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Abstract

We present a new synthesis framework based on the on-the-
fly DFA construction for LTL over finite traces (LTLf ). Extant
approaches rely heavily on the construction of the complete
DFA w.r.t. the input LTLf formula, whose size can be doubly
exponential to the size of the formula in the worst case. Un-
der those approaches, the synthesis cannot be conducted un-
less the whole DFA is completely constructed, which is not
only inefficient but also not scalable in practice. Indeed, the
DFA construction is the main bottleneck of LTLf synthesis in
prior work. To mitigate this challenge, we follow two steps
in this paper: Firstly, we present several light-weight pre-
processing techniques such that the synthesis result can be ob-
tained even without DFA construction; Secondly, we propose
to achieve the synthesis together with the on-the-fly DFA con-
struction such that the synthesis result can be obtained before
constructing the whole DFA. The on-the-fly DFA construc-
tion is implemented using the SAT-based techniques for au-
tomata generation. We compared our new approach with the
traditional ones on extensive LTLf synthesis benchmarks. Ex-
perimental results showed that the pre-processing techniques
have a significant advantage on the synthesis performance in
terms of scalability, and the on-the-fly synthesis is able to
complement extant approaches on both realizable and unre-
alizable cases.

Introduction
Synthesis for Linear Temporal Logic over finite traces, i.e.,
LTLf (De Giacomo and Vardi 2013), has emerged as a pop-
ular research topic in the AI community due to applications
such as motion planning (Zhu et al. 2020; Rintanen 2004).
LTLf is a formal logic that has received considerable con-
cerns from the AI community, due to its simplicity and abil-
ity to formalize and validate behaviors of AI systems (De
Giacomo and Vardi 2013; Giacomo and Vardi 2015). While
standard Linear Temporal Logic (LTL) is interpreted on in-
finite traces (Pnueli 1977), LTLf is interpreted over finite
traces (De Giacomo and Vardi 2013). Since first introduced
in 2013, the fundamental problems of LTLf , e.g., satisfiabil-
ity (Li et al. 2014, 2019) and synthesis (Giacomo and Vardi
2015; Zhu et al. 2017), have been extensively studied in
prior work. Towards applications, researchers successfully
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reduced the planning problem with LTLf goals to the syn-
thesis problem for LTLf (Camacho et al. 2017; Camacho,
Bienvenu, and McIlraith 2018; Aminof et al. 2018, 2019;
Zhu et al. 2020), which makes the logic very attractive in
this domain. We focus on LTLf synthesis in this paper.

Given an LTLf formula φwith input/output atomic propo-
sition sets X ,Y such that X ∩ Y = ∅ and P = X ∪ Y is
the set of atomic propositions of φ, the synthesis problem
asks whether every finite trace generated as the result of a
game between the environment controlling the input propo-
sitions and the system controlling the output propositions
can satisfy the formula φ (see Definition 1 for details). Ex-
tant solutions rely on a reduction from LTLf synthesis to
DFA (Deterministic Finite Automata) games (Giacomo and
Vardi 2015). Explicitly, the DFA that recognizes the same
language as the LTLf formula has to be constructed at first.
Then a backward fixpoint calculation is performed on the
generated DFA from the set of accepting states. The cal-
culation initially marks the accepting states as the winning
states, and recursively extends this winning set based on the
current information. If finally the initial state of the DFA is
included in the winning set, we conclude that the formula
φ is realizable w.r.t. the input/output sets X and Y . Other-
wise, the formula is unrealizable. It is well-known that the
LTLf -to-DFA translation is the most demanding part of the
computation, as the size of the generated DFA can be doubly
exponential to the size of the formula (Kupferman and Vardi
2001). Indeed, the DFA construction is the main bottleneck
in the current approach (Zhu et al. 2017).

Several optimizations for DFA construction have been
proposed. (Zhu et al. 2017) has shown using MONA (Hen-
riksen et al. 1995; Elgaard, Klarlund, and Möller 1998) to
symbolically construct the minimal DFA can be much faster
than using Spot (Duret-Lutz and Poitrenaud 2004), which
employs an explicit construction. Later, (Zhu, Pu, and Vardi
2019) performed an extensive comparison over different en-
codings from LTLf to the input format of MONA to look
for the best-performing encoding, and showed the outper-
formance of First Order Logic (FOL) encoding. (Tabajara
and Vardi 2019) introduced a partitioning technique to de-
compose the generation of a large DFA into small ones
(Meyer, Sickert, and Luttenberger 2018). Recently, (Bansal
et al. 2020) combined both of the explicit and symbolic DFA
state-space representations and successfully achieved a bet-
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ter DFA construction than those using only one single repre-
sentation. Nonetheless, none of these techniques above can
avoid the double exponential-up cost, as the DFA construc-
tion is the indispensable part for LTLf synthesis. Therefore,
the question raises up whether it is possible to solve LTLf
synthesis without generating the whole DFA.

