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Abstract

Learning invariant representations is a critical first step in
a number of machine learning tasks. A common approach
corresponds to the so-called information bottleneck principle
in which an application dependent function of mutual infor-
mation is carefully chosen and optimized. Unfortunately, in
practice, these functions are not suitable for optimization pur-
poses since these losses are agnostic of the metric structure of
the parameters of the model. We introduce a class of losses for
learning representations that are invariant to some extraneous
variable of interest by inverting the class of contrastive losses,
i.e., inverse contrastive loss (ICL). We show that if the extra-
neous variable is binary, then optimizing ICL is equivalent to
optimizing a regularized MMD divergence. More generally,
we also show that if we are provided a metric on the sample
space, our formulation of ICL can be decomposed into a sum
of convex functions of the given distance metric. Our exper-
imental results indicate that models obtained by optimizing
ICL achieve significantly better invariance to the extraneous
variable for a fixed desired level of accuracy. In a variety of
experimental settings, we show applicability of ICL for learn-
ing invariant representations for both continuous and discrete
extraneous variables. The project page with code is available
at https://github.com/adityakumarakash/ICL

1 Introduction
Removing or controlling for the influence of certain observed
or unobserved extraneous variables, that may have an unin-
tended effect on a learning task, is often a critical step in
model estimation (Xie et al. 2017). Often, we want to explic-
itly control for their influence on the response variable, and
estimate model coefficients that are, roughly speaking, im-
mune to one or more confounding factors (Wasserman 2013).
These tasks involve understanding invariance properties of
data representations and/or parameters of the model we wish
to learn. While mechanisms to control for extraneous vari-
ables are not strictly necessary in typical supervised learning
tasks, where one focuses on predictive accuracy, over the last
few years, many results have indicated how it can be quite
useful (Lokhande et al. 2020). For instance, controlling the
influence of a protected attribute such as race or gender on a
response variable such as credit worthiness enables the design
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of fair machine learning models (Donini et al. 2018). Invari-
ance is also relevant in domain adaptation when analyzing
data from multiple sources or sites. Representations that are
invariant to the categorical variable (e.g., which identifies the
site) leads to models that are more immune (or less biased)
to site-specific artifacts (Zhou et al. 2018). While invariance
is prominent in a number of other settings (Baktashmotlagh
et al. 2013; Moyer et al. 2019), we will focus on learning
representations that are minimally informative of such extra-
neous variables yet preserve enough information to reliably
predict the response/target variable or label.

Related works. Classical regression analysis techniques
for handling extraneous variables based on residual scores
and ANOVA (Girden 1992) are not easily applicable for deep
neural networks. Instead, one approaches the question in one
of two ways. A common approach is to use a standalone ad-
versarial module (Xie et al. 2017) tasked with using the latent
representations of the data to predict the extraneous variable
whose influence (on the representations) we wish to remove.
If the adversary succeeds, we have not yet fully controlled for
the extraneous variable and so, the representations must be
modified. This necessitates the design of an adversary tailored
to the form of the downstream task. Further, the evaluation
of sample complexity, convergence behavior of the training
procedure, and the degree to which the representations re-
main invariant when the datasets are scaled or if an additional
confound must be controlled for, require careful treatment
and remain an active area of research (Jaiswal et al. 2019)
(Jaiswal et al. 2018). An alternative strategy is to ask for
statistical independence of the latent representations learned
by the network and the extraneous variable. For example,
one may approximately measure mutual information (Cover
1999) between the latent representations and the extraneous
variable Moyer et al. (2018). This idea as well as the use
of alternative distance and divergence measures is popular
(Li, Swersky, and Zemel 2014; Louizos et al. 2016), and in
most cases, perfectly models the innate requirements of the
task. In practice, however, their viability depends on a variety
of computational and implementation considerations, where
design/approximation choices may frequently lead to repre-
sentations where a modest adversary can successfully recover
information about the extraneous variable fairly reliably.

Moving from theory to practice. To operationalize the
statistical independence criterion described above, a sensible
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Figure 1: t-SNE plots for MNIST style experiment where
the digit label is the extraneous variable c. For existing com-
pression regularizers, increasing the regularization weight λ
results in the collapse of latent space as indicated by the plot.

modeling choice is to use mutual information (Moyer et al.
2018) and then choose a good approximation. We describe
this setting briefly to identify some practical issues that af-
fect the overall behavior: instead of minimizing the mutual
information I(z, c), where z denotes the latent representation
of the data x and c denotes the extraneous variable, we may
minimize a suitable upper bound instead as shown below

I(z, c) ≤ E[KL[q(z|x)||q(z)]]︸ ︷︷ ︸
a) Compression

−E[log(p(x|z, c))]︸ ︷︷ ︸
b) Reconstruction

(1)

The bound in (1) considers contributions from two terms:
(a) one that compresses x into z via an encoder modeled
using conditional likelihood q(z|x) (whose marginal is q(z)),
and (b) the second which reconstructs x from z and c via
a decoder p(x|z, c). Clearly, if c is available for free during
decoding, there is no reason for the model not to aggressively
compress x, while keeping just enough information content
to reliably reconstruct it during decoding. When both terms
function as intended, the balance will lead to representations
that are invariant to c, as desired.

