 such that
|∼j

∆ satisfies System P for all j ≥ i, because there is k ∈ N0

with |∼k
∆ = |∼∞∆ . However, this index i depends on the

knowledge base ∆. Nevertheless, some inference rules of
System P hold in all foci.
Proposition 3. Let ∆ be a consistent knowledge base and
let i ∈ N0. The inference relation |∼i

∆ satisfies Reflexivity,
Cautious Monotony, and Or.

Proof. Reflexivity: If A ≡ ⊥, then all ranking functions
κ satisfy κ |= (A|A) by definition and A |∼i

∆A holds. If
A 6≡ ⊥, then κ(AA) = κ(A) < ∞ = κ(⊥) = κ(AA) for
all ranking functions κ and, again, A |∼i

∆A holds.
Cautious Monotony (CM): A |∼i

∆B (resp. A |∼i
∆ C) is

equivalent to A |∼∆i(A,B)B (resp. A |∼∆i(A,C) C). With
Lemma 1, A |∼∆i(A,B,C)B (resp. A |∼∆i(A,B,C) C) fol-
lows. Because |∼∆i(A,B,C) satisfies System P, in particular
CM, AB |∼∆i(A,B,C) C and, hence, AB |∼i

∆ C hold.
Or: A |∼i

∆ C (resp. B |∼i
∆ C) is equivalent to

A |∼∆i(A,C) C (resp. B |∼∆i(B,C) C). With Lemma 1,
A |∼∆i(A,B,C) C (resp. B |∼∆i(A,B,C) C) follows. Be-
cause |∼∆i(A,B,C) satisfies System P, in particular Or,
A ∨B |∼∆i(A,B,C) C and, hence, A ∨B |∼i

∆ C hold.

Proposition 4. There is no i ∈ N0 such that for all consis-
tent knowledge bases ∆, the inference relation |∼i

∆ satisfies
Cut, Right Weakening, or Left Logical Equivalence.

Proof. We give counterexamples for the case i = 0 first and
generalize them to i > 0 afterwards.

Cut: Consider ∆ = {(c|ab), (a|>), (d|a), (b|d)}. Then,
ab |∼0

∆ c and a |∼0
∆ b hold, but a |∼0

∆ c does not hold. The
inference a |∼0

∆ b holds because in all models of ∆ the
most plausible worlds satisfy a (due to (a|>) ∈ ∆) and
consequently d (due to (d|a) ∈ ∆) as well as b (due to
(b|d) ∈ ∆). The inference a |∼0

∆ c does not hold because
(b|d) /∈ ∆0(a, c) implies that b cannot be inferred from
a. For this reason, ∆0(a, c) ∪ {(c|a)} is consistent (con-
sider any ranking function κ with κ−1(0) = {abcd} and
κ−1(1) = {abcd}). This counterexample generalizes to
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arbitrary i ∈ N by separating the conclusion b from the
premise a through a transitive chain of conditionals: For

∆i = {(c|ab), (a|>), (d1|a), (d2|d1), . . . ,

(di+1|di), (b|di+1)},

(b|di+1) /∈ ∆i
i(a, c) rules out the inference of b from a and,

hence, of c from a.
Right Weakening: Let ∆ = {(a|>), (b|a), (d|b), (bc|d)}.

Then, a |∼0
∆ bc and bc |= c hold, but a |∼0

∆ c does not hold.
In the most plausible worlds, a holds (due to (a|>) ∈ ∆)
as well as b (due to (b|a) ∈ ∆) and d (due to (d|b) ∈ ∆).
Consequently, c follows from bc |= c and (bc|d) ∈ ∆. The
inference a |∼0

∆ c does not hold because (d|b) /∈ ∆0(a, c).
Hence, c cannot be inferred from a. This counterexample
generalizes to arbitrary i ∈ N:

∆i = {(a|>), (b|a), (d1|b), (d2|d1), . . . ,

(d2i+1|d2i), (bc|d2i+1}

proves that |∼i
∆ does not satisfy Right Weakening because

(di+1|di) /∈ ∆i
i(a, c).

Left Logical Equivalence: Let ∆ = {(c|d), (d|a ∨ a)}.
Then, a∨ a |∼0

∆ c and a∨ a ≡ > hold, but > |∼0
∆ c does not

hold which is because of (d|a∨a) /∈ ∆0(c) = {(c|d)}. This
counterexample generalizes to arbitrary i ∈ N:

∆i = {(c|d1), (d2|d1), . . . , (di+1|di), (di+1|a ∨ a)}

proves that |∼i
∆ does not satisfy Left Logical Equivalence

because (di+1|a ∨ a) /∈ ∆i
i(c).