We present here a novel approach to achieve this goal.
First of all, we present three light-weight pre-processing
techniques for LTLf synthesis, which can be easily im-
plemented and with low running-cost. Notably, such pre-
processing techniques can be performed directly on the in-
put formula even without constructing the DFA. As a result,
they can be integrated into all other available LTLf synthesis
approaches. Secondly, we propose a new synthesis frame-
work that is based on DFA construction on the fly, i.e., the
DFA states are created only as necessary. We start from the
initial state s0 (that is the input formula φ under our frame-
work) and then proceed forward to continuously generate
successor states when necessary. As soon as the new cre-
ated state is determined as winning/failure, a backtrack pro-
cedure is invoked to determine whether the predecessors are
winning/failure based on stored information. As soon as the
initial state can be determined as winning (resp. failure), the
realizable (resp. unrealizable) result can be concluded. In
the worst case, the algorithm returns unrealizable when the
whole DFA is constructed.

We conducted extensive experimental evaluations on
both the pre-processing techniques and the new synthesis
framework, by comparing to extant LTLf synthesis tools
SYFT (Zhu et al. 2017) and LISASYNT (Bansal et al.
2020). Results show that: (1) the pre-processing techniques
can speed-up the synthesis with up to an exponentially better
performance; (2) the new synthesis framework via on-the-fly
DFA construction is able to complement the extant ones by
uniquely solving a significant number of instances.

Preliminaries
Given a setP of atomic propositions, an LTLf formula φ has
the form: φ ::= tt | p | ¬φ | φ ∧ φ | # φ | φ1Uφ2,
where tt is true, p ∈ P is an atomic proposition, ¬ is the
negation operator, ∧ is the and operator, # is the strong
Next operator and U is the Until operator. We also have the
corresponding dual operators ff (false) for tt, ∨ (or) for ∧,
N (weak Next) for # and R (Release) for U . A literal is an
atom p ∈ P or its negation (¬p). Moreover, we use the no-
tation 2φ (Globally) and 3φ (Eventually) to represent ffRφ
and ttUφ, respectively. Notably, # is the standard Next op-
erator, while N is weak Next; # requires the existence of a
successor instance, while N does not. Thus Nφ is always
true in the last instance of a finite trace, since no successor
exists there. This distinction is specific to LTLf .

LTLf formulas are interpreted over finite traces (De Gi-
acomo and Vardi 2013). Given an atomic set P , we define
Σ = 2P be the family of sets of atoms. Let η ∈ Σ+ be a
finite nonempty trace, with η = σ0σ1 . . . σn. |η| = n + 1
denotes the length of η. Moreover, for 0 ≤ i ≤ n, we
denote η[i] as the i-th position of η, and ηi to represent
σiσi+1 . . . σn, which is the suffix of η from position i. We
define the satisfaction relation η |= φ as follows:

• η |= tt; and η |= p, if p ∈ P and p ∈ η[0];
• η |= ¬φ, if η 6|= φ;
• η |= φ1 ∧ φ2, if η |= φ1 and η |= φ2;
• η |= #φ if |η| > 1 and η1 |= φ;
• η |= φ1Uφ2, if there exists 0 ≤ i < |η| such that ηi |= φ2

and for every 0 ≤ j < i it holds that ηj |= φ1;

Definition 1 (LTLf Synthesis). Let φ be an LTLf formula
with the atomic set P and X ,Y be two atomic sets such that
X ∩ Y = ∅ and X ∪ Y = P . X is the set of input variables
controlled by the environment and Y is the set of output vari-
ables controlled by the system. φ is realizable with respect
to 〈X ,Y〉 if
• for the Environment-first synthesis, there exists a strat-

egy g : (2X )+ → 2Y , such that for an arbitrary in-
finite sequence λ = X0, X1, · · · ∈ (2X )ω of proposi-
tional interpretations over X , we can find k ≥ 0 such
that ρ |= φ is true, where ρ = (X0 ∪ g(X0)), (X1 ∪
g(X0, X1)), · · · , (Xk ∪ g(X0, · · · , Xk)).