Let us temporarily set aside the reconstruction term and
evaluate the compression term in (1) which ideally will re-
move from z the information regarding c. It is used as an
invariance regularizer and controlled using a weight parame-
ter λ as follows

λ︸︷︷︸
Weight

E[KL[q(z|x)||q(z)]]︸ ︷︷ ︸
Compression Regularizer

(2)

To minimize (2) in a computationally tractable way, one
may model q(z|x) as a Gaussian which allows (2) to be ap-
proximated using pairwise distances KL(q(z|xi), q(z|xj)),
where xi, xj are different input samples. With this assump-
tion,KL(q(z|xi), q(z|xj)) admits a closed form and roughly
translates to the difference between the means of these two
Gaussians scaled by the covariance (Wasserman 2013). For a
reasonable weighting λ, we obtain some invariance to c in z
but an adversary can still recover c from z. Increasing λ – to
improve the invariance behavior – leads to the means of the
conditionals coming closer to each other. Since the mean of
the conditional q(z|x) is used as the encoded representation
of x, this also brings the representations closer together. Note
that this compression of the means is agnostic of the extra-
neous variable c. In practice, this leads to a collapse of the

latent space and formation of clusters when the strength of
the regularizer is increased, making it easier for an adversary
to recover c from z.

An example. We illustrate the above behavior experimen-
tally using the setup of (Moyer et al. 2018) for unsupervised
representation learning in MNIST in Figure 1. We wish to
learn representations which are only informative of the style
of digits but uninformative of the digit label. We gradually
increase the strength of the compression term, via the weight
parameter λ, and evaluate its effect. Since images of the same
digits are similar to begin with, they map to representations
which are in close proximity. This means that the latent space
already has a rough grouping of representations based on the
digits. A modest increase of the compression strength causes
the inter group distances to decrease. This makes it more
difficult to distinguish one group from another and can be
seen as improving invariance – but not yet enough that an
adversary cannot recover the digit label from the representa-
tion. However, when the regularizer is increased further, we
observe that the latent representations start to form smaller
clusters associated with the variable c or collapse completely
– degrading invariance – in fact, making it easier for the ad-
versary to identify the digit class. The foregoing behavior
(see Figure 2) is not an artifact of approximation choices.

Figure 2: (Top): Representations generated by existing reg-
ularizers have some invariance for moderate weights λ, but
form clusters for large λ values. (Center): The desired behav-
ior is to spread intraclass samples and mix interclass samples
giving rise to high invariance. The proposed ICL regularizer
intuitively captures this notion. (Bottom): Existing compres-
sion regularizers are observed to let average distance between
samples decrease and do not discourage cluster formation. A
desired regularizer would assign high penalty in the collapse
region and prevent clustering.
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Consider a latent variable z and a binary variable c ∈ {0, 1}
we wish to control for. Here, we are concerned with the con-
ditional distributions p(z|c = 0) and p(z|c = 1). Let us
assume that we use a divergence D, and statistical indepen-
dence between z and c is imposed by a soft-version of the
constraint D(p(z|c = 0), p(z|c = 1)) = 0. For each value
of c, if the latent space has clusters to begin with and one
optimizes both p(z|c = 0) and p(z|c = 1) together, with
no mechanism to spread/inter-mix the representations, the
latent space may remain clustered with respect to c when
we increase the weight of the invariance term. The above
issue has less to do with how the distributional overlap is
measured and can instead be attributed to not discouraging
the formation of clusters. It seems that an explicit use of the
extraneous variable during the encoding step may provide an
effective workaround.

The basic intuition expressed above, is that x’s that pertain
to different values of c’s should map to representations z’s
which are “mixed” yet contain enough information to keep
the reconstruction error low. At the same time, representa-
tions for a specific value of c should be spread out, and not
locally collapse to a point even when the weight parameter λ
is increased.

The main contributions of this paper include (a) We pro-
pose Inverse Contrastive Loss (ICL) for learning invariant
representations inspired from the class of contrastive losses
(LeCun and Huang 2005). Our proposed loss is computation-
ally efficient as it does not require specialized solvers or addi-
tional training through adversarial modules. (b) We interpret
ICL by drawing a relation with the well studied Maximum
Mean Discrepancy (MMD) as well as energy functionals
used in dynamical systems analysis. (c) We demonstrate that
ICL provides invariant representations for not only discrete
extraneous variables but also continuous ones.

2 From Contrastive Models to Inverse
Contrastive Representation Learners

We will now briefly review concepts from the recently pro-
posed framework of Contrastive Loss (CL) functions. We
will denote our input data using tuple of random variables
(x, x−) ∈ Rd1 × Rd2 where x− is a negative sample, that is,
if x can semantically be classified as y, then x− is closer
to a different class y− 6= y. As usual, in unsupervised
learning, y, y− are not available during training. Let z (and
similarly, z−) denote the latent representation of x that may
be obtained using a feature extraction scheme like ResNet,
DenseNet or others (He et al. 2016). Finally, a CL function is
defined by `

(
zT (z+ − z−)

)
where z+ is the representation

of a sample from the same class as x and ` can be any classi-
fication loss function such as hinge, softmax etc., see Defini-
tion 2.3 in (Saunshi et al. 2019). In essence, the definition of
CL function captures the simple notion of contrastiveness
that semantically similar points should have geometrically
similar representations (Hadsell, Chopra, and LeCun 2006).
To see this, assume that ` is the logistic loss, then it is easy
to see that `

(
zT (z+ − z−)

)
is small for a high intraclass

similarity zT z+ and a low interclass similarity zT z−. We say
that a model is contrastive if it satisfies the contrastiveness

property. We will now list some basic mathematical notations
that we will use throughout the rest of the paper.

Basic Notations. For any pair of random variables
(x1, x2), we will use p(x1, x2), p(x1|x2) to denote the joint
and conditional distribution respectively. δ(x) represents the
dirac delta measure at x ∈ Rd, and the indicator function 1(·)
evaluates to 1 if the argument is true, and 0 otherwise. For a
positive definite kernel k(x, y), MMD divergence (Gretton
et al. 2006) between distributions p, q is defined as,

MMDk = E
x∼p
x′∼p

k(x, x′) + E
y∼q
y′∼q

k(y, y′)− 2 E
x∼p
y∼q

k(x, y)(3)

For z, z′ ∈ Rd, we will use d(z, z′) to be the Euclidean
norm ‖z − z′‖2 unless otherwise stated, and Nδ(z) denotes
the Euclidean ball of radius δ centered at z. For a subset
X ⊆ Rd, we will useP(X) to denote the space of probability
distributions over X .

