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Abstract

Recently, regression based conditional independence (CI) tests
have been employed to solve the problem of causal discovery.
These methods provide an alternative way to test for CI by
transforming CI to independence between residuals. Gener-
ally, it is nontrivial to check for independence when these
residuals are linearly uncorrelated. With the ability to repre-
sent high-order moments, kernel-based methods are usually
used to achieve this goal, but at a cost of considerable time.
In this paper, we investigate the independence between two
linear combinations under linear non-Gaussian structural e-
quation model (SEM). We show that generally the 1-st to 4-th
moments of the two linear combinations contain enough in-
formation to infer whether or not they are independent. The
proposed method provides a simpler but more effective way to
measure CIs, with only calculating the 1-st to 4-th moments
of the input variables. When applied to causal discovery, the
proposed method outperforms kernel-based methods in terms
of both speed and accuracy. which is validated by extensive
experiments.

Introduction
In the problem of causal discovery, statistical independence
and conditional independence (CI) tests are usually used for
checking CIs among variables. For example, in the implemen-
tation of the PC algorithm (Spirtes, Glymour, and Scheines
2000), we use independence and CI tests to remove the edges
that violate the joint distribution of given data. If two vari-
ables x and y that are conditional independent given a set
of variables Z (x, y < Z), denoted by x y y|Z, then given
Z, further knowing x (or y) does not provide any additional
information about y (or x). Therefore, we can deduce that
there is no direct causal relationship between x and y if the
faithfulness assumption holds (Pearl 2009).

In practice, independence and CI tests play a central role
in causal discovery. In constraint-based methods (Pearl and
Mackenzie 2018), the CI relationship x y y|Z allows us to
separate x−y when constructing a probabilistic model based
on the joint distribution, which results in a parsimonious rep-
resentation (Zhang et al. 2011). By using CI tests, constraint-
based methods can generally return a partial directed acyclic
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graph (DAG) (Pearl 2009). In the causal functional mod-
el (Velikova et al. 2014; Peters et al. 2012; Zhang et al. 2016),
there is a solution to infer causal directions by testing the
independence between the set of independent variables x and
the corresponding residual Rx→y (or the causal process of
P(y|x)).

Without given any assumption or precondition, CI testing
is generally more difficult than independence testing. Many
existing methods are based on explicit estimation of con-
ditional densities or their variants, or first discretizing the
conditional set Z to a set of bins, and then transforming CI to
independence in each bin (Diakonikolas and Kane 2016; Su
and White 2008). For example, the method presented in (Su
and White 2008) uses a characterization of CI, Px|yZ=Px|Z ,
to check CI by measuring the weighted Hellinger distance
between estimates of conditional density. However, due to the
curse of dimensionality, inevitably the required sample size
increases dramatically when the conditional set becomes very
large, which makes accurate estimation of conditional density
or related quantity hard to be accomplished. Consider that the
controlling set Z takes a finite number of values {z1, ..., zk},
then x y y|Z if and only if x y y|Z=zi for each value zi. Given
a sample of size n, even if the data are distributed evenly on
the values of Z, we must ensure that the independence within
each subset of the sample with the same Z value by using only
approximately n/k data points in each subset. When Z is real-
valued and Pz is continuous, or Z contains several variables,
the observed values of Z are almost surely unique. To extend
the above procedure to the continuous cases, we must infer
conditional independence using nonidentical but neighboring
values of Z. Here, “neighboring” is quantified by some dis-
tance metric, but finding neighboring points becomes more
difficult as the dimensionality of Z grows.

As kernel methods are able to represent high order mo-
ments, kernel-based CI tests were developed to solve the
above problems. In practice, mapping variables into repro-
ducing kernel Hilbert spaces (RKHSs) allows us to infer
properties of distributions, such as independence and homo-
geneity (Gretton et al. 2006). In (Fukumizu et al. 2007), the
authors proposed to use the Hilbert-Schmidt norm of the
conditional cross-covariance operator, which is a measure
of conditional covariance of the images of x and y under
the corresponding functions from RKHSs. If the RKHSs are
characteristic kernels, the zero operator norm is equivalen-
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t to x y y|Z. (Daudin 1980) presented a characterization
of CI that transforms CI to a set of zero correlations of re-
gression functions. (Zhang et al. 2011) developed a method,
called KCIT, by following this characterization of CI. They
showed that x y y|Z if and only if for all f ∈ L2

xZ and
g ∈ L2

y (L2
xZ and L2

y denote the spaces of square integrable
functions of (x,Z) and y, respectively) such that E( f̃ g̃) = 0
where f̃ (x,Z) = f (x,Z) − r f (Z) and g̃(y,Z) = g(y) − rg(Z)
(r f , rg ∈ L2