• for the System-first synthesis, there exists a strategy g :
(2X )∗ → 2Y , such that for an arbitrary infinite sequence
λ = X0, X1, · · · ∈ (2X )ω of propositional interpreta-
tions over X , we can find k > 0 such that ρ |= φ is
true, where ρ = (X0 ∪ g(ε)), (X1 ∪ g(X0)), · · · , (Xk ∪
g(X0, · · · , Xk−1)). (ε means the empty trace.)
In this paper, we focus on the System-first LTLf synthe-

sis. Extant solutions originate from the approach given in
(Giacomo and Vardi 2015), which has to construct the DFA
w.r.t. the formula at first, and then computes the winning
state set back from the accepting states to check whether the
initial state is included in such set. The result is realizable
if this is the case; otherwise, it is unrealizable. Readers are
referred to the literature for more details.
Notation. We say an LTLf formula is in Negation Normal
Form (NNF), if the negation operator appears only in front
of an atom. It should be noted that every LTLf formula can
be converted into its NNF in linear time. We use cl(φ) to
denote the set of subformulas of φ. The two LTLf formulas
φ1, φ2 are semantically equivalent, denoted as φ1 ≡ φ2, iff
for every finite trace η, η |= φ1 iff η |= φ2. Obviously,
we have (φ1 ∨ φ2) ≡ ¬(¬φ1 ∧ ¬φ2), Nφ ≡ ¬ # ¬φ and
(φ1Rφ2) ≡ ¬(¬φ1U¬φ2).

Approach Overview
This section presents the high-level ideas behind both the
pre-processing and on-the-fly synthesis techniques. The pre-
processing aims to determine the synthesis result directly
based on the input formula and the input/output pair. First of
all, it is trivial to know that the formula cannot (resp. can) be
realizable if it is unsatisfiable (resp. valid). Therefore, one
can run the satisfiability checkers, such as aaltaf (Li et al.
2019), to check the satisfiability of the input formula before
synthesis, ruling out the meaningless instances (Theorem 1).
Next, for an LTLf formula with the atomic set P = X ∪ Y ,
if there is Y ∈ 2Y such that Y |= φ is true (Y being consid-
ered as a length-one finite trace), we can know that φ is real-
izable (Theorem 2). Consider φ = 2(a ∨ b) with X = {a}
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and Y = {b} as an example. Since {b} |= φ is true, φ is
realizable. For an unrealizable formula φ, we first define the
projection (Definition 3), i.e., φ|Pφ , which is a Boolean for-
mula including all first-position elements of traces accepted
by φ. Then, if there is no Y ∈ 2Y such that Y |= φ|Pφ is
true, we can conclude that φ is unrealizable (Theorem 3).
For instance, consider φ = 2(a ∧ b) with X = {a} and
Y = {b}. φ is determined as unrealizable even without con-
structing the corresponding DFA.

We apply the SAT-based technique presented in (Li et al.
2019) that constructs automata (NFA) states on the fly, to
solve the synthesis problem. Given initial state φ (essen-
tially a formula), the technique can generate a propositional
assignment, which includes one transition information start-
ing from the state φ. We adapt this technique accordingly
such as to generate one transition for the transition-based
DFA (TDFA, a variant of DFA that is better for on-the-fly
construction). Then, the new methodology creates TDFA
states in four different ways as shown in Figure 1. From cur-
rent state s1, our approach creates state s2 by fixing Y0 ∈ 2Y

and enumerating X ∈ 2X (currently is X0). After that,
(a) if s2 cannot be recognized as winning or failure, the
DFS (Depth-first Search) strategy is applied to create a
new state s3;
(b) if s2 is recognized as winning, another X ∈ 2X (here
is X1) is selected by fixing Y0, obtaining a new state s3.
If all successor states are winning, then s1 is winning;
(c) if s2 is recognized as failure, another Y ∈ 2X (here
is Y1) is selected and Y0 is ruled out from the winning
strategy in current search. If no more Y can be selected,
s1 is a failure state;
(d) if s2 has been visited already, i.e., a loop is found dur-
ing the state computation, we can prove that choosing Y0
cannot belong to the winning strategy in current search,
and another Y ∈ 2X (here is Y1) has to be selected.
One can see that our on-the-fly approach is able to return

either realizable or unrealizable result before the whole DFA
is constructed.

Pre-processing Techniques for LTLf Synthesis
In this section, we introduce three pre-processing techniques
for LTLf synthesis, which can be evaluated immediately on
the given LTLf formula w.r.t. the atomic set P = X ∪ Y .
First, the following Theorem is straightforward according to
the LTLf semantics and Definition 1.
Theorem 1. If the LTLf formula φ is unsatisfiable, then φ
is unrealizable; If φ is valid, then φ is realizable.

Theorem 1 suggests that an unsatisfiable/valid LTLf for-
mula is not quite useful as a synthesis specification in prac-
tice. To that end, an extant LTLf -satisfiability solver, e.g.,
aaltaf (Li et al. 2019), can be used to check the satisfiabil-
ity/validity of the formula before synthesis.

We now consider realizability in traces of length 1. We
first define the satOnce predicate.
Definition 2. Given an LTLf formula φ and ω ∈ 2P , we
define the predicate satOnce(ω, φ) as true iff

Figure 1: A demonstration of key operations for on-the-fly
LTLf synthesis.

