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Abstract

Recent advancements in the field of deep learning have
dramatically improved the performance of machine learn-
ing models in a variety of applications, including computer
vision, text mining, speech processing and fraud detection
among others. Mini-batch gradient descent is the standard al-
gorithm to train deep models, where mini-batches of a fixed
size are sampled randomly from the training data and passed
through the network sequentially. In this paper, we present a
novel algorithm to generate a deterministic sequence of mini-
batches to train a deep neural network (rather than a random
sequence). Our rationale is to select a mini-batch by minimiz-
ing the Maximum Mean Discrepancy (MMD) between the al-
ready selected mini-batches and the unselected training sam-
ples. We pose the mini-batch selection as a constrained opti-
mization problem and derive a linear programming relaxation
to determine the sequence of mini-batches. To the best of our
knowledge, this is the first research effort that uses the MMD
criterion to determine a sequence of mini-batches to train a
deep neural network. The proposed mini-batch sequencing
strategy is deterministic and independent of the underlying
network architecture and prediction task. Our extensive em-
pirical analyses on three challenging datasets corroborate the
merit of our framework over competing baselines. We fur-
ther study the performance of our framework on two other
applications besides classification (regression and semantic
segmentation) to validate its generalizability.

Introduction
Deep learning algorithms automatically learn a discrimi-
nating set of features and have depicted impressive perfor-
mance in a variety of applications. Architectures such as
Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNs), Generative Adversarial Networks
(GANs) etc., have revolutionized multimedia computing and
have achieved state-of-the-art performance across a wide
range of applications, including image recognition (He et al.
2016a), object detection (Ren et al. 2017), image segmen-
tation (Badrinarayanan, Kendall, and Cipolla 2015) and
speech recognition (Deng and Platt 2014) among others.
Conventionally, deep neural networks (DNNs) are trained
using stochastic gradient descent (SGD), where the back-
propagation algorithm is used to compute the gradients. A
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given training set D is split into a sequence of mini-batches
{b1, b2, . . . bn} each of a pre-determined size k, where bt is
sampled at random from D. A loss function L(wt) (such as
the cross-entropy loss) is defined with respect to the current
model parameters wt (at time instance t) and is designed to
operate on each mini-batch. The updated network weights,
wt+1 at time t + 1, are obtained by minimizing the loss ac-
cording to SGD:

wt+1 = wt − λt
∂L(wt)

∂wt
(1)

where λt is the learning rate at time t. Earlier research ef-
forts have established that the selection of the mini-batch bt
that is used to compute the gradient ∂L(wt)

∂wt
at time step t is

crucial to improving the generalization performance of the
model, motivating the development of intelligent sampling
techniques to progressively select the training mini-batches
(Joseph et al. 2019; Loshchilov and Hutter 2016). In this
paper, we propose an algorithm to generate a determinis-
tic sequence of mini-batches to train a deep neural network.
Our rationale is to select the mini-batch bt such that the data
distribution represented by bt and the already selected mini-
batches, is closest to the distribution represented by the uns-
elected training samples. In other words, the exemplar sam-
ples from the training data are selected progressively to form
the training mini-batches, which can potentially improve the
generalization performance of the deep model.

We use the Maximum Mean Discrepancy (MMD) metric
(Gretton et al. 2007; Borgwardt et al. 2006; Sriperumbudur
et al. 2010) to compute the probability distribution differ-
ence between two sets of training samples. MMD is defined
as the difference between the means of two distributions af-
ter mapping them onto a Reproducing Kernel Hilbert Space
(RKHS). It has been successfully used in a variety of appli-
cations to compute the distribution difference between train-
ing and test data, particularly in the development of trans-
fer learning and active learning algorithms (Chattopadhyay
et al. 2013a; Wang and Ye 2013; Chattopadhyay et al. 2012,
2013b; Venkateswara et al. 2017; Tang and Huang 2019).
We use this metric to formulate an optimization problem to
select a mini-batch B containing k samples from the set of
unselected training samples Q, such that the probability dis-
tribution difference between Q\B and P ∪ B (where P is
the set of already selected mini-batches) is minimized. Our
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contributions in this paper are summarized below:
• we leverage the MMD metric to derive a sequence of

mini-batches to train a deep learning model; to the best
of our knowledge, this is the first research effort that uses
MMD to select mini-batches for training a DNN