Z are regression functions). KCIT relaxes the s-
paces of functions f , g, r f and rg to RKHSs. (Doran et al.
2014) introduced the PKCIT method that utilizes permutation
to convert the CI test problem into an easier two-sample test
problem. (Strobl, Zhang, and Visweswaran 2017) used ran-
dom Fourier features to approximate KCIT. (Lee and Honavar
2017) employed a modified unbiased estimate of maximum
mean discrepancy to measure CI. Compared to discretization-
based CI testing methods, kernel methods exploit more com-
plete information of the data and incur less random error. It
was showed that causal learning based on kernel methods can
discover more accurate causalities.

Recently, regression-based tests were proposed for CI test-
ing. (Grosse-Wentrup et al. 2016) transformed the CI of
x y y|Z to independence between x− f (Z) and (y,Z). (Zhang
et al. 2017) used x − f (Z) y (y − g(Z),Z) to test x y y|Z.
These two methods infer the function f (or g) by regressing
x (or y) on Z, then relax a CI test to a set of independence
tests. One major drawback of these methods is that the in-
dependence conditions are just sufficient but not necessary
to meet CI. Note that, x − f (Z) y Z is a strong condition,
as x − E(x|Z) y Z ⇒ Z causes x in many cases (Zhang and
Hyvärinen 2009). Moreover, when the dimensionality of Z
becomes large, checking whether x − f (Z) is independent
from a set of variables (y,Z) or (y−g(Z),Z) (joint distribution)
tends to be prohibitively expensive. For example, in linear
non-Gaussian cases, we often conduct |y| + |Z| independence
tests to check whether x − f (Z) y (y,Z) holds. (Flaxman,
Neill, and Smola 2016) showed that given structural faithful-
ness and Markov assumptions (Pearl 2009), if Z causes x or
y, x y y|Z is equivalent to x− E(x|Z) y y− E(y|Z). Similarly,
here a strong condition that Z causes x or y is assumed. It can
be seen that if these conditions are given, then it is easy to
derive the corresponding causal relations.

In practice, given the faithfulness assumption, x−E(x|Z) y
y − E(y|Z) and x y y|Z have significant correlations. For
example, in (Ramsey 2014), the authors suggested to use
x − E(x|Z) y y − E(y|Z) to test x y y|Z under the faithful-
ness assumption. In (Zhang et al. 2017), the authors further
conjectured that x − f (Z) y y − g(Z) can lead to x y y|Z
under nonlinear and faithfulness conditions, where f and
g are nonlinear functions, x, y and Z are generated by non-
linear additive noise model. (Zhang, Zhou, and Guan 2018)
showed that x − E(x|Z) y y − E(y|Z) is sufficient to sup-
port x y y|Z if the data is generated by following the lin-
ear non-Gaussian structural equation model (SEM) under
the faithfulness assumption. As the residuals can be easi-
ly calculated by linear regression, the performance mainly
depends on the independence test. Note that in this case,
cov(x− E(x|Z), y− E(y|Z)) = 0 often holds. Therefore, it is d-

ifficult to detect the common component shared by x−E(x|Z)
and y − E(y|Z). To get the best performance, this method
(denoted by ReCIT) uses KCIT to achieve this goal, but it is
computationally rather demanding.

In this work, we aim to measure the independence between
the two residuals x − E(x|Z) and y − E(y|Z) in the case of
ReCIT, where x =

∑l
i=1 aisi, y =

∑l
i=1 bisi, z j =

∑l
i=1 cisi

(∀z j ∈ Z) and s1,...,l are noise mutually independent. We show
that the 1-st to 4-th moments of the two residuals contain
enough information to infer whether they are independent or
not. In general cases, the kurtosis of x − E(x|Z) + y − E(y|Z)
is not equal to that of x − E(x|Z) + r where r has the same
distribution as y−E(y|Z) and satisfies r y x−E(x|Z) and r y
y−E(y|Z). The only exception is that si is related to the causal
data generating process. However, causal functional model
requires that the distribution of noise is independent from the
causal data generating process (Zhang et al. 2016). With this
conclusion, we design an efficient independence test based on
kurtosis and correlation, instead of spending time inferring
the properties of distributions as kernel-based methods do.
Extensive experiments show that our method performs better
in testing independence, which makes ReCIT (Zhang, Zhou,
and Guan 2018) much faster and get a better performance in
causal discovery.