• φ is tt; or
• φ is an atom and φ ∈ ω; or
• φ = ¬ψ and ¬satOnce(ω, ψ) is true; or
• φ = φ1∧φ2 and satOnce(ω, φ1) and satOnce(ω, φ2) are

true; or
• φ = φ1 ∨ φ2 and satOnce(ω, φ1) or satOnce(ω, φ2) is

true; or
• φ = φ1Uφ2 or φ = φ1Rφ2 and satOnce(ω, φ2) is true.

Notably, satOnce(ω,#ψ) can never be true, while
satOnce(ω,Nψ) is always true. Based on Definition 2
and the semantics of LTLf formulas, the lemma below is
straightforward.
Lemma 1. Given an LTLf formula φ and ω ∈ 2P ,
satOnce(ω, φ) is true iff ω |= φ holds.

In fact, Definition 2 can be considered as the simplified
version of LTLf semantics in which the length of the finite
trace is restricted to be one. Definition 2 is provided as a
better option for the implementation purpose.
Theorem 2. Given an LTLf formula φ with alphabetX ∪Y ,
if there exists Y ∈ 2Y such that satOnce(Y, φ) is true, then
φ is realizable.

Proof. From Lemma 1, satOnce(Y, φ) is true implies that
Y |= φ is true. As a result, for every X ∈ 2X , X ∪ Y |= φ
is true, providing that X ∩ Y = ∅. Therefore, there exists
a strategy g with g(ε) = Y such that for every X ∈ 2X it
holds that X ∪ g(ε) |= φ. According to Definition 1, g is a
winning strategy for the system and φ is realizable.

Consider the formula aUb with X = {a} and Y = {b}
as an example. Let Y = {b} and since satOnce(Y, aUb) is
true, φ is realizable according to Theorem 2. It is easy to see

6532



that Theorem 2 can be extremely helpful for the synthesis
instances like ψUb with Y = {b}, under which the realiz-
able result can be achieved by Theorem 2 directly without
further automata construction. This advantage may poten-
tially lead to an exponential better performance, which will
be discussed in the experimental section later.

Next, we introduce the concept of formula projection for
the pre-processing of unrealizable formulas.
Definition 3 (Formula Projection). Given an LTLf formula
φ in NNF with the atomic set P , we define its projection on
P , denoted as φ|P , as a Boolean formula as follows:
• φ|P = φ if φ is tt, ff or a literal;
• φ|P = tt if φ = #ψ or φ = Nψ;
• φ|P = φ1|P ∧ φ2|P if φ = φ1 ∧ φ2;
• φ|P = φ1|P ∨ φ2|P if φ = φ1 ∨ φ2;
• φ|P = φ1|P ∨ φ2|P if φ = φ1Uφ2;
• φ|P = φ2|P if φ = φ1Rφ2.
Lemma 2. Given an LTLf formula φ and a finite trace η,
η |= φ implies that η[0] |= φ|P .

The proof can be done by induction over the structure of
φ, which is omitted here. Lemma 2 indicates that φ|P is suf-
ficient to capture all the first-position elements of φ’s accept-
ing traces. Inspired by that, we have the following theorem
that can help with identifying a formula being unrealizable.
Theorem 3. Given an LTLf formula φ with the atomic set
X ∪Y , if there does not exist Y ∈ 2Y such that Y |= φ|X∪Y ,
then φ is unrealizable.

Proof. Assume φ is realizable. According to Definition 1,
there exists a winning strategy g such that for an arbi-
trary infinite sequence X0, X1, . . . ∈ (2X )ω , there exists
k ≥ 0 such that ρ = (X0 ∪ g(ε)), (X1 ∪ g(X0)), . . . , (Xk ∪
g(Xk−1)) satisfies φ. Let Y = g(ε), and based on Lemma 2,
we have that Y ∪X0 |= φ|X∪Y for every X0 ∈ 2X . As the
consequence, it is required that Y |= φ|X∪Y is true. How-
ever, we already know that Y |= φ|X∪Y does not hold for
any Y ∈ 2Y , which causes the contradiction. Therefore, we
prove that φ is unrealizable.

Consider formula φ = 2(a∧b)∧2(c∧d) withX = {a, c}
and Y = {b, d} as an example. From Definition 3, we have
that φ|P = (a ∧ b ∧ c ∧ d). Obviously, Y |= φ|P does not
hold for any Y ∈ 2Y . We can conclude that φ is unrealizable
based on Theorem 3. In general, the performance of the tra-
ditional synthesis approach for φ = 2(a∧ b)∧2(c∧d)∧ψ
with X = {a, c} ∪ Pψ and Y = {b, d} (assume Pψ is the
atomic set of ψ and Pψ ∩ {a, b, c, d} = ∅) can decrease ex-
ponentially w.r.t. the size of ψ, while that of the synthesis
based on Theorem 3 can escape from the drawback.