• our mini-batch sequencing strategy is deterministic and
independent of the underlying network and prediction
task (classification / regression / semantic segmentation
etc.). This property is particularly useful as it enables us
to determine the mini-batch sequence for a given training
data without the need to be meticulously knowledgeable
about the task or the optimal deep model for the task

• we conduct an extensive set of experiments to study the
performance of our framework against competing base-
lines on three challenging datasets; we also study the ef-
fect of batch size, kernel functions and the performance of
our framework on regression and semantic segmentation,
to validate its generalizability.

Related Work
In this section, we present a survey of mini-batch sampling
algorithms for training deep neural networks. Existing re-
search in this area can be broadly categorized into three
groups:

Importance Sampling: Importance sampling aims at in-
creasing the convergence speed of SGD by reducing the
variance of the gradient estimates. Zhao and Zhang (Zhao
and Zhang 2015) established that the optimal sampling dis-
tribution is directly related to the absolute values of the
gradient of the samples, for convex objective functions.
The simplicity of the optimization problems permitted the
authors to sample proportionally to the norm of the in-
puts. Unfortunately, such simple importance measures do
not exist for deep learning and requires clusters of GPU
workers just to compute the sampling distribution (Alain
et al. 2015). Researchers have therefore resorted to manu-
ally tuned sampling schemes for training DNNs. Loss-based
sampling techniques have also been explored (Loshchilov
and Hutter 2016; Schaul et al. 2016) which maintain a his-
tory of loss values of training points and sample either pro-
portionally to the loss or based on the loss ranking. One
of the major drawbacks of these techniques is the need to
tune a large number of hyper-parameters. Katharopoulos
and Fleuret (Katharopoulos and Fleuret 2018) proposed an
importance sampling scheme based on the upper bound of
the gradient norm. The same authors (Katharopoulos and
Fleuret 2017) also proposed to use the loss itself as the im-
portance metric rather than the gradient norm and proved
that the loss can be used to create a tighter upper bound to
the gradient norm than uniform sampling. However, as ev-
ident from the algorithms, both these sampling techniques
are dependent on the architecture of the network.

Submodular Optimization and DPP: Recently, sub-
modular optimization and determinantal point process
(DPP) based techniques have been explored to generate
mini-batch sequences for training a DNN. These methods
are based on the intuition that mini-batches with high rep-
resentativeness / diversity can contribute to better training

of the deep neural network; they therefore attempt to select
the informative and exemplar training samples progressively
in the mini-batches. Joseph et al. (Joseph et al. 2019) pro-
posed a submodular optimization framework for selecting
mini-batches, which was based on maximizing the uncer-
tainty, diversity, mean closeness and feature match scores of
the samples in a mini-batch. Wang et al. (Wang et al. 2019)
also leveraged submodular optimization strategies and pro-
posed a hierarchical robust partitioning framework to gen-
erate a sequence of training mini-batches. A mini-batch se-
lection strategy based on DPPs was proposed by Zhang et
al. (Zhang, Kjellstrom, and Mandt 2017), which encourages
selection of mini-batches with diverse data samples. Along
similar lines, the authors also proposed a sampling scheme
based on Repulsive Point Processes (RPPs) to reduce the
variance of the gradient estimator (Zhang et al. 2018). How-
ever, both these techniques are computationally inefficient,
as noted in (Joseph et al. 2019; Wang et al. 2019).