2.1 How to Invert a CL Function to Learn
Invariant Representations?

In this section, we will define our Inverse Contrastive Loss
(ICL) that can be used to learn representations that are invari-
ant to an extraneous (random) variable c. At a high level, our
procedure consists of the following two steps:

1. Formal Inversion (FI): invert the contrastiveness prop-
erty to reflect low intraclass and high interclass similarity
by switching the role of zT z− and zT z+ via sign flip;

2. Addition of Weighted Neighborhood Kinks (AWNK):
apply an increasing function on interclass similarity zT z−
and a decreasing function on the intraclass similarity zT z+

While the two step procedure mentioned above implicitly de-
fines an Inverse CL (ICL) function, note that it is well defined
as long as the CL function is. Before we present a precise
definition of ICL, it is meaningful to see why FI+AWNK can
improve invariance to an extraneous variable.

Sufficiency of FI+AWNK. As discussed earlier in Section
1, for learning invariant representations, it is desirable that
features with similar c be spread apart in the latent space
while the features with dissimilar c be closer to each other.
FI explicitly formalizes the idea that invariance should be
better for high interclass similarity zT z− and a low intraclass
similarity zT z+. AWNK can be thought of as a disentangle-
ment step that allows us to handle interclass and intraclass
similarities appropriately. The interclass similarity zT z−
is expressed with a quadratic function similar to (Hadsell,
Chopra, and LeCun 2006). For intraclass similarity zT z+,
(Hadsell, Chopra, and LeCun 2006) suggests using a clipped
quadratic function which is inefficient for gradient based
methods because the gradient in the clipped region of the
function is always zero. In contrast, we propose to use expo-
nential loss which provides non-zero gradient values. While
other alternative functions are applicable here, we will see
shortly in Section 2.3 that the exponential loss provides a
means to draw an interesting connection between ICL and
well-studied and mature ideas like MMD divergence. To sum
up, AWNK’s role is to prevent the intraclass representations
from locally collapsing even for a wide range of values of
the regularization parameter.
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2.2 ICL – A Probabilistic Definition
From now on, we will use distance/metric d(z, z′) to measure
similarity – closer points are similar. Intuitively this can be
expressed by saying that on average features which share
similar values for extraneous variables have representations
that are further from each other, while features that have
dissimilar values for extraneous variables have closer repre-
sentation. We operationalize this intuition by inverting the
class of contrastive losses.

Definition 1. Let p(z, c) be the joint distribution for repre-
sentation variable z ∈ Z and extraneous variable c ∈ C.
Let dZ(z, z′) be the distance metric on Z and Nδ(c) denote
the δ-neighbourhood centered at c. For s(z, z′) = d2Z(z, z

′)
and f(z, z′) = exp (α− βdZ(z, z′)), β > 0, we define
ICLδα,β(z, c) : P(Z × C) 7→ R+ as

ICLδα,β(z, c) = E
(z,c)∼p(z,c)

(z′,c′)∼p(z′,c′)

[
1(c′ ∈ Nδ(c))f(z, z′) +

1(c′ /∈ Nδ(c))s(z, z′)
]

(4)

In Definition 1, Nδ(c) encodes the similarity aspect of
extraneous variables using its (underlying) geometry. A sim-
ple calculation shows that ICL functions in (4) immediately
possess two (desirable) geometrical properties by definition:
(a) whenever samples have similar extraneous value, our loss
function is specified by f(z, z′) – a decreasing function of
dZ(z, z

′); and (b) for samples with dissimilar extraneous
value, the loss is specified by s(z, z′) – an increasing func-
tion of dZ(z, z′). For the remainder of the paper, we will hide
the AWNK parameters α, β and radius δ in ICL functions (4)
whenever appropriate.

Remark 1. It turns out that optimizing ICL is equivalent to
driving a spring system to equilibrium in which samples with
similar extraneous values are connected by a push spring
while samples with dissimilar extraneous values are con-
nected by a pull spring, see (Hadsell, Chopra, and LeCun
2006). In particular, the neighborhood radius δ in our ICL
functions (4) determines the level of control exerted by these
connections in the system – a large δ forces the latent rep-
resentations to come closer while a smaller δ drives the
representation to be a bit more spread.

Handling Discrete Extraneous Variables using ICL.
The following Lemma states that definition of ICL function
in (4) is closely related to the standard MMD distance in (3).

Lemma 1 (ICL is equivalent to R-MMD). Assume that the
extraneous variable c is binary with p(c = 0) = 1/2. Then
there exist a conditionally positive definite kernel g and an in-
teraction energy functional Rw (see equation 1.1 in (Carrillo,
Lisini, and Mainini 2014)) such that the following equality
holds:

ICL(Z,C) = MMDg(p0, p1) +Rw(p0, p1), (5)

where p0 and p1 denote the conditional distributions p(z|c =
0) and p(z|c = 1) respectively.

The proof of Lemma 1 is included in the appendix.
In essence, Lemma 1 states that if c is binary, then op-
timizing ICL is equivalent to optimizing a Regularized-
MMD (R-MMD) divergence between conditional distribu-
tions p(z|c = 0) and p(z|c = 1). Recall from Section 1
that MMD(p0, p1) = 0 is a sufficient condition for statisti-
cal independence between z and c. Hence, for the special
case considered here, we see that ICL ensures statistical in-
dependence constraint using R-MMD divergence. To see
that MMDg is a valid divergence, note that the kernel g is
conditionally positive definite since it is a composition of
a laplacian kernel and a euclidean distance matrix. Please
see appendix for details on how to generalize Lemma 1 to
multiclass setting, when c is (discrete) uniformly distributed.