On-the-fly Synthesis via TDFA Games
In this section, we first introduce the theoretic foundation of
the on-the-fly LTLf synthesis approach, which is based on
solving a TDFA (Transition-based DFA) game. We present
an algorithm that is able to generate TDFA on the fly to im-
plement the synthesis. TDFA is a variant of DFA that is bet-
ter for performing on-the-fly construction. The definition of
TDFA is shown below.

Definition 4 (Transition-based DFA). A transition-based
DFA (TDFA) is a tuple A = (Σ, S, s0, δ, T ), where

• Σ is a set of alphabet;
• S is a set of states;
• s0 ∈ S is the initial state;
• δ : S × Σ ↪→ S is the transition function, which is a

partial function, i.e. δ(s, ω) ∈ S or δ(s, ω) is undefined
for s ∈ S and ω ∈ Σ;
• T ⊆ δ is the set of accepting transitions.

The run r ofA on a finite trace η = ω0, ω1, · · · , ωn ∈ Σ+

is a finite state sequence r = s0, s1, . . . , sn+1 such that s0
is the initial state and δ(si, ωi) = si+1 is true for 0 ≤ i ≤ n.
The trace η is accepted byA iff the corresponding run r ends
with an accepting transition, i.e., δ(sn, ωn) = sn+1 is in T .
We denote transition δ(s1, ω) = s2 as s1

ω−→ s2.

Lemma 3. TDFA are equally expressive with DFAs.

Proof. (⇐:) A DFA can be trivially converted to its equiv-
alent TDFA by marking all transitions leading to accepting
states as accepting transitions. Therefore, every word that is
accepted by the DFA is also accepted by this TDFA.

(⇒:) We first convert a TDFA to an NFA by adding a new
state ns, which is marked as the unique accepting state of
this NFA. Later, we create a transition s ω−→ ns if transition
s

ω−→ s′ is an accepting transition of the TDFA. Therefore,
every trace that is accepted by the TDFA is also accepted
by this NFA. From the constructed NFA, one can trivially
generate the equivalent DFA by the subset construction.

According to (De Giacomo and Vardi 2013), every LTLf
formula can be converted to a DFA that accepts exactly the
same language as the LTLf formula. Therefore, it is straight-
forward that there is also a TDFA for every LTLf formula
such that they accept the same language.

In this paper, we present a dedicated SAT-based LTLf -
to-TDFA construction technique for on-the-fly synthesis.
The SAT-based LTLf -to-automata construction technique
was first introduced in (Li et al. 2019), and we follow the
methodology presented in the literature. Given an LTLf for-
mula φ, this technique is able to generate a propositional
assignment A of φ such that A includes the information of
a transition in the corresponding NFA. For more details, we
refer to (Li et al. 2019) and here we just use SAT(φ) to de-
note such process. Assume A = SAT(φ) is a propositional
assignment returned by the SAT-based technique, we use
L(A) to denote the transition label, which is represented as a
Boolean formula, and next(A) to denote the successor state
of φ. φ represents the current state. The TDFA construction
can be achieved as follows.

Definition 5 (LTLf -to-TDFA). Given an LTLf formula φ,
the corresponding TDFA Aφ is a tuple (Σ, S, δ, s0, T ) s.t.

• Σ = 2L is the alphabet, where L is the literal set of φ;

• S ⊆ 22
cl(φ)

is the set of states;
• δ : S × Σ ↪→ S is the partial transition function,

where s2 = δ(s1, ω) holds iff s2 = {next(A)|A ∈
{SAT(s1)} and ω |= L(A)} for ω ∈ Σ;
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• s0 = {{φ}} is the initial state;
• T ⊆ δ is the set of accepting transitions. A transition
s1

ω−→ s2 is in T iff ω |= s1 holds.

By Definition 5, a TDFA state s is a set of sets of
subformulas of the input formula φ. We identify such as
state with a DNF formula: a state s represents the formula∨
q∈s

∧
ψ∈q ψ, and vice versa. The following theorem guar-

antees the correctness of the TDFA construction shown in
Definition 5.

Theorem 4. Given an LTLf formula φ and the TDFA Aφ
constructed by Definition 5, a finite trace η |= φ holds iff η
is accepted by Aφ.

The proof of this theorem relies on details from (Li et al.
2019).

Once we obtain the TDFA of the given LTLf formula, the
synthesis problem can be reduced to a TDFA game.

Definition 6 (TDFA Game). A TDFA game is a two-player
game over a TDFA A = (2X×Y , S, s0, δ, T ) such that

• 2X×Y is the alphabet of the game, where X and Y are
two disjoint sets of variables that are controlled by the
environment and system respectively;

• S is the set of states;
• s0 is the initial state;
• δ : S × 2X×Y ↪→ S is the partial transition function, i.e.
δ(s,X ∪ Y ) is in S or undefined for s ∈ S, X ∈ 2X and
Y ∈ 2Y ;
• T ⊆ δ is the set of winning transitions of the game; the

system wins once it takes a transition in T .

