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Abstract

Learned image compression has recently shown the poten-
tial to outperform the standard codecs. State-of-the-art rate-
distortion (R-D) performance has been achieved by context-
adaptive entropy coding approaches in which hyperprior and
autoregressive models are jointly utilized to effectively capture
the spatial dependencies in the latent representations. How-
ever, the latents are feature maps of the same spatial reso-
lution in previous works, which contain some redundancies
that affect the R-D performance. In this paper, we propose a
learned bi-resolution image coding approach that is based on
the recently developed octave convolutions to factorize the
latents into high and low resolution components. Therefore,
the spatial redundancy is reduced, which improves the R-D
performance. Novel generalized octave convolution and octave
transposed-convolution architectures with internal activation
layers are also proposed to preserve more spatial structure of
the information. Experimental results show that the proposed
scheme outperforms all existing learned methods as well as
standard codecs such as the next-generation video coding stan-
dard VVC (4:2:0) in both PSNR and MS-SSIM. We also show
that the proposed generalized octave convolution can improve
the performance of other auto-encoder-based schemes such as
semantic segmentation and image denoising.

Introduction
Deep learning-based image compression has shown the po-
tential to outperform standard codecs such as JPEG2000 and
H.265/HEVC-based BPG (Bellard 2017). These approaches
automatically discover and exploit the features of the data;
thereby achieve better compression performance compared
to traditional methods. Various learning-based image com-
pression frameworks have been proposed in the last few years
(Toderici et al. 2015; Ballé, Laparra, and Simoncelli 2016;
Rippel and Bourdev 2017; Theis et al. 2017; Agustsson et al.
2017; Johnston et al. 2017; Minnen, Ballé, and Toderici 2018;
Lee, Cho, and Beack 2018; Akbari, Liang, and Han 2019;
Akbari et al. 2020; Li et al. 2019, 2020).

In (Ballé et al. 2018), a conditional Gaussian scale mixture
(GSM)-based entropy model was introduced where the scale
parameters were conditioned on a hyperprior learned using a
hyper auto-encoder. The compressed hyper latents were trans-
mitted and added to the bit stream as side information. This
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model was extended in (Minnen, Ballé, and Toderici 2018;
Lee, Cho, and Beack 2018) where a Gaussian mixture model
(GMM) with both mean and scale parameters conditioned on
the hyperprior was utilized. In these methods, the hyperpriors
were combined with autoregressive priors generated using
context models, which outperformed BPG in terms of both
PSNR and MS-SSIM. Another context-adaptive approach
was introduced by (Zhou et al. 2019) in which multi-scale
masked convolutional networks were utilized for their autore-
gressive model combined with hyperpriors.

The state of the art in learned image compression has been
achieved by context-adaptive entropy methods in which hy-
perprior and autoregressive models are combined (Minnen,
Ballé, and Toderici 2018). These approaches are jointly op-
timized to effectively capture the spatial dependencies and
probabilistic structures of the latent representations, which
lead to a compression model with superior rate-distortion
(R-D) performance. However, similar to natural images, the
latents are usually represented by feature maps of the same
spatial resolution, which result in some spatial redundancies.
These maps can be factorized into high and low resolution
components with effective inter-resolution communication
(Chen et al. 2019), which result in less spatial redundancies
and consequently better R-D performance.

In this paper, a learned bi-resolution image coding and
entropy model is introduced in which octave convolutions
(Chen et al. 2019) are employed to factorize the latent rep-
resentations into high resolution (HR) and low resolution
(LR) components. As LR is represented by a lower spatial
resolution, the corresponding spatial redundancy is reduced
and the compression performance is improved, similar to
wavelet transforms (Antonini et al. 1992). In addition, due
to the effective communication between HR and LR compo-
nents in octave convolutions, the reconstruction performance
is also improved. In the original octave convolution (Chen
et al. 2019), fixed interpolation methods are used for down-
and up-sampling operations, which do not retain the spatial
information. So, it can negatively affect the image compres-
sion performance. In order to preserve the spatial structure
of the latents in our image coding framework, we develop
novel generalized octave convolution and octave transposed-
convolution architectures with internal activation layers.