In practice, we are often only given access to empirical
samples of z and c. This becomes problematic for optimiza-
tion purposes since we can only evaluate the divergences ap-
proximately – approximate zeroth order oracle. In the next
section, we study the finite sample optimization properties of
R-MMD (5) using control theoretic constructions.

2.3 Exploring the Landscape of ICL Functions
using Spring Forces

The following observation establishes a link between the Rw
term in (5) and distributional interaction energy functionals
used in analyzing dynamical systems (Carrillo, Lisini, and
Mainini 2014).

Observation 1 (Significance of Rw). The regularizer
Rw(p, q) is composed of pairwise energy functional
w(x, y) ∼ f(x, y) + s(x, y) between particles of the system
(Hadsell, Chopra, and LeCun 2006). Intuitively, when input
distributions p and q are decision variables of an optimiza-
tion problem, MMDg admits a trivial solution, p = q = δ(0),
that is, p and q collapse to a single point mass. However,
this trivial solution is almost surely suboptimal for Rw (see
Figure 3a.), thus decreasing the chances of such a collapse.
Indeed, since Rw forces representations to stay apart even
when the regularizer weight is arbitrarily increased, which
suggests that Rw may be reasonable for learning invariant
representations.

Plugging in the definition ofRw (see appendix) in equation
(5) and rearranging, we have that,

ICL(z, c) =

Repulsion︷ ︸︸ ︷
E

x∼p0
x′∼p0

f(x,x′)
4

+ E
y∼p1
y′∼p1

f(y,y′)
4

+

Attraction︷ ︸︸ ︷
E

x∼p0
y∼p1

s(x,y)
2

(6)

Intuitively, (6) shows that ICL can be decomposed into two
terms: 1. Attraction s(·, ·) between interclass particles; and
2. Repulsion f(·, ·) between intraclass particles. That is, ICL
can be interpreted as modeling interclass and intraclass con-
nection between particles (representations) using two types
of springs f, s. Indeed, a similar decomposition is also pos-
sible for MMD by setting s = −k, f = k. For optimization
purposes, our choice of f and s in R-MMD immediately
yields two crucial benefits that is absent in MMD:

Benefit 1 – ICL is well suited for First Order Methods.
By definition, gradient of spring energy with respect to the
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Figure 3: (a) We plot the interaction potential for the functional Rw. The functional Rw prevents the collapse of representation
space by shifting the minima away from the trivial solution d(x, y) = 0. (b) We compare the attraction energy between ICL and
MMDf . The attraction for ICL is larger than for MMDf when the particles are farther apart. (c) We plot the repulsion energy of
ICL and MMD−s. The repulsion for ICL is larger than MMD−s when the particles are in close neighborhood.

distance d(x, y) is the sum of attraction and repulsion con-
necting two particles. ICL and MMDf differ in the attraction
spring between interclass samples. When the distance be-
tween samples d(x, y) is large, the attraction under ICL given
by ‖∇ds(x, y)‖2 is larger than the attraction under MMDf
given by ‖∇df(x, y)‖2 (Figure 3b). Furthermore attraction
‖∇ds(x, y)‖2 increases with d(x, y) while ‖∇df(x, y)‖2 de-
ceases. Hence, while using first order methods like gradient
descent, farther particles come closer faster while using ICL.

Benefit 2 – ICL prevents particles from collapsing. In
the context of learning invariant representations, ICL and
MMD−s differ in repulse-only springs between intraclass
samples. For ICL, the repulsive forces ‖∇df(x, y)‖2 be-
tween samples increases as the particles come close together
while for MMD−s the force ‖∇ds(x, y)‖2 decreases (Fig-
ure 3c). Hence, whenever gradient based methods are used
for training, ICL may be beneficial since the intraclass par-
ticles are pushed apart strongly when they are in the same
neighborhood, as desired.

ICL Optimization provides adversarially invariant
representations. It turns out that the above two benefits can
be used to prove that models obtained by optimizing ICL
derived loss can confuse adversaries. Formally, consider an
adversary b that uses representation z to predict a continuous
extraneous variable c. We will use the mean squared error
(MSE) Ez[(b(z)− c)2] to measure invariance, that is, a high
value of MSE implies high invariance (desired). The follow-
ing Lemma provides a lower bound on the MSE as a function
of ICL under standard assumptions on b.

Lemma 2. Assume that the extraneous variable c is con-
tinuous and b is L-lipschitz, and let ρ = Pc,c′(|c − c′| >
δ). Then there exists α, and ε < δ2ρ2/L2 such that for
ICLδα,β(z, c) < ε, the MSE of adversary b is lower bounded
i.e, Ez[(b(z)− c)2] ≥ (δρ− L

√
ε)2/4.

The proof of Lemma 2 is included in the appendix. Basi-
cally, Lemma 2 states that if ICL is made sufficiently small,
then no Lipschitz adversary can have an arbitrarily small
MSE as expected. We will now demonstrate the utility of
Lemma 2 for analyzing datasets used in real world applica-
tions.