To coordinate with LTLf synthesis, we focus here
System-first TDFA games. We say a TDFA game A is
winning for the system iff there is a system winning strat-
egy g : (2X )∗ → 2Y such that for an arbitrary infi-
nite environment sequence X0, X1, . . . ∈ (2X )ω , there is
k > 0, such that the corresponding run r on the finite trace
(X0∪g(ε)), (X1∪g(X0)), . . . , (Xk∪g(Xk−1)) is winning.
In the following, we define system winning and failure states
of a TDFA game.

Definition 7 (System Winning/Failure State). For a TDFA
game over A = (2X×Y , S, s0, δ, T ), s ∈ S is a system win-
ning state iff there is Y ∈ 2Y such that for every X ∈ 2X ,
either δ(s,X ∪ Y ) = s′ is an accepting transition or s′ is
a winning state. Moreover, we say s is a system failure state
iff it is not a system winning state.

The following lemma is deducible from Definition 7 in-
stantly and can be used as an easy check in the algorithm.

Lemma 4. For a TDFA game A = (2X×Y , S, s0, δ, T ) and
state s ∈ S,

1. s is a system winning state if there is Y ∈ 2Y such that
for every X ∈ 2X , δ(s,X ∪ Y ) = s′ is an accepting
transition;

2. s is a failure state if for every Y ∈ 2Y , there is X ∈ 2X

such that δ(s,X ∪ Y ) is undefined.

Informally speaking, a system winning state is a state if
all of its out-going transitions are defined, and are either ac-
cepting or leading to some winning state. To the opposite,
a system failure state is a state which has some out-going
transitions undefined, or has a part of the transitions leading
to the failure states. The next theorem shows how to use the
winning/failure state to determine the TDFA game.

Theorem 5. Given a TDFA gameA = (2X×Y , S, s0, δ, T ),
s0 is a system winning state iff the system wins the game.

The theorem can be proved by induction over the states
of TDFA based on Definition 6 and 7. Now, we present the
main theorem for our synthesis approach.

Theorem 6. For an LTLf formula φ with X and Y , let
A = (2X×Y , S, s0, δ, T ) be the corresponding TDFA game
description. s0 is a system winning state iff φ is realizable.

Proof. (⇒) Since s0 is a system winning state, there is a
system winning strategy g : (2X )∗ → 2Y such that for an
arbitrary infinite sequenceX0, X1, . . . ∈ (2X )ω , there exists
k > 0 such that the run of A on the finite trace ρ = (X0 ∪
g(ε)), (X1 ∪ g(X0)), . . . , (Xk ∪ g(Xk−1)) is an accepting
run. Therefore, ρ |= φ holds and g is the system winning
strategy.

(⇐) If φ is realizable, then there is a system winning strat-
egy g : (2X )∗ → 2Y such that for an arbitrary infinite se-
quence X0, X1, . . . ∈ (2X )ω , there exists k > 0 such that
the finite trace ρ = (X0 ∪ g(ε)), (X1 ∪ g(X0)), . . . , (Xk ∪
g(Xk−1)) satisfies φ. The run ofA on ρ is thus an accepting
run. Therefore, s0 is a system winning state with winning
strategy g.

An important question is raised, which is how to deter-
mine whether the initial state is a winning/failure state? The
classical synthesis approach (Giacomo and Vardi 2015) first
constructs the whole DFA w.r.t. the input LTLf formula, and
then performs a backward fixpoint computation. The fix-
point is initialized as the set of accepting states, visiting
which the system obviously wins the game. The fixpoint
computation then iteratively collects new states from which
the system is able to reach an already-defined winning state,
no matter how the environment behaves. The computation
terminates as soon as we reach the fixpoint, i.e., no more
winning states can be collected. The system wins the game
if the initial state s0 is in the winning set. The main draw-
back of this approach is that the winning states can only be
collected after the full DFA is obtained.

We present in this paper a new technique that is able to
collect the set of system winning states and synthesize the
system winning strategy on the fly. The algorithm Synthe-
sis, which is shown in Algorithm 1, describes the main pro-
cedure of this technique. Comments are in square brackets.
We summarize the crucial parts of the technique as follows.