Other Sampling Techniques: A few other relevant tech-
niques are summarized in this section. Wu et al. proposed
a simple margin-based loss, which encourages all positive
samples in a batch to be within a specific distance of each
other, rather than being as close as possible (Wu et al. 2017).
Fan et al. used reinforcement learning to train a neural net-
work to select training samples for a target network to opti-
mize the convergence speed (Fan et al. 2017). While the em-
pirical results were promising, the computational overhead
of training two deep networks was a major drawback of this
method. There have been a few research efforts to accelerate
the convergence of SGD through variance reduction (Allen-
Zhu 2018; Defazio, Bach, and Lacoste-Julien 2014; Lei et al.
2017). However, these algorithms do not focus on mini-
batch selection and demonstrate performance worse than
simple SGD in general (Katharopoulos and Fleuret 2018).
Curriculum learning (Bengio et al. 2009) and its evolution
self-paced learning (Kumar, Packer, and Koller 2010) is an-
other class of methods related to importance sampling which
present the classifier with easy samples first (that are likely
to have a small loss) and gradually introduce harder samples.

Contrary to most of these methods, our batch selection
method is independent of the learning objective and the
network architecture; the mini-batch sequence can be pre-
computed independently for a given learning task. It also
does not require extensive hyper-parameter tuning and is
based on solving a linear programming (LP) problem. We
now describe our framework.

Proposed Framework
Maximum Mean Discrepancy
Our framework is based on the intuition that mini-batches
which progressively include the exemplar and informative
training samples contribute to better training of the deep
neural network (Joseph et al. 2019; Loshchilov and Hutter
2016). Let P denote the set of training samples that have
already been selected to form the mini-batches and Q de-
note the set of unselected training samples from the training
dataset D. Let nP and nQ be the number of samples in the
sets P and Q respectively; then we have, nP + nQ = N ,
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the total number of samples in D. Our objective is to select
the next mini-batch B containing k samples from Q. The
rationale of our framework is to select B in such a way that
the joint probability distribution Prob(X,Y ) represented by
P∪B is maximally similar to that represented byQ\B. This
would imply that the selected training samples is a good rep-
resentation of the unselected training samples, or in other
words, the exemplar samples fromQ have been selected into
the batch B. Since all the training samples are assumed to
be derived from the same probability distribution, the condi-
tional probability distribution Prob(Y |X) remains the same
for P ∪B andQ\B. Thus, ensuring similar joint distribution
reduces to ensuring similar marginal distribution Prob(X)
between the two sets P ∪B and Q\B.

The Maximum Mean Discrepancy (MMD) is a statisti-
cal metric to compute the difference in marginal probabil-
ity between two distributions (Gretton et al. 2007; Borg-
wardt et al. 2006; Sriperumbudur et al. 2010). It is com-
puted as the difference between the empirical means of the
two distributions after mapping onto a Reproducing Ker-
nel Hilbert Space (RKHS). Let A = {a1, a2, . . . , an1} and
B = {b1, b2, . . . , bn2} be two sets of samples drawn ran-
domly from a target population. An empirical estimate of
MMD between A and B is obtained as (Borgwardt et al.
2006): ∥∥∥∥∥ 1

n1

n1∑
i=1

φ(ai)−
1

n2

n2∑
i=1

φ(bi)

∥∥∥∥∥
2

H

(2)

whereH is a universal RKHS (Steinwart 2001) and φ : X →
H is a mapping from the input space X to the RKHSH. Our
goal is therefore to select a mini-batchB such that the MMD
between the sets P ∪B and Q\B is minimized.

Mini-batch Selection Framework
We define a loss function f(.) to compute the utility of a
batch of samples B, which captures the MMD between the
two sets P ∪B and Q\B:

f(B) =

∥∥∥∥∥∥ 1

nP + k

∑
i∈P∪B

φ(xi)−
1

nQ − k
∑

i∈Q\B

φ(xi)

∥∥∥∥∥∥
2

H
(3)

We define a binary vector m ∈ {0, 1}nQ×1 of size nQ,
which denotes which samples from Q should be selected in
the mini-batch B. If mi = 1, it implies that sample xi in Q
should be selected in the batch; ifmi = 0, then xi should not
be selected. With this definition, minimizing the loss func-
tion f(B) can be posed as the following optimization prob-
lem:

min
m

∥∥∥∥∥∥ 1

nP + k

∑
i∈P

φ(xi) +
∑
i∈Q

miφ(xi)


− 1

nQ − k
∑
i∈Q

(1−mi)φ(xi)