3 Applications of Inverse Contrastive Loss
Many representation learning schemes are built on Variational
Auto-Encoder (VAE) based models (Kingma and Welling
2013). Recently (Cemgil et al. 2020) showed that one ef-
fective mechanism to improve adversarial robustness of rep-
resentations obtained using VAE is via data augmentation:
creating “fictive” data points. This can be thought of as pro-
viding invariance w.r.t. adversarial perturbations. However,
obtaining such perturbations might not always be possible.
While rotations, flips and crops work for natural images, this
is problematic for brain imaging data where either a cropped
brain or an image-flip that switches the asymmetrical relation-
ship between the two hemispheres is meaningless. Applying
a deformation to generate an augmented sample is defensible,
but requires a great deal of care and user involvement. Simi-
larly, deploying augmentation strategies for electronic health
records (EHR) or audio data is not straightforward. Section 2
provides us the necessary guidance to explore the use of ICL
regularizer for VAE based representation learners.

Setup. We use the setup based on Conditional VAE and
Variational Information Bottleneck (VIB) (Alemi et al. 2017)
for learning invariant representations in unsupervised and
supervised setting respectively. These frameworks have been
considered in the context of a mutual information based reg-
ularizer by (Moyer et al. 2018). Briefly, in the unsupervised
setting one learns representations z using an encoder q(z|x),
that maps data x to conditional distribution q(z|x), and a
decoder p(x|z, c) that reconstructs x from z and c. Gaus-
sian reparameterization trick allows the encoder q(z|x) to be
written as N (µ = h(x), σ(x)), where h(x) is the represen-
tation learner of interest. We augment this setup with ICL
regularizer and propose optimizing the following objective,

min
p,q

E
x,c

[
E
z
[− log p(x|z, c)] + βKL[q(z|x)||p(z)]

]
+ λ ICL(z, c) (7)

where p(z) is standard isotropic Gaussian prior.
For the supervised setting of predicting y from x we aug-

ment the VIB framework from (Alemi et al. 2017) with ICL
regularizer and propose optimizing the following objective

min
p,q
−E
x
c

[
E
z
y

log p(y|z) + βE
z
log p(x|z, c)

]
+ λ ICL (8)
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where p(y|z) is the learned prediction model.
Next, we show ICL’s wide applicability by using it with

discriminative encoders that are not based on VAE. Consider
the task of predicting y from x in presence of extraneous c.
To learn representations uninformative of c, the task is broken
down into learning an encoder h : x 7→ z and a predicter
f : z 7→ y. We add the ICL regularizer to the loss objective `
and propose optimizing

min
f,h

E
x,y

[`(f(h(x), y))] + λICL(h(x), c) (9)

h, f are generally parameterized using deep networks.
Baselines. As discussed in Section 1 invariance can be

enforced using statistical independence or using adversarial
modules. Our proposed ICL loss is compared with the follow-
ing frameworks from both these categories: (a) Unregularized
model, (b) MI regularizer (Moyer et al. 2018), (c) OT regu-
larizer, where KL term in (b) is replaced with Wasserstein
distance, (d) MMD−s (Section 2.3), (e) MMDf (Section
2.3), based on MMD (Li, Swersky, and Zemel 2014) and
(f) CAI, Controllable invariance through adversarial feature
learning (Xie et al. 2017), (g) UAI, Unsupervised Adversarial
Invariance (Jaiswal et al. 2018).

Quantifying invariance. We follow (Xie et al. 2017) and
train a three layered FC network as an adversary to predict
the extraneous variable c from latent representations z. We
report the accuracy of this adversary for discrete c and MSE
for continuous c as the adversarial invariance measure (A).

We evaluate the frameworks in terms of task accu-
racy/reconstruction error and adversarial invariance on an
unseen test set. The hyperparameter selection is done on
a validation split such that best adversarial invariance is
achieved for task accuracy within 5% of unregularized model
for supervised tasks and reconstruction MSE within 5 points
of unregularized model for unsupervised tasks. Mean and
standard deviation are reported on ten runs, except when
mentioned otherwise or quoting results from previous work.
We use Adam optimizer for model training. More details on
training and hyperparameters are provided in the appendix.
Next, we present our results grouped by the nature of model
(generative/discriminative) and the dataset.

3.1 Generative Model Families
First, we apply ICL to the family of generative models based
on VAEs. Primarily we work with the setups (7) and (8).

Learning style information in MNIST Dataset. We con-
sider the problem of learning representations that preserve
only the style information of the digit (e.g., slant of digit,
thickness of stroke etc.) while being invariant to the digit la-
bel. We use the VAE setup from (7). Results. Table 1 shows
that ICL provides the best adversarial invariance amongst
all the methods. Except for CAI, the invariance provided by
other methods are significantly worse in comparison to the
unregularized case. We reviewed this behavior in Section 1
and suspect that it is due to a high similarity between input
examples of the same digit. We also show the effect of large
regularizer weight to explain this behavior. t-SNE plots in
Figure 4 show clusters and collapse of the latent space for KL
and MMD−s. In comparison, ICL has a uniform latent space,
which partly explains why it provides better invariance.

Figure 4: We plot t-SNE for latent representations of KL,
MMD−s and ICL for MNIST style experiment. Collapsed
clusters are observed in the plots of KL, MMD−s, whereas
ICL generates a uniform latent space favoring invariance.

Learning invariant representation for Fairness
Datasets. Next, we consider the problem of learning
representations that are invariant to the extraneous variable
which may be “protected” in fair classification models.
The intuition is that such invariant features should help
downstream fair algorithms that depend on these represen-
tations. We use the Adult and German datasets (Dua and
Graff 2017) for this task. In Adult, the task is to predict if
a person has over $50, 000 in savings, and the extraneous
variable is Gender. In German, the task is to predict if a
person has a good credit score and the extraneous variable
is Age (binarized). We use the preprocessing from (Moyer
et al. 2018), and follow the VIB (8) setup. Results. For
Adult (Table 1), all methods show comparable prediction
accuracy and ICL gives the best invariance. For German,
ICL is amongst the methods with best adversarial invariance
(Table 1) and provides best predictive accuracy. Accuracy
higher than unregularized case suggests that removal of Age
assists the downstream task.