The algorithm Synthesis takes a tuple (φ,X ,Y) as the in-
put and returns a set Ω which represents the winning strat-
egy if (φ,X ,Y) is realizable, or an empty set if unrealizable.
Each element of Ω is in the form of 〈s, Y, {〈X, s′〉}〉, where
s, s′ ∈ S, X ∈ 2X and Y ∈ 2Y . Each element indicates
that from state s, the system can take Y as a move, such that
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Algorithm 1 Synthesis: Compute the winning strategy on
the fly

Require: LTLf formula φ with X and Y;
Ensure: Ω = {〈s, Y, {〈X, s′〉}〉} if φ is realizable, other-

wise return ∅; [ s, s′ ∈ S, X ∈ 2X and Y ∈ 2Y ]
1: Let 〈ret,Ω〉 := preprocess(φ,X ,Y); [Check by the

pre-processing techniques at first]
2: if ret 6= unknown then
3: return Ω;
4: while true [Enumerate Y inside] do
5: 〈ω, s〉 := getTransition(φ, ∅); [Get φ ω−→ s]
6: if 〈ω, s〉 = ∅ then
7: return ∅;
8: Let φ′ := φ and r := 〈φ, Y = ω|Y , Q = {〈ω|X , s〉}〉;
9: Push r into Ω;

10: while true [Fix Y = ω|Y , enumerate X inside] do
11: if s has been generated [A loop is detected] then
12: break; [This Y cannot be a move in a winning

strategy]
13: if ω |= φ′ [An accepting transition is detected]

then
14: φ′ := φ′ ∧ (¬(ω|X )); [Enumerate X]
15: else
16: Let Ω′ := Synthesis(s,X ,Y);
17: if Ω′ 6= ∅ [s is a winning state] then
18: φ′ := φ′ ∧ (¬(ω|X )); [Enumerate X]
19: else
20: break; [The chosen Y is not a move of a win-

ning strategy]
21: 〈ω′, s′〉 := getTransition(φ′, ω|Y); [Get the tran-

sition φ ω′

−→ s′ such that ω|Y ⊆ ω′]
22: if 〈ω′, s′〉 = ∅ [Enumerating X is finished] then
23: return Ω;
24: else
25: Update r = 〈φ, Y,Q〉 by pushing 〈ω′|X , s′〉 into

Q;
26: Remove r from Ω;
27: φ := φ ∧ (¬(ω|Y)); [Enumerate Y ]

no matter how the environment chooses X ∈ 2X , the next
state s′ is also a system winning state, i.e., s X∪Y−−−→ s′ is a
transition of the TDFA and s′ is a winning state as well.

Synthesis starts with the preprocessing techniques from
Line 1 to 3. The preprocess function implements Theorem
1-3, and Synthesis returns immediately if the function suc-
ceeds to determine φ is a winning or failure state. The loop
from Line 4 to 27 aims to enumerate Y ∈ 2Y inside, and it
can terminate as long as a winning move Y for the system is
found (at Line 23). Meanwhile, the loop from Line 10 to 25
has to enumerate every X ∈ 2X before it can conclude the
fixed Y is indeed a winning move for the system. If the enu-
meration on X is not successful, another Y has to be chosen
(at Line 27) and the above process repeats.

There are two points that need to be clarified in the algo-
rithm. Firstly, if the new transition φ ω−→ s is not an accepting
transition, Synthesis will be invoked on s recursively to de-

Algorithm 2 Implementation of function getTransition

Require: LTLf formula φ and a set of literals assumption;

Ensure: 〈label, next〉 such that φ label−−−→ next is a transi-
tion of the TDFA, otherwise return ∅;

1: Let label := null, next := null;
2: Let φ := φ ∧ (

∧
assumption);

3: while true [Find label such that Y = label|Y satisfies
Y |= φ|X∪Y ] do

4: Let A = SAT(φ);
5: if A = ∅ then
6: break;
7: if A|Y |= φ|X∪Y then
8: label := L(A);
9: next := next(A);

10: break; [Y = A|Y is found]
11: φ := φ ∧ (¬

∧
A|Y);

12: φ := φ ∧ label ∧ (¬next);
13: while true [Fix label and generate the successor state of

φ in the TDFA ] do
14: Let A = SAT(φ);
15: if A = ∅ then
16: break;
17: next := next ∨ next(A);
18: φ := φ ∧ (¬(next(A)));
19: if label = null or next = null then
20: return ∅;
21: return 〈label, next〉;

termine whether s is a winning state (at Line 16). Secondly,
if a loop is detected before s can be determined as the win-
ning state for the system (at Line 11), the current chosen Y
cannot be a move in a winning strategy. Assume the run of
the TDFA is r = s, s1, . . . , s. Starting from s, the environ-
ment can have the option to induce the same run as r, in
which case the system can never win.

The Algorithm 2 is used to calculate a feasible transition
in TDFA. To enumerate X , we set the parameter assump-
tion that represents the current fixed Y . The first while loop
(from Line 3 to Line 11) aims to obtain a feasible label of
a TDFA transition. According to Theorem 3, when we get
an assignment A from the SAT solver, we check whether
A|Y |= φ|X∪Y holds (Line 7) to determine whether this
transition is feasible. The second while loop (from Line 13
to Line 18) is to calculate all possible NFA successors when
fixing the labels of the transition so as to generate the TDFA
successor. In this loop, we fix the labels each time and enu-
merate the next part of the NFA transition. If the first loop
cannot find a feasible TDFA transition, the getTransition
function returns ∅.