Experiment results show that the proposed scheme out-
performs all existing learning-based methods and standard
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Figure 1. Architecture of the proposed generalized octave convolution (GoConv) shown in the left figure, and transposed-
convolution (GoTConv) shown in the right figure. Act: the activation layer; f : regular vanilla convolution; g: regular transposed-
convolution; f↓2: regular convolution with stride 2; g↑2: regular transposed-convolution with stride 2.

codecs in terms of both PSNR and MS-SSIM on the Ko-
dak dataset. The framework proposed in this work bridges
the wavelet transform and deep learning; therefore, many
techniques in the wavelet transform can be used in the pro-
posed framework to further improve its performance. This
will have profound impact on future image coding research.
In the supplementary material, we additionally show that
the proposed generalized octave convolution and transposed-
convolution architectures can improve the performance and
the computational complexity in other auto-encoder-based
computer vision tasks such as semantic segmentation and
image denoising.

Generalized Octave Convolution
In the vanilla convolution, all input and output feature maps
are of the same spatial resolution. As a result, there will be
some unnecessary redundancies, which will hurt the perfor-
mance in applications such as compression. To address this
problem, in the recently developed octave convolution (Chen
et al. 2019), the feature maps are factorized into HR and LR
components with different resolutions, where each compo-
nent is processed with different convolutions. As a result,
the resolution of LR feature maps can be spatially reduced,
which saves both memory and computation.

The factorization of input vector X in octave convolutions
is denoted by X = {XH , XL}, where XH ∈ Rh×w×(1−α)c

and XL ∈ Rh
2×

w
2 ×αc are respectively the HR and LR maps.

The ratio of channels allocated to the LR feature representa-
tions (i.e., at half of spatial resolution) is defined by α ∈ [0, 1].
The factorized output vector is denoted by Y = {Y H , Y L},
where Y H ∈ Rh′×w′×(1−α)c′ and Y L ∈ Rh′

2 ×
w′
2 ×αc

′
are

the output HR and LR maps.
In (Chen et al. 2019), intra-resolution update strategy is

used to update the information within each HR and LR, while
inter-resolution communication is performed to further en-
able information exchange between the two parts. As in filter
bank theory (Vaidyanathan 2006), the octave convolution
allows information exchange between the HR and LR feature
maps. For the intra-resolution update, the vanilla convolution
is used. However, up- and down-sampling interpolations are
applied to compute the inter-resolution communication.

As reported in (Chen et al. 2019), due to the effective inter-

resolution communications, the octave convolution can have
better performance in classification and recognition perfor-
mance compared to the vanilla convolution. Since the octave
convolution allows multi-resolution feature maps, it is very
suitable for image compression, which motivates us to apply
it to learned image compression. However, some modifica-
tions are necessary in order to get a good performance.

In the original octave convolution, the average pooling and
nearest interpolation are respectively employed for down-
and up-sampling operations in inter-resolution communica-
tion (Chen et al. 2019). Such conventional interpolations
do not preserve spatial information and structure of the in-
put feature map. In addition, in convolutional auto-encoders
where sub-sampling needs to be reversed at the decoder side,
fixed operations such as pooling result in a poor performance
(Springenberg et al. 2014).

In this work, we propose a novel generalized octave con-
volution (GoConv) in which strided convolutions are used
to sub-sample the feature vectors and compute the inter-
resolution communication in a more effective way. Fixed
sub-sampling operations such as pooling are designed to for-
get about spatial structure, for example, in object recognition
where we only care about the presence or absence of the
object, not its position. However, if the spatial information
is important, strided convolution can be a useful alternative.
With learned filters, strided convolutions can learn to handle
discontinuities from striding and preserve more spatial prop-
erties required in down-sampling operation (Springenberg
et al. 2014). Moreover, since it can learn how to summarize,
better generalization with respect to the input is achieved.
As a result, better performance with less spatial informa-
tion loss can be achieved, especially in auto-encoders where
it is easier to reverse strided convolutions. Moreover, as in
ResNet, applying strided convolution (i.e., convolution and
down-sampling at the same time) reduces the computational
cost compared to a convolution followed by a fixed down-
sampling operation (e.g., average pooling).