3.2 Discriminative Model Families
Next we apply ICL to discriminative models (9) which are
parameterized using a deep neural network such as ResNet18
(He et al. 2016). We seek to make representations at an inter-
nal layer of the network invariant, and so some VAE based
baselines are not directly applicable.

Invariance w.r.t. continuous extraneous attribute for
Adult Dataset. For Adult dataset, we evaluate ICL in the
context of age, a continuous c variable. Results. In Table 2,
we see that ICL provides a significantly better invariance
in comparison to the baselines. Since continuous attributes
are common in the fairness literature as well as in the con-
text of applications in scientific disciplines, we believe this
experiment shows the viability of ICL’s use in this setting.

Rotation invariance for MNIST-ROT. This is a variant
on MNIST dataset from (Jaiswal et al. 2018) where each
digit is randomly rotated by an angle ∈ {0,±22.5◦,±45◦}.
The task is to achieve invariance wrt rotation for predicting
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R: Reconstruction Error, P: Prediction Accuracy, A: Adversarial Invariance Measure
↑: Higher Value is preferred, ↓: Lower Value is preferred

MNIST Adult German MNIST-ROT ADNI

R ↓ A ↓ P ↑ A ↓ P ↑ A ↓ P ↑ A ↓ P ↑ A ↓

Unregularized 12.1± 0.5 46± 4 84± 0 84± 0 73± 2 78± 2 96± 0 42± 1 83± 3 55± 5
MI 13.2± 0.4 50± 3 84± 0 78± 2 70± 0 76± 3 96 38± 1 − −
MMD−s 15.8± 0.5 55± 5 84± 0 82± 0 73± 1 75± 2 96± 0 35± 2 85± 3 49± 3
MMDf 15.8± 0.5 50± 5 83± 0 80± 0 74± 1 78± 2 96± 0 34± 1 86± 1 57± 6
OT 14.4± 0.4 61± 3 83± 0 78± 1 72± 2 75± 3 − − − −
CAI 11.8± 0.3 48± 9 84± 0 81± 3 73± 1 75± 2 96 38 85± 2 51± 4
UAI − − 84± 0 83± 0 73± 2 75± 3 98 34 84± 3 49± 7
ICL (Ours) 16.6± 0.1 32 ± 0 83± 0 75 ± 2 75± 2 75 ± 2 96± 0 33 ± 1 84± 3 46 ± 7

Table 1: ICL achieves a better Adversarial Invariance Measure (A) relative to the baselines as indicated in bold. The Prediction
Accuracy (P) / Reconstruction Error (R) for all the methods are comparable. We include the following baselines: (a) Unregularized
setup, (b) MI (Moyer et al. 2018), (c) MMD−s, (d) MMDf , based on (Li, Swersky, and Zemel 2014), (e) OT based regularizer (f)
CAI (Xie et al. 2017) (g) UAI (Jaiswal et al. 2018). The symbol (−) indicates that the baseline was not applicable for the dataset.

the digit label. Results. In Table 1, we see that while being
comparable in predictive accuracy, ICL provides the best
adversarial invariance against rotation.

Predicting disease status while controlling for scanner
confounds (ADNI dataset (adni.loni.usc.edu)). We finally
show the effectiveness of ICL for predicting, using brain
imaging data, whether an individual has Alzheimer’s disease
(AD) or is a healthy control subject (CN). Our pre-processed
dataset consists of about 449 brain MRI scans of patients –
of note here is that because the acquisitions are performed
at different sites, the scanner manufacturers are different
(e.g., Siemens, GE) (Giannelli et al. 2010). While the pulse
sequences for the scans are standardized, because of differ-
ences in the magnetic coils and other factors, it is not realistic
for the images to be completely harmonized. If a handful
of coarse region of interest (ROI) summaries are obtained
from the images via some pre-processing methods (such as
Freesurfer), one may expect some immunity to scanner spe-
cific artifacts. But if the goal is to maximize performance
using whole brain images, it becomes difficult to discourage
an off-the-shelf CNN model from picking up scanner specific
artifacts, especially if the demographics of the subjects are
not perfectly matched across sites. Here, we use the imaging
protocol (site/scanner) as the categorical variable we wish to
control for. While more specialized models can be used if

Dataset: Adult with Age P ↑ AMSE ↑

Unregularized 83± 0 112± 1
CAI (Xie et al. 2017) 82± 2 129± 10
UAI (Jaiswal et al. 2018) 84± 0 114± 2
ICL (Ours) 83± 0 161 ± 15

Table 2: We study the continuous extraneous variable setting
with the Adult dataset and Age as the extraneous attribute. We
find that ICL attains a better Adversarial Invariance Measure
(AMSE↑) compared to the baselines applicable in this setting.

desired to further improve performance, we trained a simple
ResNet-18 based model and use the output of the last hidden
layer as the latent representation. The response variable was
disease status: AD or CN. Since the dataset is small, the re-
sults are reported over five random training validation split.
Results. We find that for this challenging setting, ICL gives
the best adversarial invariance (Table 1) while also providing
better predictive accuracy than the unregularized model.

Discussion on ICL’s use for downstream tasks: Our ex-
periments show that ICL is effective in preventing an adver-
sarial module from identifying the extraneous attribute from
the latent representations. This would prevent the downstream
models from using these extraneous features for prediction.
These representations appear to be beneficial for use within
fair algorithms. For some of our experiments, we observe
that invariance leads to improved prediction accuracy of the
downstream task. We also provide a real world application
where invariant representations help in pooling data from
multiple sites, relevant in scientific studies.