Independence Test Between Uncorrelated
Linear Combinations

In this work, we assume that the given variables are generated
by the linear non-Gaussian structural equation model (SEM),
which is defined as a tuple (S , P(X)) where S = {S 1, ..., S n}

is a collection of n equations, S i : xi=
∑

paxi +εi, i = {1, ..., n}
and paxi corresponds to the set of direct parents of xi in a
DAG G. The noise variables εi have a strictly positive density
with respect to the Lebesgue measure and are independent,
all of them have the same non-Gaussian distribution. SEM
reflects the data-generating processes of X in G. We say a
SEM is identifiable if it is asymmetrical in cause and ef-
fect and is able to distinguish between them. In fact, linear
SEM is generally identifiable in non-Gaussian cases. All
the identifiable and non-identifiable cases are summarized
in (Zhang and Hyvärinen 2009) (let the invertible mapping
in Post-Nonlinear causal model be identity mapping).

Consider the task as follows: given two randomly selected
nodes x′ and y′, we want to test whether x′ and y′ are condi-
tionally independent given a set of variables Z. According to
the mechanism of ReCIT (Zhang, Zhou, and Guan 2018), the
CI test of x′ y y′|Z can be relaxed to an independence test
between two residuals x = x′ − E(x′|Z) and y = y′ − E(y′|Z)
in the linear non-Gaussian case. As the residuals x and y can
be easily calculated by linear regression, the task turns to
testing the independence between x and y. Concretely, the
two variables (residuals) x and y are linear combinations of
independent noise si (i = 1, ..., l) such that x =

∑l
i=1 aisi,

y =
∑l

i=1 bisi. When x and y are correlated, we know x 6y y
holds. However, if x and y are uncorrelated, then it is difficult
to check whether x and y are independent or not. In what fol-
lows, we try to develop a low complexity method (compared
to kernel-based methods) to measure independence between
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two uncorrelated linear combinations.

Motivation
Given three linear combinations x = s1 + s2, y = s1 − s2 and
r = s3 − s4, where s1, ..., s4 are independent non-Gaussian
variables with the same distribution of zero mean. One can
see that 1) x and y are uncorrelated but not independent,
2) x and r are uncorrelated and independent, 3) y and r are
drawn from the same distribution. Assume all si are uniformly
distributed, then we can see that x + y and x + r have different
shapes of probability density function (PDF), as shown in
Fig. 1. x + y = 2s1 is still uniform distribution, while x + r =
s1 + s2 + s3 − s4 is a linear combination of four i.i.d. noise
variables, its PDF tends to be normally distributed according
to Central Limit Theorem.

Here, we use kurtosis as the descriptor of the shape of
a probability distribution. We investigate in what case the
kurtosis of x + y equals to that of x + r, i.e., Kurt(x + y) =
Kurt(x + r). We have

Kurt(x + y) − Kurt(x + r)
=Kurt(2 ∗ s1) − Kurt(s1 + s2 + s3 − s4)

=
16E(s4

1)
(var(x + y))2 −

E(
∑4

i=1 s4
i − 6

∑
i, j s2

i s2
j )

(var(x + r))2

=
16E(s4

1)
(var(x + y))2 −

4E(s4
1) + 36(E(s2

1))2

(var(x + r))2

(1)

As (var(x+y)))2 = (var(x)+var(y)−2Cov(x, y))2 and (var(x+
r))2 = (var(x)+var(r)−2Cov(x, r))2, we have (var(x+y)))2 =
(var(x + r))2. Then in Eq. (1), if Kurt(x + y) - Kurt(x + r) =
0, there must be E(s4

1) = 3(E(s2
1))2. This means Kurt(s1) =

3. That is, all the noise si have the same kurtosis as the
normal distribution. This is a very strict condition for making
Kurt(x + y) = Kurt(x + r) hold.

In practice, we have to consider a more general case that
x =
∑l

i=1 aisi, y =
∑l

i=1 bisi and R =
∑l

i=1 cisi, does there
exist a similar strict condition to make Kurt(x+y) = Kurt(x+
r)? This is exactly the motivation of this work.

Kurtosis Between Two Uncorrelated Variables
Here, we first reinstate the Darmois-Skitovitch theorem (Dar-
mois 1953; Skitovich 1953), as it is fundamental to prove the
subsequent theorem.
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Figure 1: (a) Probability density function of x + y, (b) proba-
bility density function of x + r.

Darmois-Skitovitch theorem (DST) Define two ran-
dom variables x and y as linear combinations of independent
random variables si (i = 1, ..., l), x =

∑l
i=1 aisi, y =

∑l
i=1 bisi.

Then, if x y y, all variables s j for which a jb j , 0 are
Gaussian.