The proposed GoConv scheme is shown in Figure 1. Com-
pared to the original octave convolution, we apply another
important modification regarding the inputs to the inter-
resolution convolution operations. In order to calculate the
inter-resolution communication outputs (denoted by Y H→L
and Y L→H ), the input HR and LR vectors (denoted by XH
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and XL) are considered as the inputs to the HR-to-LR and
LR-to-HR convolutions, respectively (f↓2 and g↑2 in Figure
1). This strategy is only efficient for the stride of 1 (i.e., the
size of input and output HR and LR vectors is the same).
However, in GoConv, this can result in significant informa-
tion loss for larger strides. As an example, consider using
stride 2, which results in down-sampled output HR and LR
feature maps (half resolution of input HR and LR maps).
To achieve this, stride 2 is required for the intra-resolution
convolution (f in Figure 1). However, for the inter-resolution
convolution f↓2, a harsh stride of 4 should be used, which
results in significant spatial information loss.

To deal with this problem, we instead use two consecu-
tive convolutions with stride 2 where the first convolution
is indeed the intra-resolution operation f . In other words,
to compute Y H→L, we exploited the filters learned by f to
have less information loss. Thus, instead of XH and XL, we
set Y H→H and Y L→L as inputs to f↓2 and g↑2. The output
HR and LR feature maps in GoConv are then formulated as
follows:

Y H = Y H→H + g↑2(Y L→L; ΦL→H),

Y L = Y L→L + f↓2(Y H→H ; ΦH→L),

with Y H→H = f(XH ; ΦH→H),

Y L→L = f(XL; ΦL→L),

(1)

where f↓2 and g↑2 are respectively Vanilla convolution and
transposed-convolution operations with stride of 2. ΦH→H

and ΦL→L are intra-resolution and ΦL→H and ΦH→L are
inter-resolution kernels.

In original octave convolutions, activation layers (e.g.,
ReLU) are applied to the output HR and LR maps. How-
ever, as shown in Figure 1, we utilize activations for each
internal convolution performed in our proposed GoConv. In
this case, we assure that the activation functions are properly
applied to each feature map computed by convolution opera-
tions. Each of the inter- and intra-resolution components is
then followed by an activation layer in GoConv.

We also propose a generalized octave transposed-
convolution (GoTConv), which can replace the conven-
tional transposed-convolution commonly employed in deep
auto-encoder (encoder-decoder) architectures (Figure 1). Let
Ỹ = {Ỹ H , Ỹ L} and X̃ = {X̃H , X̃L} respectively be the
factorized input and output vectors, the output HR and LR
maps X̃H and X̃L) in GoTConv are obtained as follows:

X̃H = X̃H→H + g↑2(X̃L→L; ΨL→H),

X̃L = X̃L→L + f↓2(X̃H→H ; ΨH→L)

with X̃H→H = g(Ỹ H ; ΨH→H),

X̃L→L = g(Ỹ L; ΨL→L),

(2)

where Ỹ H , X̃H ∈ Rh×w×(1−α)c and Ỹ L, X̃L ∈ Rh
2×

w
2 ×αc.

Unlike GoConv in which regular convolution operation is
used, transposed-convolution denoted by g is applied for
intra-resolution update in GoTConv. For up- and down-
sampling operations in inter-resolution communication, the
same strided convolutions g↑2 and f↓2 as in GoConv are re-

spectively utilized. ΨH→H and ΨL→L are intra-resolution
and ΨL→H and ΨH→L are inter-resolution kernels.