4 Conclusions

Whether for compliance with legislative policies that for-
bid preferential treatment (positive or negative) based on
protected attributes or to derive some level of immunity to
systematic variations when pooling data in a large observa-
tional study spanning participating institutions, it is clear that
the need for invariant representations within a sub-class of
problems in machine learning will continue to grow and be
broadly adopted. The form of ICL described here exhibits
a number of desirable properties and empirical behavior in
scenarios/datasets that have been described in the literature.
While contrastive losses are not new, recent results shed light
on when one may be able to characterize their performance
provably. As this literature continues to grow, at least some
of the findings will translate to and help inform additional
invariance properties afforded by ICL and its variants.
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Broader Impact
The general idea of invariant representations is closely tied to
ongoing research on fair algorithms. In that sense, ICL and
other measures for invariance can enable the design of meth-
ods with a more desirable behavior, if the protected variables
are appropriately controlled for. Such strategies can also fa-
cilitate pooling of data from multiple sites, and help answer
important scientific questions that may not be possible to
answer with small sized datasets. Controlling for undesir-
able observed variables will be an important consideration
in a number of biomedical applications where deep learning
models are getting increasingly adopted.

Appendix
Definition 2. Let p, q be two distributions and w(x, y) be
the interaction energy potential. Then the distributional inter-
action energy functional between distributions p, q is defined
as

Rw(p, q) = E
z∼p
z′∼p

w(z, z′) + E
z∼q
z′∼q

w(z, z′) + 2 E
z∼p
z′∼q

w(z, z′)

(10)
where the potential w(x, y) is chosen suitably for different
applications.

See equation 1.1 in (Carrillo, Lisini, and Mainini 2014))
for reference to interaction energy functional.

.1 Proof of Lemma 1
Proof. Recall the definition of ICL(z, c) from (4). For binary
extraneous variable c, we have Nδ(c) = {c}. Using this to
simplify 1(c′ ∈ Nδ(c)) = 1(c=c′) and 1(c′ /∈ Nδ(c)) =
1(c6=c′) and plugging in (4), we obtain

ICL(z, c) = E
(z,c)∼p(z,c)

(z′,c′)∼p(z′,c′)

1(c=c′)f(z, z
′) + 1(c6=c′)s(z, z

′)

(11)

Next we introduce the functions g and w used in the Lemma

g(z, z′) = (f(z, z′)− s(z, z′))/8 (12)

w(z, z′) = (f(z, z′) + s(z, z′))/8 (13)
Using (12) and (13) in (11) gives us

ICL(z, c)
4

= E
(z,c)∼p(z,c)

(z′,c′)∼p(z′,c′)

[(
1(c=c′) − 1(c6=c′)

)
g(z, z′)

]
+ E

(z,c)∼p(z,c)
(z′,c′)∼p(z′,c′)

[w(z, z′)]

(14)

Using law of total expectation we write (14) as
ICL(z, c)

4
= E

c∼p(c)
c′∼p(c)

[(
1(c=c′) − 1(c 6=c′)

)
E

z∼p(z|c)
z′∼p(z|c′)

[g(z, z′)]
]

+ E
c,c′∼p(c)

[
E

z∼p(z|c)
z′∼p(z|c′)

[w(z, z′)]

]

Since p(c = 0) = 1/2, and using p0 and p1 to denote the con-
ditional distributions p(z|c = 0) and p(z|c = 1) respectively,
the expectation is expanded to get
ICL(z,c) = E

z∼p0
z′∼p0

g(z, z′) + E
z∼p1
z′∼p1

g(z, z′)− 2 E
z∼p0
z′∼p1

g(z, z′)

︸ ︷︷ ︸
MMDg

+ E
z∼p0
z′∼p0

w(z, z′) + E
z∼p1
z′∼p1

w(z, z′) + 2 E
z∼p0
z′∼p1

w(z, z′)

︸ ︷︷ ︸
Rw

= MMDg(p0, p1) +Rw(p0, p1)

where Rw(p, q) is defined in (10).

.2 Generalization of Lemma 1
We next show that Lemma 1 can be generalized to multi-class
setting when c is (discrete) uniformly distributed.
Lemma 3. Assume that the extraneous variable c is discrete
with c ∈ {1, ...,m} and is uniformly distributed, p(c = i) =
1/m. Then there exist a positive definite kernel g and an
interaction energy functional Rw (see (10)) such that the
following equality holds:

ICL(z, c) =
∑

i,j∈{1,...,m},
i<j

MMDg(pi, pj) +Rw(pi, pj),

where pi denote the conditional distributions p(z|c = i).

Proof. The proof proceeds on similar lines as the proof of
Lemma 1. We introduce new functions g and w for the multi-
class setting as

g(z, z′) =
1

m2

(
f(z, z′)

m− 1
− s(z, z′)

)
(15)

w(z, z′) =
1

m2

(
f(z, z′)

m− 1
+ s(z, z′)

)
(16)

Using law of total expectation we write (11)

ICL(z, c) = E
c,c′∼p(c)

[
1(c=c′) E

z∼p(z|c)
z′∼p(z|c′)

[f(z, z′)]

+ 1(c 6=c′) E
z∼p(z|c)
z′∼p(z|c′)

[s(z, z′)]

]

=
1

m2

∑
i,j∈{1,...,m}

1(i=j) E
z∼pi
z′∼pj

f(z, z′)

+ 1(i6=j) E
z∼pi
z′∼pj

s(z, z′)
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Using (15), (16) in above and rearranging gives
ICL(z, c) =∑
i,j∈{1,..,m}

i<j

(
E

z∼pi
z′∼pi

g(z, z′) + E
z∼pj
z′∼pj

g(z, z′)− 2 E
z∼pi
z′∼pi

g(z, z′)

