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Abstract

In the absence of external rewards, agents can still learn use-
ful behaviors by identifying and mastering a set of diverse
skills within their environment. Existing skill learning meth-
ods use mutual information objectives to incentivize each
skill to be diverse and distinguishable from the rest. However,
if care is not taken to constrain the ways in which the skills
are diverse, trivially diverse skill sets can arise. To ensure use-
ful skill diversity, we propose a novel skill learning objective,
Relative Variational Intrinsic Control (RVIC), which incen-
tivizes learning skills that are distinguishable in how they
change the agent’s relationship to its environment. The re-
sulting set of skills tiles the space of affordances available to
the agent. We qualitatively analyze skill behaviors on multi-
ple environments and show how RVIC skills are more useful
than skills discovered by existing methods when used in hier-
archical reinforcement learning.

Introduction
Deep reinforcement learning (RL) methods have demon-
strated the ability to successfully learn to achieve a task de-
fined by a reward function in a variety of domains (Sutton
and Barto 1998; Mnih et al. 2015; Silver et al. 2017a,b).
However, the knowledge obtained by an RL agent is usually
highly specific to the particular task it was trained on, and is
not well suited towards transfer or generalization (Whiteson
et al. 2011; Cobbe et al. 2019).

In contrast, humans can obtain and maintain repurposable
knowledge about their environments and how they can be-
have in them, even in the absence of an explicit end goal or
reward. We maintain sets of skills that can transfer from one
task to the next. For example, we can learn a general skill
to throw an object and we can apply slightly modified ver-
sions of that skill in different contexts to enable us to throw
a paper airplane, a baseball, or a water balloon.

Mutual information based skill discovery methods such as
Variational Intrinsic Control (VIC) (Gregor, Rezende, and
Wierstra 2017) and Diversity Is All You Need (DIAYN)
(Eysenbach et al. 2019) offer a promising direction for in-
creasing practical applicability of deep reinforcement learn-
ing methods to real-world problems. By first learning useful
skills purely from intrinsic rewards, agents can repurpose the
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learned skills to solve more challenging downstream tasks
specified by extrinsic rewards.

These methods rely on the idea of inverse predictability
for skill learning, i.e. that it should be possible to infer the
skill used to generate a trajectory from the states in the tra-
jectory. This requires each skill to be distinguishable from
the others, ensuring a diverse set of skills. The condition-
ing of the inverse predictor varies from relying on any state
along the trajectory in DIAYN to using the whole trajectory
in VALOR (Achiam et al. 2018). We focus on a common in-
termediate case, introduced by VIC, where the inverse pre-
dictor relies on the first and last states in the trajectory.

In practice, these inverse predictability objectives are of-
ten trivial enough to achieve using only information from
the end of the trajectory that they ignore given information
about the beginning of the trajectory. This results in a set of
skills that simply partitions the state space based on where
the agent ends up at the end of each skill. We argue that
this behavior is undesirable because it limits the usefulness
(in terms of transferability and generalizability) of the skill
set. A set of skills which each correspond to a specific target
state (or a small cluster of nearby target states) is limited to
only ever going between those specific regions of the state
space.

In this paper, we propose a way of acquiring more com-
posable and generalizable skills, making note that a skill’s
behavior should differ depending on the current state of the
agent. For example, the skills an agent is afforded while sit-
ting on an airplane with a fastened seatbelt are different than
the skills afforded on a spacious football field. However,
skills should generalize between different areas of the state
space; picking up a dropped pen on the airplane and picking
up a football are in a sense the same skill, but performing the
”picking up” skill doesn’t arrive at the same target state in
both cases. After performing the skill, the agent’s new state
should be on the plane with a pen in hand and on the field
with a football in hand, respectively. In other words, the final
state that the skill arrives at should depend on both the skill
itself and the agent’s initial state.

To incentivize more meaningfully diverse skill sets, we
propose a new skill learning method, Relative Variational
Intrinsic Control (Relative VIC / RVIC) that utilizes two
inverse predictors: one which relies on the first and last
states of the trajectory and one that only relies on the last
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state to predict the skill. Incentivizing the agent to maxi-
mize predictability with respect to the former and minimize
predictability with respect to the latter, skills are forced to
be relative to the agent’s state at the beginning of the skill,
guarding against state space partitioning. Instead, RVIC
skills partition the space of affordances (Gibson 1977)– that
is, they are diverse in the way that they change the agent’s
relationship to its environment.

In this paper, we introduce the Relative VIC skill learning
method, qualitatively examine the skills on several domains,
and show that they are more useful in a hierarchical RL set
up than skills learned by existing methods.