Similar to the original octave convolution, the proposed
GoConv/GoTConv are designed and formulated as generic,
plug-and-play units. As a result, they can respectively replace
vanilla convolution and transposed-convolution units in any
CNN architecture, especially auto-encoder-based frameworks
such as image compression, image denoising, and semantic
segmentation. When used in an auto-encoder, the input image
to the encoder is not represented as a bi-resolution tensor. In
this case, to compute the first GoConv layer output in the
encoder, Equation 1 is modified as follows:

Y H = f(X; ΦH→H), Y L = f↓2(Y H ; ΦH→L), (3)

Similarly, at the decoder side, the output of the last GoT-
Conv is a single tensor representation, which can be formu-
lated by modifying Equation 2 as:

X̃ = X̃H→H + g↑2(X̃L→L; ΨL→H),

with X̃H→H = g(Ỹ H ; ΨH→H),

X̃L→L = g(Ỹ L; ΨL→L).

(4)

Compared to GoConv, the process of using activations for
each internal transposed-convolution in GoTConv is inverted,
where the activation layer is followed by inter- and intra-
resolution communications as shown in Figure 1.

Octave-Based Bi-Resolution Image Coding
Octave convolution is similar to the wavelet transform (An-
tonini et al. 1992), since it has lower spatial resolution in
LR than in HR, which can be used to improve the R-D per-
formance in learning-based image compression frameworks.
Moreover, due to the effective inter-resolution communica-
tion as well as the receptive field enlargement in octave con-
volutions, they also improve the performance of the analysis
(encoding) and synthesis (decoding) transforms.

The overall architecture of the proposed bi-resolution im-
age compression framework is shown in Figure 2. Similar
to (Minnen, Ballé, and Toderici 2018), our architecture is
composed of two sub-networks: the core auto-encoder and
the entropy sub-network. The core auto-encoder is used to
learn a quantized latent vector of the input image, while the
entropy sub-network is responsible for learning a probabilis-
tic model over the quantized latent representations, which is
utilized for entropy coding.

In order to handle bi-resolution entropy coding, we have
made several improvements to the scheme in (Minnen, Ballé,
and Toderici 2018). First, all vanilla convolutions in the core
encoder, and hyper encoder are replaced by the proposed Go-
Conv, and all vanilla transposed-convolutions in the core and
hyper decoders are replaced by GoTConv. In (Minnen, Ballé,
and Toderici 2018), each convolution/transposed-convolution
is accompanied by an activation layer. In our scheme, we
move these layers into the GoConv/GoTConv architectures
and directly apply them to the inter- and intra-resolution
components. Generalized divisive normalization (GDN) and
inverse GDN (IGDN) transforms are respectively used for the
GoConv/GoTConv employed in the proposed deep encoder
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Figure 2. Overall framework of the proposed image compression model. H-AE and H-AD: arithmetic encoder and decoder for
HR latents. L-AE and L-AD: arithmetic encoder and decoder for LR latents. H-CM and L-CM: the HR and LR context models
each composed of one 5*5 masked convolution layer with 2*M filters and stride of 1. Q: represents the additive uniform noise
for training, or uniform quantizer for the test.

and decoder, while Leaky ReLU is utilized for the hyper
auto-encoder and the parameters estimator. The convolution
properties (i.e., size and number of filters and strides) of all
networks including the core and hyper auto-encoders, context
models, and parameter estimator are the same as in (Minnen,
Ballé, and Toderici 2018).

Let x ∈ Rh×w×3 be the input image, the bi-resolution
latent representations are denoted by {yH , yL} where yH ∈
R h

16×
w
16×(1−α)M and yL ∈ R h

32×
w
32×αM are generated us-

ing the parametric deep encoder (i.e., analysis transform) ge
represented as:

{yH , yL} = ge(x; θge), (5)

where θge is the parameter vector to be optimized.M denotes
the total number of output channels in ge, which is divided
into (1 − α)M channels for HR and αM channels for LR
(i.e., at half spatial resolution of the HR part). The calculation
in Equation (3) is used for the first GoConv layer, while the
other encoder layers are formulated using Equation (1).