This theorem means that if there exists a non-Gaussian s j
for which a jb j , 0, then x and y are dependent. We have the
following theorem:

Theorem 1. Given three linear combinations x=
∑l

i=1 aisi,
y=
∑l

i=1 bisi and r=
∑l

i=1 biei where x and y are uncorre-
lated, si, ei are independent non-Gaussian variables with
the same distribution of zero mean, there is at least one
i such that aibi , 0. If Kurt(x + y)=Kurt(x + r), then

Kurt(si) =
6
∑

a2
i b2

j−
∑

i, j(4a2
i a jb j+4b2

i b ja j+6a2
i b2

j +6aia jbib j)∑
(4a3

i bi+4b3
i ai+6a2

i b2
i ) .

Proof. Consider the kurtosis of x + y, we have

Kurt(x + y)

=
E((x + y)4)

(var(x + y))2

=
E(x4 + y4 + 4x3y + 4xy3 + 6x2y2)

(var(x + y))2 ,

(2)

Kurt(x + r)

=
E(x4 + r4 + 4x3r + 4xr3 + 6x2r2)

(var(x + r))2 ,
(3)

E(4x3r + 4xr3 + 6x2r2)

=6E(x2r2)

=6
∑

a2
i b2

j E(s2
i )E(e2

j )

=6
∑

a2
i b2

j ((E(s2
i ))2,

(4)

Therefore, if Kurt(x + y) - Kurt(x + r) = 0, the necessary
and sufficient condition is E(4x3y+4xy3 +6x2y2) = 6E(x2r2).

We can see that

E(4x3y + 4xy3 + 6x2y2)

=4E{(
∑

a3
i s3

i +
∑
i, j

a2
i a js2

i s j +
∑

i, j,k

aia jak sis jsk)
∑

bisi}

+4E{(
∑

b3
i s3

i +
∑
i, j

b2
i b js2

i s j +
∑

i, j,k

bib jbk sis jsk)
∑

aisi}

+6
∑

a2
i b2

i E(s4
i ) +
∑
i, j

a2
i b2

j E(s2
i s2

j ) + 4
∑
i, j

aia jbib jE(s2
i s2

j )

=
∑

(4a3
i bi + 4b3

i ai + 6a2
i b2

i )E(s4
i )

+
∑
i, j

(4a2
i a jb j + 4b2

i b ja j + 6a2
i b2

j + 6aia jbib j)((E(s2
i ))2

(5)
Combining Eq. (2) ∼ (5), to ensure that Kurt(x + y) =

Kurt(x + r), there must be
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E(s4
i )

(E(s2
i ))2

= Kurt(si)

=
6
∑

a2
i b2

j −
∑

i, j(4a2
i a jb j + 4b2

i b ja j + 6a2
i b2

j + 6aia jbib j)∑
(4a3

i bi + 4b3
i ai + 6a2

i b2
i )

.

(6)
�

Proposition 1. Given three random variables x, y and r that
are generated by the linear non-Gaussian structural equation
model such that x =

∑l
i=1 aisi, y =

∑l
i=1 bisi and r=

∑l
i=1 biei

where x and y are uncorrelated, si and ei are independent
with the same distribution of zero mean, there is at least
one i such that aibi , 0. If Kurt(x + y)=Kurt(x + r), then

Kurt(si) =
6
∑

a2
i b2

j−
∑

i, j(4a2
i a jb j+4b2

i b ja j+6a2
i b2

j +6aia jbib j)∑
(4a3

i bi+4b3
i ai+6a2

i b2
i ) .

It is straightforward to derive this conclusion from The-
orem 1. According to the mechanism of causal functional
model, the distribution shape of disturbance should not be
related to data generating process. This means that in the
linear non-Gaussian case, if Kurt(x + y) = Kurt(x + r), then
we generally can conclude that x is independent of y.

Proposition 2. Given three random variables x′, y′, r and
Z = {z1, ..., zm} that are generated by the linear non-Gaussian
structural equation model such that x = x′ − E(x′|Z) =∑l

i=1 aisi, y = y′ − E(y′|Z) =
∑l

i=1 bisi and r=
∑l

i=1 biei where
x and y are uncorrelated, si and ei are independent with the
same distribution of zero mean, there is at least one i such
that aibi , 0. If Kurt(x + y)=Kurt(x + r), then Kurt(si) =
6
∑

a2
i b2

j−
∑

i, j(4a2
i a jb j+4b2

i b ja j+6a2
i b2

j +6aia jbib j)∑
(4a3

i bi+4b3
i ai+6a2

i b2
i ) .