Background
We consider a skill-conditional policy πθ(·; Ω) which maps
states s to a distribution over actions a. In this work, we
will assume that Ω is discrete although the algorithms can
also be applied to continuous skills. We will train this policy
on episodes wherein we sample a skill Ω uniformly from
the set of available skills and follow it for a fixed number of
steps, T . We refer to the states s0, . . . , sT and corresponding
actions a1, . . . , aT as a skill trajectory or a skill episode.

Gregor, Rezende, and Wierstra (2017) introduced the idea
of discovering skills by maximizing the mutual information
between Ω and sT , the final state of a skill trajectory, condi-
tioned on the first state s0. Their approach, known as Vari-
ational Intrinsic Control (VIC), relies on the well known
lower bound of Barber and Agakov (2004) on the mutual
information. When applied to the VIC objective, the lower
bound takes the form

I(sT ,Ω|s0) = H(Ω|s0)−H(Ω|sT , s0)

≥ H(Ω|s0) + EΩEs0,sT∼πΩ
log qφ(Ω|sT , s0)

(1)

where q is a variational distribution. Following Eysenbach
et al. (2019), we assume that skills Ω are sampled from
a fixed distribution. Optimizing this objective involves two
separate optimization steps. The first performs gradient as-
cent on log qφ(Ω|sT , s0) with respect to variational param-
eters φ. This corresponds to training q to be an inverse pre-
dictor which can infer the skill Ω used to generate the skill
episode from the first and final states. The second optimiza-
tion step involves optimizing the parameters of the skill-
conditional policy πθ(·; Ω) using a reinforcement learn-
ing algorithm with a sparse reward that is proportional to
log qφ(Ω|sT , s0) at time T and zero for all other time steps1.

Relative Variational Intrinsic Control
A drawback of the VIC approach is that, given sufficient tra-
jectory lengths, it tends to yield skills which partition the
state space with respect to their terminal states. When this
occurs, the inverse predictor q learns to ignore the initial
state s0 and infers skills based only on the final state sT
while the skill-conditioned policy learns to go to a different
unique state for each skill Ω.

1Note that we omit the constant additive term that derives from
the entropy of the skill prior.

Figure 1: Relative VIC: A skill-conditioned policy interacts
with the environment yielding a sampled trajectory. Two
skill predictors are trained to predict the skill from the first
and last states of the trajectory and only the last state in the
trajectory respectively. The difference between the proba-
bility assigned by the predictors to the skill used to gener-
ate the trajectory is given to the policy as reward to incen-
tivize learning a set of skills that is diverse in how each skill
changes the agent’s relationship to the environment.

This can be explained by noting that the entropy of the
skill given the final state is an upper bound on the entropy of
the skill given the full trajectory:

0 ≤ H(Ω|sT , s0) ≤ H(Ω|sT ), (2)

so conditioning on the initial state will not increase the mu-
tual information if the skills are perfectly predictable from
just the final state. In large or infinite environments, there
are no shortage of diverse (yet potentially meaningless) final
states from which to perfectly predict skills, driving the VIC
objective to collapse into state-space partitioning.

Inspired by this observation, we introduce a second in-
verse predictor, qabs

ψ (Ω|sT ), which is trained to predict a
skill’s identity from the final state of the trajectory alone. We
dub this predictor qabs because it can only base its predic-
tions on the “absolute” state of the environment upon skill
termination, while q can make use of the agent’s initial state
in order to utilize information about the final state relative to
the initial state. We then train the policy adversarially with
respect to this secondary objective: we reward discriminabil-
ity by q while simultaneously punishing discriminability by
qabs.

Minimizing the difference of these predictors also has its
own information theoretic interpretation. If both predictors
perfectly estimate their respective conditional distributions,
then the optimization process amounts to maximizing the
mutual information between the skills and the initial state,
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given the final state:

I(s0,Ω|sT ) = H(Ω|sT )−H(Ω|sT , s0)

= EΩEπΩ log p(Ω|sT , s0)− log p(Ω|sT )

≈ EΩEπΩ
log qφ(Ω|sT , s0)− log qabs

ψ (Ω|sT ).

(3)

Since the skills are sampled independently from the initial
state, maximizing this mutual information implies that each
skill must communicate information about the initial state
through its policy. This reinforces our intuition that our ad-
versarial predictors should yield relative skills.

Note that we are not maximizing a lower bound on this
mutual information, as minimizing the discriminability of
qabs upper bounds H(Ω|sT ). Previous work has shown this
to be unproblematic (Sharma et al. 2020), likely due to these
conditional distributions being relatively easy to accurately
approximate with modern over-parametrized models.

In the experiments that follow, we instantiate q and qabs

as neural networks which share parameters, specifically a
convolutional sub-network which processes pixel observa-
tions. The observations s0 and sT are each processed in-
dependently with this sub-network. The resulting represen-
tation of sT is then processed by a multi-layer perceptron
whose parameters are specific to qabs, while the concate-
nated representations of s0 and sT are processed by another
multi-layer perceptron representing q.