The inference rules Cut, Right Weakening, and Left Log-
ical Equivalence aim on inferring a proposition C from a
proposition A by making use of a “justification” B. If this
justification is out of the focus Fi(A,C), then the inference
A |∼i

∆ C can (possibly) not be drawn. This is in compliance
with human reasoning: The less present the justification for
an inference is, the more likely it is to dismiss the inference.
If the justification B is within the focus Fi(A,C), however,
the inference A |∼i

∆ C should be drawn. In compliance with
this consideration, the following weaker versions of Cut,
Right Weakening, and Left Logical Equivalence apply.
Proposition 5. Let ∆ be a consistent knowledge base, let
i ∈ N0, and let A,B,C ∈ L. If Σ(B) ⊆ Fi(A,C), then

AB |∼i
∆ C, A |∼i

∆B imply A |∼i
∆ C, (Focused Cut)

A |∼i
∆B, B |= C imply A |∼i

∆ C, (Focused RW)

A ≡ B, B |∼i
∆ C imply A |∼i

∆ C. (Focused LLE)

Proof. Focused Cut: From AB |∼i
∆ C and A |∼i

∆B it fol-
lows that AB |∼∆i(A,B,C) C and A |∼∆i(A,B,C)B hold.
Since |∼∆i(A,B,C) satisfies System P, A |∼∆i(A,B,C) C

follows. Because of Σ(B) ⊆ Fi(A,C) one has
∆i(A,C) = ∆i(A,B,C). Therefore, A |∼fi(∆) C holds.

The proofs of Focused RW and Focused LLE
are analogous to the proof of Focused Cut: From
A |∼i

∆B and B |= C (resp. A ≡ B and B |∼i
∆ C),

A |∼∆i(A,B,C)B (resp. B |∼∆i(A,B,C) C) follows. In both

cases A |∼∆i(A,B,C) C follows with the same argument as
in the proof of Focused Cut. Consequently, A |∼fi(∆) C

holds.

Concerning Right Weakening we would like to point out
that this inference rule is not entirely unquestioned (cf., e.g.,
(Casini, Meyer, and Varzinczak 2019)). Like Cut, it con-
stitutes a weakened form of transitivity which is a typical
property of monotonic reasoning. Focused RW and Focused
LLE restrict transitivity more than Right Weakening and
Left Logical Equivalence as they crop transitive chainings
when they get out of focus (cf. the proof of Proposition 4).

Left Logical Equivalence can also be guaranteed by re-
stricting the language that is used to describe knowledge.
The reason why Left Logical Equivalence is not satisfied
by focused inference in general is that foci are defined on
a syntactical level and it is possible that a formula A is
within a focus F while an equivalent formulaB is not. This,
however, only happens when at least one of the formulas
uses redundant variables. For instance, consider A = a and
B = a(b ∨ b). Then, A ≡ B holds and B is considered in
all foci F with a ∈ F or b ∈ F but A is considered only in
foci F with a ∈ F . We avoid this problem by introducing a
language L′ which is free of such ‘syntactical sugar’.
Definition 5 (Propositional Language L′). The proposi-
tional language L′ ⊆ L is defined by

A ∈ L′ iff A ∈ L and ∀B ∈ L :

B ≡ A⇒ Σ(A) ⊆ Σ(B).

Formulas in L′ mention only those variables that are rel-
evant for the evaluation of the formula. For instance, with
respect to the abovementioned example, A = a is in L′ but
B = a(b ∨ b) is not.
Proposition 6. Let ∆ be a consistent knowledge base, and
let i ∈ N0. If B ∈ L′, then

A ≡ B, B |∼i
∆ C imply A |∼i

∆ C. (Reduced LLE)

Proof. B ∈ L′ and A ≡ B imply Σ(B) ⊆ Σ(A) and,
hence, Σ(B)∪Σ(C) ⊆ Σ(A)∪Σ(C) holds. Consequently,
∆i(B,C) ⊆ ∆i(A,C) holds, too. Because of A ≡ B and
B |∼i

∆ C one has B |∼∆i(B,C) C and, as |∼∆i(B,C) satis-
fies System P and in particular Left Logical Equivalence,
A |∼∆i(B,C) C. Finally, since |∼∆ is semi-monotonous,
A |∼∆i(A,C) C and A |∼i

∆ C follow.