Let Ω = Synthesis(φ,X ,Y) and we now define the strat-
egy generator based on Ω. Notably, our strategy generator
only returns one winning strategy due to the on-the-fly con-
struction, while the approach in (Giacomo and Vardi 2015)
is able to return all possible winning strategies.

Definition 8 (Strategy Generator). The strategy generator
for the LTLf synthesis problem (φ,X ,Y) is a transducer
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Figure 2: Results on the pattern formula
U(n) = p1U(p2U(...Upn)).
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Figure 3: Results on the pattern formula
GF (n) = 2p1 ∧ (

∧
i=2···n 3pi).
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Figure 4: Results on the benchmarks
from (Bansal et al. 2020).

TA = (2X×Y , S, s0, ξ, σ) such that

• 2X×Y is the alphabet of the transducer;

• S = {s|〈s, Y, {〈X, s′〉}〉 ∈ Ω} ⊆ 22
cl(φ)

is the set of
states;

• s0 = {{φ}} is the initial state;
• ξ : S × 2X → 2S is the transition function such that
ξ(s,X) = {s′|〈s, Y, {〈X, s′〉}〉 ∈ Ω};
• σ : S → 2Y is the output function such that σ(s) =
{Y |〈s, Y, {〈X, s′〉}〉 ∈ Ω}.

Experimental Evaluation
Tools We implemented both the pre-processing and on-the-
fly synthesis techniques in the tool OLFS. We compared the
results with extant LTLf -synthesis tools SYFT (Zhu et al.
2017) and LISASYNT (Bansal et al. 2020). Both tools im-
plement the synthesis approach proposed in (Giacomo and
Vardi 2015), but are distinct from each other by using dif-
ferent complete DFA constructions, monolithic and compo-
sitional, respectively. All three tools were run with their de-
fault parameters.
Benchmarks We benchmarked the experiment with the 430
instances presented in (Bansal et al. 2020). We also se-
lect two classes of patterns U and GF , which originate
from (Rozier and Vardi 2007) and are shown in Figure 2 and
Figure 3 respectively, to test the efficiency of pre-processing
techniques.
Platform We ran the experiments on a RedHat 6.0 cluster
with 2304 processor cores in 192 nodes (12 processor cores
per node), running at 2.83 GHz with 48GB of RAM per
node. Each tool executed on a dedicated node with a timeout
of 10 minutes, measuring execution time with Unix time.
Excluding timeouts, all solvers found correct verdicts for all
formulas.
Results Figure 2 and Figure 3 show the results on the U
and GF patterns to evaluate the power of the pre-processing
techniques presented in the paper. We carefully divide the
atomic sets such that the synthesis on the U pattern formu-
las are all realizable, while the results for the GF pattern
formulas are all unrealizable. By applying Theorem 2 to syn-
thesis the U patterns, OLFS is able to achieve a linear-cost
performance. Meanwhile, SYFT and LISASYNT reach the

timeout when the pattern length n is greater than 18 (see
Figure 2). Analogously, Theorem 3 enables OLFS to gain a
linear-cost performance on the synthesis of theGF patterns,
while SYFT and LISASYNT perform exponentially worse
on such patterns (see Figure 3).

Figure 4 shows the comparison results between on-the-
fly synthesis approach and the classical one presented in
(Giacomo and Vardi 2015), represented by tools SYFT and
LISASYNT, on the 430 instances from (Bansal et al. 2020).
The figure shows that the on-the-fly approach cannot outper-
form the classical one. In total, OLFS solves 149 out of 430
instances, while SYFT and LISASYNT solve the number
of 281 and 288 respectively. There are 50 of 149 instances
for that OLFS can solve faster than the other two tools, as
shown in Figure 4. Therefore, we conclude that the on-the-
fly approach can complement rather than replace extant ap-
proaches.

The reason why current on-the-fly synthesis cannot per-
form better, is that a lot of time is consumed by TDFA state
generation. From Definition 5, each state of the TDFA be-
longs to 22

cl(φ)

, where φ is the input formula. The SAT-
based technique shown in (Li et al. 2019) is good at com-
puting transitions for the NFA, but the composition of the
non-deterministic states so as to obtain the deterministic one
is challenging computationally. We observed that most in-
stances that cannot be solved by OLFS fail due to this rea-
son. We leave the improvement of the on-the-fly state gen-
eration to future work.

Concluding Remarks

In this paper, we presented both pre-processing and on-the-
fly techniques to solve the synthesis problem of LTL over
finite traces. Compared to other methods, our approach al-
lows us to perform the synthesis by possibly just generating
partially the DFA w.r.t. the input LTLf formula. The exper-
imental results show that, (1) the pre-processing technique
can bring an exponential-better performance than existing
temporal synthesis approaches; (2) our on-the-fly synthesis
approach complements the extant ones by speeding up the
synthesis of 50 instances in the benchmark suite.
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