∥∥∥∥∥∥
2

H

s.t. mi ∈ {0, 1}, ∀i and
nQ∑
i=1

mi = k (4)

where 1 is a vector of size nQ with all entries 1 and k is the
pre-specified mini-batch size. The first summation in Equa-
tion (3) can be split into two terms (summing over the sets
P and Q) using the binary variable m, as only the samples
in Q that are selected in B by m will contribute to the first
summation. Similarly, the second summation can be run en-
tirely overQ as the coefficient (1−mi) will ensure that only
the samples that are not selected in the batch B contribute to
the second summation. Thus, the objectives in Equations (3)
and (4) are equivalent. The constraints respectively denote
that m is a binary vector and the sum of all elements on
m is k, as we are allowed to select only k samples in the
mini-batch B. Using the properties of RKHS (Wang and Ye
2013), the objective can be simplified as follows:

min
m

mT Φ1m− φT2m+ φT3m

s.t. mi ∈ {0, 1}, ∀i and
nQ∑
i=1

mi = k (5)

where the matrix Φ1 and the vectors φ2 and φ2 are defined
as follows (T denotes the vector transpose operator):

Φ1(i, j) = φ(xi, xj), where (xi, xj) ∈ Q, ∀i, j

φ2(i) =
nP + k

N

nQ∑
j=1

φ(xi, xj), where (xi, xj) ∈ Q, ∀i, j

φ3(i) =
nQ − k
N

nP∑
j=1

φ(xi, xj), where xi ∈ Q, xj ∈ P, ∀i, j

(6)

We note here that the kernel evaluations are all performed
in order, that is, the first sample in Q produces the first row
of Φ1 and so on. This is because each entry in the vector m
corresponds to a particular sample in Q, which necessitates
a correspondence between the samples in Q and the rows of
the kernel matrix and vectors.

Due to the binary integer constraints on m, we can com-
bine Φ1, φ2 and φ3 into a single matrix Z ∈ <nQ×nQ and
rewrite the optimization problem in Equation (5) as follows:

min
m

mTZm

s.t. mi ∈ {0, 1}, ∀i and
nQ∑
i=1

mi = k (7)

where the matrix Z is constructed as follows:

Z(i, j) =

{
Φ1(i, j), if i 6= j

Φ1(i, j)− φ2(i) + φ3(i), if i = j
(8)

This is an integer quadratic programming problem (IQP);
the binary integer constraints on m make this IQP NP-hard.
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An Efficient LP Relaxation
We define a binary matrix W ∈ <nQ×nQ as wij = mi.mj .
We thus rewrite the optimization problem in Equation (7) as:

min
m,W

∑
i,j

zijwij

s.t. wij = mi.mj

mi, wij ∈ {0, 1}, ∀i, j
nQ∑
i=1

mi = k (9)

We now attempt to write the quadratic equality wij =
mi.mj as a linear term. From the definition, wij will be
equal to 1 when both mi and mj are 1 and will be 0 oth-
erwise. Note that we are solving a minimization problem,
where the coefficient matrix Z can have both positive and
negative entries (as evident from Equation (8)). We make
the following observations:

• When zij < 0, the quadratic equality wij = mi.mj is
equivalent to the linear inequality−mi−mj + 2wij ≤ 0.
A simple analysis of the inequality reveals that when mi

andmj are both 0 or, one of them is 0 and the other one is
1,wij is forced to be 0. When bothmi andmj are 1,wij is
free to be 0 or 1. However, we are solving a minimization
problem, where the objective is

∑
i,j zijwij and zij < 0;

thus the nature of the problem will force wij to be 1, as
that will produce a better (lower) value of the objective.

• When zij ≥ 0, the quadratic equality wij = mi.mj is
equivalent to the linear inequality mi + mj ≤ 1 + 2wij .
When both mi and mj are 1, wij is forced to be 1. When
both mi and mj are 0 or, one of them is 0 and the other
one is 1,wij is free to be 0 or 1. However, we are solving a
minimization problem, where the objective is

∑
i,j zijwij

and zij ≥ 0; thus the nature of the problem will force wij

to be 0, as that will produce a better (lower) value of the
objective. Thus, the quadratic equality and the linear in-
equalities produce the exact same values of wij for all
possible values of mi and mj for both these cases, show-
ing their equivalence.