Similar to Proposition 1, this conclusion can be straight-
forwardly derived from Theorem 1. As x is the residual of
linear regression of (x′,Z), the coefficients ai and b j depend
on the linear non-Gaussian structural equation model, the 1-
st and 2-nd moments of si. Generally, it is difficult to deduce
the 4-th moment from the 1-st and 2-nd moments in linear
non-Gaussian cases, which means the distribution of noise
is related to the data generating process. That is, in general
linear non-Gaussian cases, if Kurt(x + y) = Kurt(x + r), we
can conclude that x′ − E(x′|Z) y y′ − E(y′|Z), i.e., x′ y y′|Z
if the corresponding conditions in RCIT holds.

Fast Regression Based Conditional
Independence Test

In this section, we study how to measure the difference be-
tween Kurt(x + y) and Kurt(x + r). According to DST, if x
and y are uncorrelated but not independent, they must share
at least two common noise variables. However, as we do not
know the coefficients of x and y, Kurt(x+y) can be very close
to Kurt(x + r). For example, we scale y and r by 1010 ∗ y and
1010 ∗ r respectively, then Kurt(x + y) and Kurt(x + r) have
almost the same shape of distribution.

To explain the main idea of testing independence, here
we give an example. We generate x, y and R such that x =∑l

i=1 aisi, y =
∑l

i=1 bisi, r =
∑l

i=1 biei, and u =
∑l

i=1 bie′i
where si, ei and e′i are independent disturbances. There are
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Figure 2: The curves of PCC and kurtosis with distinct ρx,y,
(a) |ρx,y| > 0.2; (b) |ρx,y| < 0.01.

at least two values of i such that aibi , 0. We scale y, r and
u by a set of weights H = {h1 = −2, ..., hm = 2}. As shown
in Fig. 2(a), in this case the PCC of x and y is ρx,y = −0.28.
We can deduce that x and y are not independent. Fig. 2(a)
shows the curves of Kurt(x + hy) and Kurt(x + hr), they are
definitely different. In the second scenario, we generate x and
y with very small ρx,y = 0.007 such that one cannot determine
whether x and y are independent or not. As shown in Fig. 2(b),
the curve of Kurt(x + hy) is still different from Kurt(x + hr).

As mentioned above, the difference between Kurt(x + hy)
and Kurt(x+hr) can be used to test CI. With these theoretical
results, we design a new method for Fast Regression based
Conditional Independence Test (FRCIT in short). The details
of FRCIT are given in Alg. 1.

We aim to test the CI of x′ y y′|Z. We first follow the
general process of RCIT, do the linear regression on (x′,Z)
and (y′,Z), and calculate the residuals x = x′-E(x′|Z) and
y = y′-E(y′|Z) (Line 1). In the second step, we generate the
data of counterparts that have the same distribution as y (like
the variables r and k shown in Fig. 2). However, the noise
variables and coefficients contained in y are unobservable.
Alternatively, we directly resample y by using permutation or
bootstrap methods, and denote the t new variables by r1, ..., rt
(Line 2). We calculate t+1 kurtosis vectors of x+hi(y, r1, ..., rt)
with different weights H = {h1, ..., hm}, these vectors are
denoted by Ky, Kr1 , ..., Krt respectively (Line 3). Ky, Kr1 , ...,
Krt are curves like those shown in Fig. 2 (a) and (b). In the
final step, we calculate the average vector of Kr1 , ..., Krt , and
denote it by K. Intuitively, if y is independent of x, the gap
between Ky and K would not be bigger than that between
Kri and K. Here, PCC is used to measure the similarity. If
ρk,ky > ρk,kri

, we return x′ y y′|Z, otherwise return x′ 6y y′|Z
(Lines 4-10).

As FRCIT is used for linear CI testing, therefore FRCIT
can be directly applied to the PC algorithm for linear causality
discovery. For more details about using regression based CI
test in the PC algorithm, the readers can refer to (Zhang,
Zhou, and Guan 2018). In the following section, we will
evaluate the performance of FRCIT in causal discovery.

Performance Evaluation
We first compare FRCIT with ReCIT (Zhang, Zhou, and
Guan 2018) by extensive simulated experiments. To the
best of our knowledge, ReCIT is one of the best CI test-
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Algorithm 1 Fast regression based conditional
independence test (FRCIT)

Input: variables: x′, y′, Z, weights: H = {h1, ..., hm}, the
number of counterparts: t.