So far we have learned that for all knowledge bases ∆
there is a minimal index i ∈ N0 with i < min{|Σ|, |∆|}
such that |∼i

∆ satisfies System P. Even if one does not want
to miss any relevant knowledge for answering the query
?A |∼∆B, it is sufficient to focus on ∆i(A,B) instead of
considering ∆ because |∼∆ = |∼i

∆ holds for this in-
dex i. The next proposition states that even if the focus Fj is
too small to draw inferences compliant with System P, i.e.,
Fj ⊂ Fi, the focused inference relation |∼j

∆ does not pro-
vide “false positives”.
Proposition 7. Let ∆ be a knowledge base and let i, j ∈ N0.
Then, j ≤ i implies |∼j

∆ ⊆ |∼i
∆ .
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Input: Z-partition (∆′1, . . . ,∆
′
m) of a consistent

knowledge base ∆′; knowledge base ∆′′

Output: Z-partition of ∆=∆′ ∪∆′′ if ∆ is consistent;
empty list otherwise

1 output← [ ]
2 for i = 0, . . . ,m
3 while ∆′i 6= ∅
4 ∆′− ← ∅; ∆′′− ← ∅; boolean← false
5 for r ∈ ∆′′

6 if ∆′′ ∪
⋃m

j=i ∆′j tolerates r
7 ∆′− ← ∆′−∪{r}; boolean← true
8 for r ∈ ∆′i
9 if ∆′′ ∪

⋃m
j=i ∆′j tolerates r

10 ∆′′− ← ∆′′−∪{r}; boolean← true
11 if boolean = false
12 output← [ ]
13 break
14 output← output.append(∆′− ∪∆′′−)
15 ∆′i ← ∆′i \∆′−; ∆′′ ← ∆′ \∆′′−
16 if ∆′′ = ∅
17 output← output.extend([∆′i+1, . . . ,∆

′
m])

18 break
19 if ∆′′ 6= ∅
20 output.extend(Algorithm 1(∆′′))
21 return output

Algorithm 2: Consistency test for a knowledge base ∆
which exploits the Z-partition of a consistent subset ∆′ ⊆ ∆
and returns the Z-partition of ∆.

Proof. This proposition directly follows from ∆j(A,B) ⊆
∆i(A,B) for j ≤ i and the semi-monotony of |∼∆ .

As a consequence of Proposition 7, the sequence
( |∼i

∆ )i∈N0 forms an ascending chain ( |∼0
∆ ⊆ |∼1

∆ ⊆ . . .)
and converges to |∼∞∆ . In the next section, we make use of
this result and present an algorithm for drawing inferences
in System P based on focused inference. For this, we test
whether a query holds wrt. |∼0

∆ . If the answer is false,
we iteratively enlarge the focus until we reach |∼∞∆ . If the
inference can still not be drawn wrt. |∼∞∆ , then the query is
false wrt. System P. In all other cases the query is true.

An Algorithmic View on Focused Inference
The fact that the focused inference relations |∼i

∆ for i ∈ N0

form an ascending chain which converges against the Sys-
tem-P-conform inference relation |∼∆ makes it possible to
iteratively approximate System P with increasing accuracy:
In order to answer a query wrt. |∼∆ one tests if this query
holds wrt. |∼0

∆ . If this is the case, the query also holds wrt.
|∼∆ due to the semi-monotony of |∼∆ . Otherwise, one

tests the query wrt. |∼1
∆ and so on. For this procedure to be

efficient, it is necessary to reuse the calculations for answer-
ing the query instance ?A |∼i

∆B when ?A |∼i+1
∆ B has to be

tested. In other words, one has to take advantage of the con-
sistency of ∆i(A,B)∪{(B|A)} when deciding consistency

of ∆i+1(A,B) ∪ {(B|A)}. More general, an efficient algo-
rithm is needed which decides consistency of a knowledge
base ∆ provided that a subset ∆′ of ∆ is already known to
be consistent. We develop such an algorithm in this section
step by step. For that purpose the Z-partition of ∆′ is a useful
auxiliary structure: The idea is to sort the conditionals from
∆\∆′ into the Z-partition (∆′1, . . . ,∆

′
m) of ∆′. During this

process it can happen that (a) conditionals from ∆ \∆′ can
simply be incorporated into a partition set ∆′i, (b) ∆′i has to
be fanned out into several smaller subsets before applying
(a), or (c) conditionals from ∆ \∆′ constitute a completely
novel partition set. What can not happen, however, is that
two conditionals r1 and r2 from ∆′ switch their order in the
Z-partition, i.e., r1 occurs in a set with a lower index than
r2 within the partition of ∆′ but in a set with a higher index
within the partition of ∆ (cf. the notion of tolerance). The
whole procedure is implemented in Algorithm 2.