We can therefore simplify the problem in Equation (9) as:

min
m,W

∑
i,j

zijwij

s.t. −mi −mj + 2wij ≤ 0 for zij < 0

mi +mj ≤ 1 + 2wij for zij ≥ 0

mi, wij ∈ {0, 1}, ∀i, j
nQ∑
i=1

mi = k (10)

This is an integer linear programming (ILP) problem (as
both the objective function and the constraints are linear in
the variables), equivalent to the IQP in Equation (7). We re-
lax the integer constraints into continuous constraints and
use an off-the-shelf LP solver to solve this problem. After

Algorithm 1 The Proposed MMD-based Mini-batch Selec-
tion Algorithm

Require: Training dataD withN samples, already selected
set of training samples P , set of unselected training
samples Q, mini-batch size k, kernel function φ(., .)

1: Compute the matrix Φ1 and the vectors φ2 and φ3 as
shown in Equation (6)

2: Compute the matrix Z as shown in Equation (8)
3: Solve the LP problem in Equation (10) after relaxing the

integer constraints
4: Round the solution to derive the vector m
5: Select the next mini-batch B from Q based on the en-

tries in m

obtaining the continuous solution, we recover the integer so-
lution of our variable of interest m, using a greedy approach
where the k highest entries in m are reconstructed as 1 and
the other entries as 0. This vector m dictates which samples
in Q should be selected in the next mini-batch. The pseudo-
code is summarized in Algorithm 1 (for one mini-batch se-
lection iteration).

As evident from the algorithm, our framework does
not require any knowledge of the network architecture or
the prediction task; the mini-batch sequence can be pre-
computed independently for any given learning problem.
Computation of the kernel matrix Φ1 (Equation (6)) has
quadratic complexity and can be challenging for large
datasets. We note that Φ1 needs to be computed just once for
the entire training setD. When training samples are selected
from D into P , the corresponding rows and columns can be
deleted from Φ1 to get an updated kernel matrix for the un-
selected training samples. Moreover, the theory of random
projections (Vempala 2004) and advanced data structures
such as KD-trees can be used to efficiently compute this ma-
trix (this will be investigated as part of future research). Our
framework is easy to implement, does not need extensive
hyper-parameter tuning, and is thus a promising candidate
for practical applications.

Experiments and Results
Datasets and Experimental Setup
We conducted extensive experimental evaluations to study
the performance of the proposed MMD formulation for
mini-batch selection in training deep neural networks, the
effects of mini-batch size, kernel functions and its generaliz-
ability across deep learning architectures and learning tasks.
We compared the performance of our framework against
three baseline methods: (i) Random Sampling, where mini-
batches are sampled randomly from the training data (as
done conventionally); (ii) the submodular mini-batch se-
lection framework (Joseph et al. 2019); and (iii) the DPP
based sampling strategy (Zhang, Kjellstrom, and Mandt
2017). These methods were selected as comparison base-
lines, as they share the same intuition as the proposed al-
gorithm: mini-batches which progressively include the ex-
emplar training samples contribute to better training of the
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Figure 1: Performance comparison of the Proposed, Submodular, DPP and Random Sampling techniques on MNIST, CIFAR-
10 and SVHN datasets. The x-axis denotes the epoch number and the y-axis denotes test error (in percentage) / test loss. Best
viewed in color.

Method Random DPP Submod Proposed
MNIST

Mean Error 0.60 6.68 1.53 0.60
Final Error 0.58 0.55 0.67 0.57
Mean Loss 0.02 0.41 0.05 0.02
Final Loss 0.01 0.02 0.02 0.01

CIFAR-10
Mean Error 5.82 5.52 8.13 5.78
Final Error 5.46 5.57 5.82 5.25
Mean Loss 0.21 0.21 0.30 0.21
Final Loss 0.19 0.19 0.21 0.19

SVHN
Mean Error 5.45 5.62 5.29 5.28
Final Error 5.07 4.84 4.48 4.76
Mean Loss 0.24 0.25 0.22 0.24
Final Loss 0.23 0.22 0.19 0.22

Table 1: Mean and final test error (in percentage) and test
loss values over 35 epochs for all the methods and all the
datasets. The best values are shown in bold.

deep neural network. The results of Random Sampling were
averaged over 3 runs.