For the policy, we train R2D2 (Kapturowski et al. 2019)
on fixed length “skill episodes” constructed on top of
environment-specified episodes such that the final observa-
tion of one skill episode becomes the initial observation
of the next, with each actor periodically resetting the base
environment, following Warde-Farley et al. (2019). While
Gregor, Rezende, and Wierstra (2017) employed rewards in
the log domain, we find that a difference of probabilities
qφ(Ω|sT , s0)− qabs

ψ (Ω|sT ) works well in practice.
See Figure 1 and Algorithm 1 for further summary of the

Relative Variational Intrinsic Control method.

Experiments
In this section, we evaluate the skills learned by RVIC both
qualitatively and quantitatively (via hierarchical reinforce-
ment learning) on the DeepMind Control Suite (Tassa et al.
2018) and Atari 2600 games from The Arcade Learning En-
vironment (ALE) (Bellemare et al. 2013). All experiments
on both Atari and DeepMind Control Suite domains are
done from pixels. On experiments on the DeepMind Con-
trol Suite, we first discretize the continuous action space to
enable value learning with R2D2. Using a fixed discount at
every time step and allowing bootstrapping between skill
episodes worked best for experiments on the DeepMind
Control Suite, while experiments on Atari performed better
when given a zero discount at the end of each skill episode,
in addition to a zero discount upon loss of life. All final val-
ues used for hyperparameters can be found in Table 1 in the
Appendix.

As a baseline for all experiments, we compare against
VIC (Gregor, Rezende, and Wierstra 2017) with a fixed skill

Algorithm 1: RELATIVE VIC
Input : Environment dynamics pE , behavior policy

πθ, policy parameters θ, relative predictor
parameters φ, absolute predictor parameters
ψ, skill episode length T , discount γ, final
step discount γT , skill episode count M .

repeat
s0 ∼ p(s0) /* Reset the environment */
for m← 1 . . .M do

Ω ∼ p(Ω)
for t← 1 . . . T do

Observe state st−1

at ∼ πθ(a|st−1,Ω)
st ∼ pE(st|st−1, at)

end
/* Give same reward, post-hoc, for all steps */
rT1 ← qφ(Ω|sT , s0)− qabs

ψ (Ω|sT )

γT−1
1 ← γ /* γT given as separate input */

Update θ with an off-policy reinforcement
learning algorithm on (aT1 , s

T
0 , r

T
1 , γ

T
1 ),

Update φ by ascending∇φ log qφ(Ω|sT , s0)

Update ψ by ascending∇ψ log qabs
ψ (Ω|sT )

if m < M then s0 ← sT
end

until termination

prior (as demonstrated to work better in DIAYN (Eysen-
bach et al. 2019)). DIAYN is explicitly shown in the anal-
ysis of Eysenbach et al. (2019) to learn skills that partition
the state-space, though we do not compare against DIAYN
directly, as it does not attempt to condition the inverse pre-
dictor on the initial state, instead conditioning it on any in-
dependently drawn sample state from the trajectory. There-
fore, VIC, which tries (but often fails) to condition the in-
verse predictor on the initial state is a more relevant base-
line to compare against. We do not compare against Sharma
et al. (2020) as the method is constrained to working with
crafted features rather than pixels, and it is non-obvious how
to adapt DADS to work for experiments from pixels. Our
choice of baseline is therefore the closest ablation to Rela-
tive VIC, as the only major difference between the two meth-
ods is the two-predictor reward objective used by RVIC.

For both methods, we experimented with giving skill re-
wards in dense way, where the reward calculated for the en-
tire skill episode qφ(Ω|s0, sT )−qabs

ψ (Ω|sT ) is given at every
timestep t in the skill trajectory, which is easily done in an
off-policy learning set up. We found this dense reward to
work better empirically for both methods than the sparse re-
ward used in VIC. Skills from both methods were trained for
175 million learner steps before being analyzed qualitatively
and used in HRL experiments.

Qualitative Results
For the qualitative experiments, both methods learn a set
of 16 skills with a skill episode length of 90 for experi-
ments on the DeepMind Control Suite and 25 for experi-

6734



Figure 2: VIC (left) and RVIC (right) skills on Reacher in the DeepMind Control Suite. Each facet shows the end state of the
reacher arm for a skill overlaid across multiple runs with different start states (indicated by color - see legend for details).

ments on Atari. We want to observe how each skill behaves
from various start states. We visualize how skills learned by
the two skill learning methods affect the controllable en-
vironment state. In the Reacher domain on the DeepMind
Control Suite, the controllable part of the environment is the
position of the two-link reacher arm. Visualizing how skills
from each method change the position of the reacher arm
from various starting positions yields insights into the dif-
ference between baseline VIC and RVIC.