Proposition 8. Algorithm 2 terminates and is correct. Its
worst-case time-complexity is in

O
((
|∆′|2

m
+ |∆′| · |∆′′|+ |∆′′|2

)
· SAT(|Σ|)

)
where SAT(|Σ|) is the worst-case time-complexity of testing
satisfiability of a formula with |Σ|-many variables.

Proof (Sketch). Termination: The for-loops in Algorithm 2
are obviously finite. In every pass of the while-loop, one out
of these three events happens: (a) An element is removed
from ∆′′, (b) an element is removed from ∆′i, or (c) the loop
aborts because the variable boolean is false. Since ∆′′ and
∆′i are finite sets, the termination condition ∆′i = ∅ eventu-
ates after finitely many passes or the loop aborts due to case
(c). Hence, the while-loop is finite, too.

Correctness: Algorithm 2 sorts the conditionals from ∆′′

in the Z-partition (∆′1, . . . ,∆
′
m) starting from ∆′1 up to ∆′m

while fanning out the partition sets ∆′i if necessary, such
that each conditional in a new partition set ∆i is tolerated
by ∆i, the remaining conditionals from ∆′i as well as the
conditionals from ∆′j , j > i (the tolerance tests are per-
formed in the lines 6 and 9). When all conditionals from ∆′′

are sorted in before the for-loop in line 2 ends, the partition
sets from (∆′1, . . . ,∆

′
m) which remained untouched are ap-

pended (line 17). When the for-loop ends before all condi-
tionals from ∆′′ are sorted in instead, the Z-partition of the
remaining conditionals from ∆′′ is appended (line 20). The
outcome is a tolerance partition of ∆. It remains to show that
this tolerance partition has minimal rank. This holds because
every conditional from ∆′′ is sorted in as early as possible
and no conditional from ∆′j can be tolerated before a con-
ditional from ∆′i when j > i as (∆′1, . . . ,∆

′
m) forms a tol-

erance partition and, consequently, all conditionals from ∆′j
have to appear in a higher partition of the Z-partition of ∆
than conditionals from ∆′i (if a conditional is not tolerated
by a knowledge base ∆, then it is also not tolerated by any
superset of ∆).
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Input: Knowledge base ∆; query ?A |∼∆B
Output: true if A |∼∆B holds; false otherwise

1 output← false
2 i← 0
3 T ← Algorithm 1(∆i(A,B) ∪ {(B|A)})
4 if T = [ ] then output← true
5 while ∆i+1(A,B) 6= ∆i(A,B)∧ output = false
6 T ← Algorithm 2(T,∆i+1(A,B) \∆i(A,B))
7 if T = [ ] then output← true
8 i← i+ 1
9 return output

Algorithm 3: Iterative query answering in System P.

Complexity: In the worst case, the algorithm takes

O(
∑m

i=0(
∑|∆′i|

k=1(k + |∆′′|)) + |∆′′|2)

= O(
∑m

i=0(|∆′i|2 + |∆′i| · |∆′′|) + |∆′′|2)

= O(
∑m

i=0( |∆
′|2

m2 + |∆′|
m · |∆′′|) + |∆′′|2)

= O( |∆
′|2

m + |∆′| · |∆′′|+ |∆′′|2)

many SAT tests. For obtaining the last equality, the method
of Lagrangian multipliers (Boyd and Vandenberghe 2014)
with the side condition

∑m
i=0 |∆′i| = |∆′| is applied.

The complexity of Algorithm 2 is the better the higher the
rank m of the Z-partition of ∆′ is. In the worst case, the
Z-partition of ∆′ is (∆′) and does not provide any helpful
information. In this case, the complexity of Algorithm 2 is
the same as the complexity of a direct computation of the
Z-partition of ∆ = ∆′ ∪∆′′ with Algorithm 1.