At the decoder side, the parametric decoder (i.e., synthesis
transform) gd with the parameter vector θgd reconstructs the
image x̃ ∈ Rh×w×3 as follows:

x̃ = gd
(
{ỹH , ỹL}; θgd

)
with {ỹH , ỹL} = Q

(
{yH , yL}

)
,

(6)

whereQ represents the addition of uniform noise to the latent
representations during training, or uniform quantization (i.e.,
round function in this work) and arithmetic coding/decoding
of the latents during the test. As illustrated in Figure 2, the
quantized HR and LR latents ỹH and ỹL are entropy-coded
using two separate arithmetic encoder and decoder.

The entropy sub-network in our architecture contains two
models: a context model and a hyper auto-encoder (Minnen,
Ballé, and Toderici 2018). The context model is an autoregres-
sive model over bi-resolution latent representations. Unlike
the other networks in our architecture where GoConv are

Figure 3. Sample HR and LR latent representations. Left
column: original image; Middle columns: HR; Right column:
LR.

incorporated for their convolutions, we use Vanilla convolu-
tions in the context model to ensure that the causality of the
contexts is not spoiled due to the intra-resolution communi-
cation in GoConv. The contexts of the HR and LR latents,
denoted by φHi and φLi , are then predicted with two separate
models fHcm and fLcm defined as follows:

φHi = fHcm(ỹH<i; θ
H
cm) and φLi = fLcm(ỹL<i; θ

L
cm), (7)

where θHcm and θLcm are the parameters to be generalized. Both
fHcm and fLcm are composed of one 5*5 masked convolution
(Van den Oord et al. 2016) with stride of 1.

The hyper auto-encoder learns to represent side informa-
tion useful for correcting the context-based predictions. The
spatial dependencies of {ỹH , ỹL} are then captured into the
bi-resolution hyper latent representations {zH , zL} using the
parametric hyper encoder he (with the parameter vector θhe)
defined as:

{zH , zL} = he
(
{ỹH , ỹL}; θhe

)
. (8)

The quantized hyper latents are also part of the generated
bitstream that is required to be entropy-coded and transmitted.
Similar to the core latents, two separate arithmetic coders
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Figure 4. Kodak comparison results of our approach with traditional codecs and learning-based image compression methods.

are used for the quantized HR and LR z̃H and z̃L. Given
the quantized hyper latents, the side information used for the
entropy model estimation is reconstructed using the hyper
decoder hd (with the parameter vector θhd) formulated as:

{ψH , ψL} = hd
(
{z̃H , z̃L}; θhd

)
with {z̃H , z̃L} = Q

(
{zH , zL}

)
.

(9)

As shown in Figure 2, to estimate the mean and scale pa-
rameters required for a conditional Gaussian entropy model,
the information from both context model and hyper decoder
is combined by another networks, denoted by fHpe and fLpe
(with the parameter vectors θHep and θLep), represented as fol-
lows:

{µHi , σHi } = fHpe
(
{ψH , φHi }; θHep

)
, (10)

{µLi , σLi } = fLpe
(
{ψL, φLi }; θLep

)
, (11)

where µHi and σHi are the parameters for entropy modelling
of the HR information, and µLi and σLi are for the LR infor-
mation.