We studied the performance of our framework on three
benchmark datasets: MNIST (LeCun et al. 1998), CIFAR-
10 (Krizhevsky 2009) and SVHN (Netzer et al. 2011). The
train / test splits given in each of these datasets were used
in our experiments. ResNet-18 (He et al. 2016b) was used

as the backbone network architecture. The implementations
were all performed in Matlab R2019b running on a work-
station equipped with an NVIDIA Quadro RTX5000 GPU
with 16GB memory. The pre-trained models were obtained
from the Matlab Deep Learning Toolbox 1. The L2 regu-
larizer was used with regularization parameter 0.0005. We
used 0.001 as the initial learning rate and reduced it by a fac-
tor of 0.1 every 10 epochs. The stochastic gradient descent
with momentum (SGDM) was used as the optimizer, where
the momentum parameter was set at 0.9. All the experiments
were run for 35 epochs with a mini-batch size of 50. A Gaus-
sian kernel with parameter 1 was used in the MMD compu-
tations.

Results
The results are presented in Figure 1 and Table 1. The gen-
eralization performance of the network, computed by its test
error and test loss, was used as the evaluation metric. As
evident from the mean and final error and loss values in
the table, the proposed algorithm always depicts equal or
better performance than Random Sampling. Thus, selecting
mini-batches sequentially by minimizing the MMD between
the already selected mini-batches and the unselected training
samples, either outperforms or depicts similar performance
as the conventional method of selecting the mini-batches at
random, both in terms of generalization error and loss. The
Submodular selection method sometimes depicts very good

1https://www.mathworks.com/help/deeplearning/index.html?
s tid=CRUX gn documentation
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performance (such as the SVHN dataset, where it achieves
the lowest error and loss); however, it is not consistent across
the datasets in its performance. The DPP technique demon-
strates good performance on the CIFAR-10 dataset, where
it achieves the lowest error and loss; but, for MNIST and
SVHN, it depicts a much slower decrease in generalization
error and loss over training epochs, as compared to the other
methods. The proposed MMD based framework consistently
depicts impressive performance across all the datasets; the
generalization error and loss decrease steadily over the train-
ing epochs for our algorithm. This is further validated from
Table 1 where the MMD-based mini-batch sampling tech-
nique achieves the best results in 7 out of the 12 experiments,
and the second best results in the remaining 5 experiments.
More importantly, as noted in previous research, the DPP
based selection strategy generates a non-deterministic mini-
batch sequence (Joseph et al. 2019; Wang et al. 2019); the
Submodular subset selection method is also dependent on
the network architecture (Joseph et al. 2019). Our algorithm
is based on a kernel matrix computation, followed by solving
an LP problem; it thus generates a deterministic sequence of
representative mini-batches, that is independent of the pre-
diction task and model, corroborating its usefulness in prac-
tical applications.

Study of Mini-Batch Size
The goal of this experiment was to study the performance
of the mini-batch size on the learning performance. The re-
sults with mini-batch size 64, 80 and 100 on the SVHN
dataset are shown in Figure 2. The proposed algorithm is
compared against the conventional method of selecting the
mini-batches randomly from the training data. We note that
MMD based selection outperforms Random Sampling con-
sistently across all training mini-batch sizes; the perfor-
mance improvement is more evident for larger batch sizes.
This shows the consistency of our framework across differ-
ent mini-batch sizes.
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Figure 2: Effect of mini-batch size on learning performance.
Best viewed in color.

Study of Kernel Function
The effect of kernel function (used in computing the MMD)
on the learning performance was studied in this experiment.