Output: the decision of x′ y y′|Z or x′ 6y y′|Z.
1: Calculate the residuals x=(x′-E(x′|Z) and y=(y′-E(y′|Z).
2: Resample y t times, and the new variables are denoted

by r1, ..., rt.
3: Let Ky = {Kurt(x + h1y), ...,Kurt(x + hmy)} and Kri =
{Kurt(x+h1ri), ...,Kurt(x+hmri)}

4: Let K={
∑k

i=1 Kurt(x+h1ri)/m, ...,
∑k

i=1 Kurt(x+hmri)/m}
5: for ∀Kri (i = 1, ..., k) do
6: if ρK,Ky > ρK,Kri

then
7: Return x′ y y′|Z.
8: end if
9: end for

10: Return x′ 6y y′|Z

ing methods in linear cases. There are many comparison-
s among ReCIT, KCIT and other CI testing methods p-
resented in the previous works (Zhang et al. 2011, 2017;
Zhang, Zhou, and Guan 2018). We then illustrate the ad-
vantage of FRCIT in causal structure learning. We compare
our method with existing causal learning methods, includ-
ing PCReCIT , SADA-LiNGAM (Cai, Zhang, and Hao 2017)
and DirectLiNGAM (Shimizu et al. 2011), over various real-
world causal structures. Note that all these methods can dis-
tinguish Markov equivalence classes, among them PCReCIT
stands for the state of the art in these cases.

Effect of the Number of si and Sample Size
We first examine how the probabilities of Type I error (where
the CI hypothesis is incorrectly rejected) and Type II error
(where the CI hypothesis is not rejected although being false)
of FRCIT and ReCIT change with the number of noise vari-
ables involved in x and y (d = 2, ..., 6) and the sample size
(n = 500, 1000 and 2000) by simulation. Here, we consider
two cases as follows:

In Case I, x and y are independent. We generate x and y
according to the linear non-Gaussian SEM data generating
procedure: x =

∑l
i=1 ai ∗ si and y =

∑l
i=1 bi ∗ si where ai, bi ∼

U(−1,−0.2) ∪ U(0.2, 1) are different for x and y, si is i.i.d.
sampled from ∼ U(−0.5, 0.5), and aibi = 0 holds.

In Case II, x and y are dependent. Similarly, x and y are
generated by x = a1s1 + a2s2 +

∑l
i=3 ai ∗ si and y = b1s1 +

b2s2 +
∑l

i=3 bi ∗ si where ai, bi ∼ U(−1,−0.2)∪U(0.2, 1) are
different for x and y, si is i.i.d. sampled from ∼ U(−0.5, 0.5),
and aibi = 0, b2 = −a1b1/a2 hold. We can see that in this case
x and y are not correlated but x 6y y. As the controlling set Z =
∅, ReCIT uses KCIT to test the independence of x − E(x|Z)
and y − E(y|Z). This is the major difference between FRCIT
and ReCIT. In this group of experiments we aim to compare
FRCIT with ReCIT in terms of both types of error. The
significance level of ReCIT is fixed at α = 0.05. We check
how the errors change when increasing the number of si (with
aibi , 0) and the sample size n. For each parameter setting,
we randomly repeat the testing 1000 times and average their
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Figure 3: (a) Type I error rate in Case I with the ground truth
of x y y; (b) Type II error rate in Case II with the ground
truth of x 6y y.

results.
As shown in Fig. 3(a), Type I error rate of FRCIT is much

smaller than that of ReCIT, and is close to zero. As d (the
number of si) increases, the Type I error rate increases slightly.
On the other hand, the Type I error rate of ReCIT is close to
the significance level α = 0.05.

As shown in Fig. 3(b), for Case II the Type II error rate of
FRCIT is also lower than that of ReCIT. As d increases, the
Type II error rates of both FRCIT and ReCIT increases, but
FRCIT increases more slowly than ReCIT. We can also see
that the increase of sample size (from 500 to 2000) obviously
reduces the Type II error rate. Generally, it is difficult to
detect the common component between x and y in Case II,
as the sum of si makes both x and y tend to be Gaussian.

We then compare the efficiency between FRCIT and
ReCIT in terms of elapsed time.As presented in Table 1,
the elapsed time of FRCIT increases slowly with sample size,
and when the sample size is small, the elapsed time difference
between FRCIT and ReCIT is not obvious. However, the time
consumed by ReCIT is up to 30 times of that of FRCIT when
the sample size is larger than 2000.

Performance on Causal Discovery
CI tests are frequently used in causal discovery where we
usually assume that the true causal structure of n random vari-
ables x1, ..., xn can be represented by a DAG G. Concretely,
the causal Markov condition assumes that the joint distribu-
tion satisfies all CIs that are imposed by the true causal graph.
The CI testing-based methods like the PC algorithm make ad-
ditional assumption of faithfulness, i.e., the joint distribution
does not allow any CI that is not entailed by the Markov con-

Sample size Elapsed time (s)
FRCIT ReCIT

100 0.0404 0.0433
500 0.0554 0.1585
1000 0.0645 0.5108
2000 0.0970 2.9821

Table 1: Efficiency comparison between FRCIT and ReCIT.