Eventually, Algorithm 3 recursively applies Algorithm 2
on ∆i and the Z-partition of ∆i−1 for increasing index i in
order to answer the query instance ?A |∼∆B.

Proposition 9. Algorithm 3 terminates and is correct. Its
worst-case time-complexity is in

O
((

1 +
k

mk

)
· |∆k(A,B)|2 · SAT(|Σ(∆k(A,B))|)

)
,

where k is such that Fk(A,B) is the smallest focus in
which ?A |∼∆B can be decided and mk is the rank of the
Z-partition of ∆k(A,B).

Proof (Sketch). Termination: Algorithm 3 terminates be-
cause its only while-loop is finite; (∆i)i∈N0

converges after
at most min{|Σ|, |∆|}-many steps.

Correctness: Algorithm 3 recursively tests whether
A |∼i

∆B holds for increasing i ∈ N0. If A |∼i
∆B holds,

then A |∼∆B holds, too, and the algorithm returns true.
If A |∼i

∆B does not hold, the index i is increased and the
algorithm repeats. When ( |∼i

∆ )i∈N0
becomes stationary at

index j and A |∼j
∆B does not hold, then A |∼∆B does not

hold either and the algorithm correctly returns false.
Complexity: For i ∈ N0, we denote |∆i(A,B)| with di

and the rank of the Z-partition of ∆i(A,B) with mi. Then,

Algorithm 3 takes

O(d2
0 +

∑k
i=1(

d2
i−1

mi−1
+(di−1 + di − di−1)·(di − di−1)))

= O(d2
0 +

∑k
i=1(

d2
i−1

mi−1
+ di · (di − di−1)))

≤ O(d2
0 + k

mk−1
· d2

k−1 + dk ·
∑k

i=1(di − di−1))

= O(d2
0 + k

mk−1
· d2

k−1 + dk · (dk − d0))

= O((1 + k
mk

) · d2
k)

many SAT tests.

In the worst case, ?A |∼∆B can be answered with Algo-
rithm 3 not before the first focus Fk with ∆k(A,B) = ∆ is
reached. Additionally, k = |∆| and mk = 1 could hold. In
this case, the complexity of Algorithm 3 is in Θ(|∆(A,B)|3·
SAT(|Σ|)) and worse than the complexity of a direct compu-
tation with Algorithm 1. In practical applications, however,
k � |∆| and mk > 1 can be expected. If A |∼∆B does
not hold, then Algorithm 3 proceeds until the first focus Fk

with ∆k(A,B) = ∆∞(A,B) is reached because focused
inference is semi-decidable: IfA |∼i

∆B holds, thenA |∼∆B
holds as well, but if i < k and A |∼i

∆B does not hold, noth-
ing can be said about A |∼∆B. This weakness is attenuated
by testing ?A |∼i

∆B and ?A |∼i
∆B in parallel and by abort-

ing the procedure as soon as one of the query instances turns
out to be true.

In the best case, the inference A |∼∆B holds and can be
drawn in the direct focus. Then, the complexity of Algo-
rithm 3 is in O(|∆0(A,B)|2 · SAT(|Σ(∆0(A,B)|). This re-
sult is promising not only because |∆0(A,B)| � |∆| holds
in many cases and improves complexity directly but also be-
cause |Σ(∆0(A,B)| � |Σ| speeds up the SAT tests in Al-
gorithm 3 in comparison to those in Algorithm 1.

Conclusion and Future Work
We analyzed the effect of focusing on knowledge when
drawing inferences in System P. For this, we hierarchically
organized the knowledge according to its syntactical dis-
tance to the query and defined focused inference relations
which solely use the knowledge that is within reach of the
query (within “focus”) to draw the inference. All focused
inferences are in compliance with System P but not all Sys-
tem P inferences are among the focused ones if the focus is
not broad enough. Our focused inference approach benefits
from the semi-monotony of System P but is not limited to
System P.

In future work, we want to extend our approach to more
expressive background logics, formalize a semantical vari-
ant of focused inference, and we want to apply focused in-
ference to other inference formalisms which satisfy semi-
monotony (e.g., Reiter’s default logic for normal defaults
(Reiter 1980)) and, more challenging, to formalisms which
are not semi-monotonous (e.g., System Z (Pearl 1990) and
c-representations (Kern-Isberner 2004)). We also see con-
nections to other research topics such as forgetting (focused
inference as a tunnel view) and paraconsistent logics (focus
on a consistent part of the knowledge).
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