The objective function for training is composed of two
terms: rate R, which is the expected length of the bitstream,
and distortion D, which is the expected error between the in-
put and reconstructed images. The R-D balance is determined
by a Lagrange multiplier denoted by λ. The R-D optimization
problem is then defined as follows:

L = R+ λD

with R = RH +RL,

D = Ex∼px [d(x, x̂)] ,

(12)

where px is the unknown distribution of natural images and
D can be any distortion metric such as mean squared error
(MSE) or MS-SSIM. RH and RL are the rates corresponding
to the HR and LR information (bitstreams) defined as follows:

RH = Ex∼px
[
− log2 pỹH |z̃H (ỹH |z̃H)

]
+Ex∼px

[
− log2 pz̃H (z̃H)

]
,

RL = Ex∼px
[
− log2 pỹL|z̃L(ỹL|z̃L)

]
+Ex∼px

[
− log2 pz̃L(z̃L)

]
,

(13)

where pỹH |z̃H and pỹL|z̃L are respectively the conditional
Gaussian entropy models for HR and LR latent representa-
tions (yH and yL) formulated as:

pỹH |z̃H (ỹH |z̃H , θhd, θHcm, θep) =∏
i

(
N (µHi , σ

2

i
H) ∗ U(− 1

2 ,
1
2 )
)

(ỹHi ),

pỹL|z̃L(ỹL|z̃L, θhd, θLcm, θep) =∏
i

(
N (µLi , σ

2

i
L) ∗ U(− 1

2 ,
1
2 )
)

(ỹLi ),

(14)

where each latent is modelled as a Gaussian convolved with
a unit uniform distribution, which ensures a good match be-
tween encoder and decoder distributions of both quantized
and continuous-values latents. The mean and scale parame-
ters µHi , σHi , µLi , and σLi are generated via the networks fHpe
and fLpe defined in Equations 10 and 11.

Since the compressed hyper latents z̃H and z̃L are also
part of the generated bitstream, their transmission costs are
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also considered in the rate term formulated in Equation 13.
As in (Ballé et al. 2018; Minnen, Ballé, and Toderici 2018),
to model HR and LR hyper-priors, we assume the entries to
be independent and identically distributed (i.i.d.) and fit a
univariate piecewise linear density model to represent each
channel j. The non-parametric, fully-factorized density mod-
els for the HR and LR hyper latents are then formulated as
follows:

pz̃H |ΘH (z̃H |ΘH) =
∏
j

(
pzHi |ΘH

j
(ΘH

j ) ∗ U(− 1
2 ,

1
2 )
)

(z̃Hj ),

pz̃L|ΘL(z̃L|ΘL) =
∏
j

(
pzLi |ΘL

j
(ΘL

j ) ∗ U(− 1
2 ,

1
2 )
)

(z̃Hj ),

(15)

where ΘH and ΘL denote the parameter vectors for the uni-
variate distributions pz̃H |ΘH and pz̃L|ΘL .

Experimental Results
The CLIC training set with images of at least 256 pixels in
height or width (1732 images in total) were used for training
the proposed model. Random crops of size h = w = 256
were extracted from the images for training. We set α = 0.5
so that 50% of the latent representations is assigned to the LR
part with half spatial resolution. Sample HR and LR latent
representations are shown in Figure 3.

Considering four layers of strided convolutions (with stride
of 2) and the output channel size M = 192 in the core en-
coder (Figure 2), the HR and LR latents yH and yL will
respectively be of size 16×16×96 and 8×8×96 for train-
ing. As discussed in (Ballé et al. 2018), the optimal number
of filters (i.e., N ) increases with the R-D balance factor λ,
which indicates that higher network capacity is required for
models with higher bit rates. As a result, in order to avoid
λ-dependent performance saturation and to boost the network
capacity, we set M = N = 256 for higher bit rates (BPPs
> 0.5). All models in our framework were jointly trained
for 200 epochs with mini-batch stochastic gradient descent
and a batch size of 8. The Adam solver with learning rate of
0.00005 was fixed for the first 100 epochs, and was gradually
decreased to zero for the next 100 epochs.