6542



50 100 200 500 1000 2000
Sample size

0.7

0.8

0.9

1

R
ec

al
l/P

re
ci

si
on

/F
1

(a) Skeleton learning

50 100 200 500 1000 2000
Sample size

0

0.2

0.4

0.6

0.8

1

R
ec

al
l/P

re
ci

si
on

/F
1

(b) Structure learning

Figure 4: Performance comparison among PCFRCIT , PCReCIT
and PCKCIT with various sample sizes in discovering (a)
causal skeleton and (b) PDAG.

dition, and recover the graph structure by exploiting the CIs
and independence that can be found in the data. Therefore,
the performance of CI testing-based methods almost depends
on the performance of CI tests.

In this group of experiment, the datasets are generated
from a random DAG G. In particular, we sample four random
variables x1, ..., x4 and allow arrows from xi to x j only for
i < j. With probability 0.5 each possible arrow is either
present or absent. The root variables are generated by U(0, 1)
and the leaf variables xi are generated by

∑
i ai ∗ paxi + ε

where ai ∼ U(0.2, 1) and ε ∼ U(−0.2, 0.2) independent
across paxi . For significance level 0.05 and sample sizes
between 50 and 2000, we simulate 1000 DAGs and evaluate
the performance of the three methods PCFRCIT , PCReCIT and
PCKCIT on discovering causal skeleton and PDAG (including
identifiable causal directions). To save time, we employ a
faster partial correlation testing method (Cai, Zhang, and Hao
2017) before checking CI, if x and y are correlated given Z,
we output x 6y y|Z; if x and y are not correlated given Z, we
further use CI testing methods to check CI.

As shown in Fig. 4(a), when the sample size is small (e.g.
less than 500), the performances of PCFRCIT and PCReCIT
are very close to each other, and are significantly better than
PCKCIT . As the sample size increases, the performance of
PCKCIT tends be close to those of the other two method-
s. When the sample size up to 1000, the F1 curves of the
three methods tend to overlap, but the F1 of PCFRCIT is still
slightly (about 0.007) better than that of the PCReCIT and
about 0.014 better than that of the PCKCIT . As the regression
coefficient Z(ZT Z)−1ZT in FRCIT and ReCIT can be easily
calculated based on the least square method, and any possible
error is generated by marginal independence test w.r.t. two
residuals. Therefore, PCFRCIT performs significantly better
than PCReCIT in discovering causal skeleton according to the
results presented Fig. 3.

We also evaluate the three methods in discovering PDAG.
The results are presented in Fig. 4(b). We can see that
PCFRCIT achieves better result in all cases, though the perfor-
mance of PCKCIT in discovering causal skeleton is very close

to that of PCReCIT when the sample size is up to 1000. The
reason is that PCKCIT orients causal directions only based
on V-structure and consistent propagation (Pearl 2009), in
other words, returns only a set of Markov equivalence class-
es, while PCFRCIT and PCReCIT can uncover more causal
directions (for more details please refer to the Algorithm 1
presented in (Zhang, Zhou, and Guan 2018)).

Performance on Causal Structures
Here we compare PCFRCIT with three existing causal struc-
ture learning methods, including PCReCIT (Zhang, Zhou, and
Guan 2018), SADA-LiNGAM (Cai, Zhang, and Hao 2017)
and DirectLiNGAM (Shimizu et al. 2011). As all these meth-
ods can break Markov equivalence classes, we therefore can
evaluate the advantage of our method in causal direction
learning. The implementation of the three existing methods
strictly follow the corresponding original papers. All methods
are evaluated on six real-world causal network structures1

that cover a variety of applications, including insurance e-
valuation (Insurance), medicine (Alarm), decision support
system (Barley), weather forecasting (Hailfinder), system
troubleshooting (Win95pts) and expert system (Pathfinder).
These causal networks contain nodes from 22 to 109, and
have been used in many related works like SADA-LiNGAM
and ReCIT. Because there are not large-scale causal inference
problems with ground truth, simulated data on real-world
structures are used in most causal structure learning work-
s (Kalisch and Bühlmann 2007). The structures and data
generating processes are similar to those presented in (Cai,
Zhang, and Hao 2017). We use 500 samples in the experi-
ments.