Figure 3 depicts the results of Gaussian kernel (with spread
1 and 0.5) and polynomial kernel (with degrees 2 and 3)
against Random Sampling, on the SVHN dataset. Random
Sampling depicts marginally better performance than Gaus-
sian kernel with spread 0.5, but is outperformed by all the
other kernel parameter settings. Thus, the proposed MMD
based batch selection framework outperforms random selec-
tion of training batches for a variety of common kernels.

0 5 10 15 20 25 30
Epochs

4.5

5

5.5

6

6.5

7

7.5

8

Te
st

 E
rr

or

Study of Kernels: SVHN dataset

Random
Gaussian s = 1
Gaussian s = 0.5
Polynomial d = 2
Polynomial d = 3

Figure 3: Effect of kernels on learning performance. Best
viewed in color.

Performance using Other Deep Learning
Architectures
The objective of this experiment was to study the perfor-
mance of the proposed framework across different common
deep learning architectures. The results on the CIFAR-10
dataset using the AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) and GoogleNet (Szegedy et al. 2015) architectures
are depicted in Figures 4(a) and 4(b) respectively. The re-
sults depict a similar pattern as Figure 1(b), with the MMD
based mini-batch selection showing overall lower general-
ization error for both the architectures. This shows the con-
sistency of our framework across different commonly used
deep learning architectures.

Performance on Other Learning Tasks
To study its generalizability across learning tasks, we ap-
plied the proposed MMD based mini-batch selection frame-
work on a regression problem. The IMDB-Wiki dataset,
which contains facial images with age labels of celebrities
from the IMDB and Wikipedia databases (Rothe, Timofte,
and VanGool 2018) was used for this experiment. We used
7000 samples for training and 3000 samples for testing. The
last layer of ResNet was replaced with a single node for the
regression application. The results are presented in Figure
5. We note that our framework consistently depicts a lower
value of RMSE compared to Random Sampling across all
the training epochs. This highlights the merit of our deter-
ministic mini-batch sequencing algorithm, which can oper-
ate without any knowledge of the underlying prediction task
or the network architecture to be used for that task.
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Figure 4: Performance using other deep learning architec-
tures. Best viewed in color.

We also validated the performance of our framework on
semantic image segmentation. The CamVid dataset (Bros-
tow et al. 2008) popularly used in image segmentation re-
search was used in this experiment. A DeepLab v3+ network
was created based on ResNet-18 and we used 421 images
for training and 140 images for testing 2. We grouped mul-
tiple classes from the original dataset to reduce the number
of classes from 32 to 11. The pixelwise error over all classes
and across all the test images was used as the evaluation met-
ric in this experiment. The results are presented in Figure 6.
The proposed framework depicts competitive performance
as Random Sampling, further corroborating its usefulness in
real-world applications.

Conclusion and Future Work
In this paper, we proposed an algorithm to generate a deter-
ministic sequence of mini-batches to train a deep neural net-
work. Our framework is based on minimizing the probability
distribution difference (computed using the MMD) between
the selected mini-batches and the unselected training sam-
ples. The mini-batch selection was reduced to an NP-hard
IQP, which was shown to be equivalent to a linear program-

2https://www.mathworks.com/help/vision/examples/semantic-
segmentation-using-deep-learning.html
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Figure 5: Performance on a regression application (facial age
estimation). Best viewed in color.

0 5 10 15 20 25 30
Epochs

10

15

20

25

30

Te
st

 E
rr

or

CamVid

Random
Proposed

Figure 6: Performance on semantic image segmentation.
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ming problem. Our mini-batch sequencing framework is de-
terministic and does not depend on the underlying network
architecture or the prediction task in question. Our extensive
experimental studies corroborated the promise and potential
of the framework to improve the generalization capabilities
of deep neural networks, over the conventional method of
randomly selecting the sequence of training mini-batches.

As part of future work, we plan to study the performance
of our framework on other types of deep learning architec-
tures such as region-based CNNs (RCNNs), recurrent neu-
ral networks (RNNs) and generative adversarial networks
(GANs). We will also explore other strategies to solve the
optimization problem in Equation (7) and derive perfor-
mance bounds on the quality of the solutions.
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