We compare the performance of the proposed scheme with
standard codecs including JPEG, JPEG2000 (Christopou-
los, Skodras, and Ebrahimi 2000), WebP (Google Inc. 2016),
BPG (both YUV4:2:0 and YUV4:4:4 formats) (Bellard 2017),
the VVC Test Model or VTM 5.2 (both YUV4:2:0 and
YUV4:4:4 formats) (Fraunhofer 2019), and also state-of-
the-art learned image compression methods in (Minnen,
Ballé, and Toderici 2018; Li et al. 2019; Lee, Cho, and
Beack 2018; Zhou et al. 2019). We use both PSNR and
MS-SSIMdB as the evaluation metrics, where MS-SSIMdB
represents MS-SSIM scores in dB defined as: MS-SSIMdB =
−10log10(1−MS-SSIM).

The comparison results on the popular Kodak image set
(averaged over 24 test images) are shown in Figure 4. For the
PSNR results, we optimized the model for the MSE loss as
the distortion metric d in Equation 12, while the perceptual
MS-SSIM metric was used for the MS-SSIM results reported

in Figure 4. In order to obtain the six different bit rates on
the R-D curve illustrated in Figure 4, six models with seven
different values for λ were trained.

As shown in Figure 4, our method outperforms the stan-
dard codecs such as BPG and VTM (4:2:0) as well as the
state-of-the-art learning-based image compression methods
in terms of both PSNR and MS-SSIM. Our method achieves
≈0.25dB lower PSNR than VTM (4:4:4). However, com-
pared to VTM (4:2:0), the proposed approach provides
≈0.12dB better PSNR at lower bit rates (bpp < 0.5) and
≈0.5-1dB better PSNR at higher rates.

One visual example from the Kodak image set is given
in Figure 5 in which our results are qualitatively compared
with JPEG2000 and BPG (4:4:4 chroma format) at 0.15bpp.
As seen in the example, our method provides the highest
visual quality compared to the others. JPEG2000 has poor
performance due to the ringing artifacts. The BPG result is
smoother compared to JPEG2000, but the details and fine
structures are not preserved in many areas, for example, the
patterns of red feathers on the right bird’s chest.

Ablation Study
In order to evaluate the performance of different components
of the proposed framework, we perform some ablation studies
reported in Table 1. The reported PSNR, MS-SSIM, and
Inference Time are averaged over Kodak image set. The
Inference Time includes the entire encoding and decoding
time. All the models have been optimized for MSE distortion
metric (for one single bit-rate), test with both PSNR and
MS-SSIM metric.

LR Ratio: in order to study varying choices of the ratio
of channels allocated to LR maps, we tested our model with
three different ratios α ∈ {0.25, 0.5, 0.75}. As summarized
in Table 1, compressing 50% of the LR part to half the reso-
lution (i.e., α = 0.5) results in the best R-D performance at
0.345bpp (where the contributions of HR and LR latents are
0.276bpp and 0.069bpp). As the ratio decreases to α = 0.25,
less compression with a higher bit rate of 0.445bpp (0.410bpp
for HR and 0.035 for LR) is obtained, while no significant
gain in the reconstruction quality is achieved. Although in-
creasing the ratio to 75% provides a better compression with
0.309bpp (high: 0.132bpp, low: 0.176bpp), it significantly re-
sults in a lower PSNR. As indicated by the number of floating
point operations per second (FLOPs) in the table, larger ratio
results in a faster model since less operations are required for
calculating the LR maps with half spatial resolution.

Position of activation layers: in this scenario (denoted by
ActOut), as in the original octave convolution (Chen et al.
2019), we apply GDN to the output HR and LR maps in
GoConv, and IGDN before the input HR and LR maps for
GoTConv. As the results indicate, the proposed scheme with
internal activations (α = 0.5) provides a better performance
(with ≈0.27dB higher PNSR) since all internal feature maps
corresponding to the inter- and intra- communications are
benefited from the activation function.

Octave-based core auto-encoder: the proposed bi-
resolution model utilizes GoConv/GoTConv units for both
latents and hyper latents. In order to study the effectiveness
of bi-resolution modelling of hyper latents, we also report
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(a) Original (b) Ours (0.149bpp, 35.30dB, 15.25dB) (c) BPG (0.151bpp, 33.96dB, 14.44dB) (d) J2K (0.151bpp, 32.59dB, 13.43dB)

Figure 5. Kodak visual example (bits-per-pixel, PSNR, MS-SSIMdB).