The results are shown in Table 2, where for saving s-
pace in the table, PCFRCIT , PCReCIT , SADA-LiNGAM and
DirectLiNGAM are simply denoted as PCF, PCR, SL and
DL, respectively. We can see that PCFRCIT achieves the best
Recall, Precision and F1 score on almost all structures. In
many cases, the accuracy of PCReCIT is very close to that of
PCFRCIT , as the only difference between the two methods
is the independence tests. As the performance of SADA-
LiNGAM and DirectLiNGAM are heavily impacted by the
rate of S ample size

The number o f nodes , if we fix the sample size, their ac-
curacy values decrease with the number of nodes. For per-
formance comparison among PCReCIT , SADA-LiNGAM, Di-
rectLiNGAM and other causal structure learning methods,
we refer the readers to (Cai, Zhang, and Hao 2013, 2017;
Zhang, Zhou, and Guan 2018).

Performance on Real-World Gene Expression Data
In this section, we evaluate our method on real-world gene
expression data in term of causal genes identification (Ruichu
et al. 2013). This data (Golub and R. 1999) is a collection
of 72 samples from leukemia patients, with each sample
giving the expression levels of 7129 genes. According to
pathological/histological criteria, these sample include 47
type I Leukemias (called ALL) and 25 type II Leukemias
(called AML).

1http://www.bnlearn.com/bnrepository/.
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Dataset Recall Precision F1
PCF PCR SL DL PCF PCR SL DL PCF PCR SL DL

Insurance 0.79 0.71 0.73 0.63 0.69 0.61 0.66 0.81 0.74 0.65 0.69 0.71
Alarm 0.74 0.65 0.57 0.37 0.88 0.86 0.43 0.57 0.79 0.74 0.49 0.45
Barley 0.65 0.61 0.59 0.60 0.64 0.63 0.41 0.61 0.64 0.62 0.48 0.61

Hail f inder 0.72 0.68 0.53 0.40 0.75 0.67 0.51 0.50 0.74 0.68 0.52 0.44
Win95pts 0.89 0.87 0.51 0.38 0.86 0.82 0.47 0.50 0.87 0.85 0.49 0.43

Path f inder 0.96 0.96 0.89 0.50 0.62 0.61 0.39 0.34 0.76 0.75 0.54 0.41

Table 2: Performance of four causal learning methods on real-world causal structures.

Figure 5: The discovered genes distinguish ALL from AML.

We evaluate the results returned by FRCIT (combined
with PC algorithm) from two aspects:
1. How many causal genes discovered by FRCIT can be
verified by the previous works that they are really directly
related to the occurrence/treatment of human acute leukemia?
2. Can these genes differentiate AML and ALL?

There are 16 causal genes returned by FRCIT, their Gene
Accession Number (GAN) are J05243_at, M11147_at,
M11722_at, M23197_at, M55150_at, M63138_at,
M84526_at, U46499_at, X17042_at, X63097_at, X95735_at,
M31523_at, U05259_rna1_at, X98833_rna1_at, and
HG2562HT2658_s_at, respectively. According to the previ-
ous works, it can be verified that 9/16 genes are related to the
occurrence/treatment of leukemia, they are J05243_at (Zhou,
Liu, and Wong 2004), M11722_at (Sasaki et al. 1996),
M23197_at (Sievers et al. 2001), X63097_at (Gurda
and Turowska 1970), X95735_at (Wang et al. 2003),
M31523_at (Meriem et al. 2017), X98833_rna1_at (Joko
et al. 2007), U05259_rna1_at (Thompson et al. 1997) and
HG2562HT2658_s_at (Tang, Zhang, and Huang 2007),
respectively.

We presented the expression levels of the 16 discovered
causal genes in Fig. 5. The expression level of each gene is
normalized across the samples such that the mean is zero and
the standard deviation is one. For each gene, the expression
level greater than the mean is shaded in red, and that below
the mean is shaded in blue. One can see that the discovered
16 genes can distinguish ALL from AML, and there is not
any gene uniformly expressed across the class.

Conclusion

In this paper, we propose a new and fast regression based
conditional independence (CI) test method FRCIT to support
effective and efficient causality discovery under the linear
structural equation model (SEM) with non-Gaussian noise
variables. Concretely, we provide a simple way to test the
independence between two linear combinations x=x′-E(x′|Z)
and y=y′-E(y′|Z) returned by linear regression. We show that
if the kurtosis of x + y (denoted by Kurt(x + y)) equals to
that of x + r where r is drawn from the same distribution as y
and meets r y (x, y), then the distribution of noise variable in
SEM is related to the coefficients. This implies that the two
kurtosis cannot be the same in general cases or violate the
mechanism of causal functional model.

As mentioned in Proposition 2, FRCIT requires that all the
disturbances si are independent with the same distribution.
Evidently it is a strict precondition, which makes it difficult
to apply FRCIT to general cases. In future work, we aim to
remove this precondition.
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