︸ ︷︷ ︸
MMDg

+ E
z∼pi
z′∼pi

w(z, z′) + E
z∼pj
z′∼pj

w(z, z′) + 2 E
z∼pi
z′∼pi

w(z, z′)

︸ ︷︷ ︸
Rw

)

=
∑

i,j∈{1,...,m}
i<j

MMDg(pi, pj) +Rw(pi, pj)

.3 Proof of Lemma 2
Proof. Define L(f) := E(z,c)[(b(z) − c)2] as the MSE of
adversary b. Next we introduce imaginary samples (z′, c′) ∼
p(z, c) and have following

2L(f) = 2 E
(z,c)∼p(z,c)

[(b(z)− c)2]

= E
(z,c)∼p(z,c)
(z′,c′)∼p(z,c)

[(b(z)− c)2 + (b(z′)− c′)2]

We hide the subscript in expectation to simplify the notation.

4L(f) = 2E[(b(z)− c)2 + (b(z′)− c′)2]

≥ E
[(
b(z)− c− b(z′) + c′

)2] {(a2 + b2) ≥ (a− b)2/2}

= E
[(

(c′ − c)−
(
b(z′)− b(z)

))2]
{Rearranging}

≥ E
[(
|c′ − c| − |b(z′)− b(z)|

)2]{(a− b)2 ≥ (|a| − |b|)2}

= E
[(
1(c′∈Nδ(c)) + 1(c′ /∈Nδ(c))

)
×

(
|c′ − c| − |b(z′)− b(z)|

)2]
≥ E

[
1(c′ /∈Nδ(c))

(
|c′ − c| − |b(z′)− b(z)|

)2]
= E

[(
1(c′ /∈Nδ(c))|c

′ − c| − 1(c′ /∈Nδ(c))|b(z
′)− b(z)|

)2]
≥ E

[(
1(c′ /∈Nδ(c))|c

′ − c| − 1(c′ /∈Nδ(c))|b(z
′)− b(z)|

)2]
{Using E[X2] ≥ E[X]2, E[X − Y ] = E[X]− E[Y ]}

≥ E
[(

1(c′ /∈Nδ(c))|c
′ − c| − 1(c′ /∈Nδ(c))|b(z

′)− b(z)|
)]2

≥
(
E[1(c′ /∈Nδ(c))|c

′ − c|]︸ ︷︷ ︸
I

−E[1(c′ /∈Nδ(c))|b(z
′)− b(z)|]︸ ︷︷ ︸

II

)2
(17)

We lower bound I using the encodingNδ(c) = {c′ : |c−c′| ≤
δ} as follows,

I = E[1(c′ /∈ Nδ(c))|c′ − c|]
≥ δE[1(c′ /∈ Nδ(c))] = δPc,c′(|c− c′| > δ) = δρ

(18)

Next we use the fact that ICL(z, c) < ε to obtain following
ICL(z, c) < ε

=⇒ E[1(c′∈Nδ(c))f(z, z
′) + 1(c′ /∈Nδ(c))s(z, z

′)] < ε

=⇒ E[1(c′ /∈Nδ(c))s(z, z
′)] < ε

=⇒ E[1(c′ /∈Nδ(c))d
2(z, z′)] < ε {s(z, z′) = d2(z, z′)}

=⇒ E[1(c′ /∈Nδ(c))d(z, z
′)] <

√
ε {E[X] ≤

√
E[X2]}

(19)

Since b is L-lipschitz, |b(z) − b(z′)| ≤ L d(z, z′), which
allows us to upper bound II as
II = E[1(c′ /∈Nδ(c))|b(z

′)− b(z)|]
≤ L E[1(c′ /∈Nδ(c))d(z, z

′)] {Using lipschitz definition}
< L
√
ε {Using (19)}

(20)

We choose ε such that ε < δ2ρ2/L2. Note that there exists
a α such that ICLδα,β(z, c) < ε for this choice. This allows
us to use the lower and upper bounds of I and II respectively
from (18) and (20) in (17) to give

L(f) ≥ (δρ− L
√
ε)2/4

.4 Detailed Setup for Applications
(a) Details on adversary. We follow (Xie et al. 2017) for
training the adversary used for reporting invariance. We use a
three-layered FC network with batch normalization and train
it using Adam. For the MNIST-ROT experiment, we follow
the setup of (Jaiswal et al. 2018).
(b) Evaluation methodology. We evaluate the frameworks
in terms of task accuracy/reconstruction error and adversarial
invariance on an unseen test set. The ADNI dataset is very
small and hence for this dataset we use five fold random train-
ing validation splits to report the mean and standard deviation.
For all other experiments, the mean and standard deviation
are reported on an unseen test set for ten random runs, except
when quoting results from previous works.
(c) Hyperparameter selection. The hyperparameter selec-
tion is done on a separate validation split such that on this
set the model achieves the best adversarial invariance while
the task accuracy remains within 5% of the unregularized
model for supervised tasks and within 5 points of the un-
regularized model for unsupervised tasks. For the baselines,
we grid search the best regularization weight in powers of
ten and select the one with best invariance on validation set.
For some of the experiments, we found it useful to initialize
the regularization weight to a smaller value (0.01 times the
regularizer weight) and multiplicatively update it (with factor
1.5) every epoch till it reaches the best found regularization
weight. The same update rule is used for all the baselines.
(d) ICL parameters. For identifying ICL parameters α, β
and δ, we perform simple grid search in powers of ten and
its multiples of two and five. The δ hyperparameter is only
relevant for the case of continuous extraneous attribute. For
the continuous case, we normalize the extraneous variable
to be in [0, 1] and search the δ parameter from multiples of
0.05.
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