α = 0.25 α = 0.5 α = 0.75 ActOut CoreOct OrgOct
BPP

(HR / LR)
0.445

(0.410 / 0.035)
0.345

(0.276 / 0.069)
0.309

(0.132 / 0.176) 0.346 0.339 0.338

PSNR (dB) 32.38 32.35 31.35 32.08 31.86 28.92
MS-SSIM (dB) 15.26 15.25 15.08 14.99 14.34 12.37

FLOPs (G) 16.57 13.69 11.04 12.98 11.51 8.84

Table 1. Ablation study of different components in the proposed framework. BPP: bits-per-pixel (HR/LR: BPPs for HR and LR
latents). ActOut: activation layers moved out of GoConv/GoTConv; CoreOct: proposed GoConv/GoTConv only used for the
core auto-encoder; OrgOct: GoConv/GoTConv replaced by original octave convolutions.

the results in which GoConv/GoTConv are only used for
the core auto-encoder latents (denoted by CoreOct). To deal
with the HR/LR latents resulted from the bi-resolution core
auto-encoder, we used two separate networks (similar to
(Minnen, Ballé, and Toderici 2018) with Vanilla convolu-
tions) for each of the hyper encoder, and hyper decoder. A
PSNR gain of≈0.49dB is achieved when both core and hyper
auto-encoders benefit from the proposed bi-resolution model.

Original octave convolutions: in this experiment, the per-
formance of the proposed GoConv/GoTConv architectures
compared with the original octave convolutions (denoted by
OrgOct) is analyzed. We replace all GoConv layers in the pro-
posed framework (Figure 2) by original octave convolutions.
For the octave transposed-convolution used in the core and
hyper decoders, we reverse the octave convolution operation
formulated as follows:

X̃H = g(Ỹ H ; ΨH→H) + upsample(g(Ỹ L; ΨL→H), 2),

X̃L = g(Ỹ L; ΨL→L) + g(downsample(Ỹ H , 2); ΨH→L),
(16)

where {Ỹ H , Ỹ L} and {X̃H , X̃L} are the input and output
feature maps, and g is vanilla transposed-convolution. Similar
to the octave convolution defined in (Chen et al. 2019), aver-
age pooling and nearest interpolation are respectively used
for down- and up-sampling operations. As reported in Table
1, OrgOct provides a significantly lower performance than
the architecture with the proposed GoConv/GoTConv, which
is due to the fixed sub-sampling operations incorporated for
its inter-resolution components. The PSNR and MS-SSIM

of the proposed architecture are respectively ≈3.43dB and
≈2.88dB higher than Org-Conv at the same bit rate. Com-
pared to the other models, OrgOct has the lowest complexity
with respect to FLOPs. Note that the ratio α = 0.5 was used
for the ActOut, CoreOct, and OrgOct models.

Conclusion

In this paper, we propose a new learned bi-resolution image
compression and entropy model with octave convolutions
in which the latents are factorized into HR and LR compo-
nents, and the LR is stored at lower resolution to reduce the
spatial redundancy. To preserve the spatial structure of the
input, novel generalized octave convolution and transposed-
convolution architectures denoted by GoConv/GoTConv are
introduced. Our experiments show that the proposed method
significantly improves the R-D performance and achieves the
new state-of-the-art learned image compression, which even
outperforms VTM (4:2:0) in PSNR.

Our method bridges the wavelet transform and deep
learning-based image compression, and allows many tech-
niques in the wavelet transform research to be applied to
learned image compression. This will lead to many other
research topics in the future. We also show the benefit of the
proposed GoConv/GoTConv in other CNN-based computer
vision applications, particularly auto-encoder-based schemes
such as image denoising and semantic segmentation.
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