While the baseline VIC skills on the left in Figure 2 reli-
ably reach diverse end states, the skills disregard their start-
ing positions (indicated by color) in achieving that diver-
sity. Regardless of where the reacher arm starts, each skill
only goes to a single end state. Additionally, note how the
baseline VIC skill diversity only spans a portion of the state
space and the reacher arm is rarely even opened as it is easy
enough to achieve the VIC objective without doing so. In
contrast, the set of RVIC skills shown partitions the rota-
tion space of both joint angles, therefore covering more of
the relevant state space. In other words, an RVIC skill will
rotate the joint angles a certain amount from wherever the
reacher arm starts. This can be seen in the right side of Fig-
ure 2 as the ordering of colors (where nearby colors indicate
nearby start states) is preserved in each skill, but rotated to a
different degree for each skill.

Similarly, on Atari games Seaquest and Montezuma’s Re-
venge, we visualize how different skills move the avatar
through the X-Y plane, since the agent has direct control
over only the (X, Y) coordinates of the avatar. We extract this
information about the avatar coordinates from RAM only for
the visualizations, as all learning is done directly from pix-
els. To clearly show how each skill learning method utilizes
(or disregards) information about the start state, we roll out

sample skills from every possible starting (X, Y) coordinate
in the frame (excluding positions in Montezuma’s Revenge
where the avatar is free-falling through the air and has no
control over its behavior). The samples are then divided into
16 bins (uniform 4x4 grid for Seaquest; meaningfully differ-
ent state areas such as platforms or ladders in Montezuma’s
Revenge). Sample trajectories from each bin are then aver-
aged, colored such that similar colors indicate nearby bins,
and plotted along with their standard deviation in Figure 3.
The final state of each averaged trajectory is denoted with a
star.

The baseline VIC method on Seaquest obtains skill di-
versity via state-space partitioning, converging to a single
final state no matter where the trajectory starts out. Partial
state-space partitioning behavior of VIC can also be seen to a
lesser degree on Montezuma’s Revenge. Due to the difficulty
in Montezuma’s Revenge of exploring to the bottom parts of
the frame during unsupervised training, the VIC skills seem
to only pay attention to partitioning the top part of the frame
with some skills clearly choosing a target state, for example,
the top of the center ladder in skill 13. When the avatar co-
ordinates are set to the bottom of the frame at analysis time,
the agent has probably never seen those states before and
likely does not know how to reach the skill’s target states.
When performing these VIC skills from the unfamiliar posi-
tions at the bottom of the frame, behaviors are inconsistent
with the behaviors learned for the top of the frame, often do-
ing nothing at all. This illustrates the dangers of skills that
partition the state space as behavior does not generalize well
to the unseen states at the bottom of the frame and skills
do not perform consistent behavior everywhere. The skills
learned by RVIC on both of these games are different de-
pending on where the agent starts out and can loosely be
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Figure 3: Learned VIC (left) and RVIC (right) skills on Seaquest (top) and Montezuma’s Revenge (bottom).
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Figure 4: HRL Results. The option to execute a pre-trained skill for a fixed duration is added to the set of possible actions.

seen as directional skills that are consistent, generalizable,
and composable.

Hierarchical RL on Skills
Hierarchical Reinforcement Learning (HRL) decomposes
the RL problem into temporally extended sub-problems
solved with multiple hierarchical levels of planning or con-
trol (Sutton, Precup, and Singh 1999; Precup 2001). To test
the usefulness of the learned skills, we perform HRL experi-
ments on six Atari games, using the pre-trained skill policies
as the low-level controller. After training skills for both the
baseline and RVIC, we introduce a second phase of training
where a meta-controller agent can use the pre-trained, frozen
skill policies to maximize the extrinsic rewards from the en-
vironment. In this second phase, a meta-controller learns a
policy that at each timestep can either act with a temporally-
extended skill or a primitive action for a single timestep.
From the perspective of the meta-controller, a skill is just an-
other type of action available, though what actually happens
after acting with a skill is temporally extended behavior. Re-
wards collected during the skill episode are appropriately
summed and discounted over the skill duration and returned
to the meta-controller policy.

Since at the beginning of training the meta-controller may
be incentivized to only select primitive actions to obtain
more fine-grained control, we also introduce a fixed meta-
action cost (similar to the ”deliberation cost” in Harb et al.
(2018)) that is deducted from the reward given to the agent
every time the meta-controller selects an action, incentiviz-
ing it to use the temporally extended skills where possi-
ble. Like the skill-policies, the meta-controller policy is also

trained using R2D2, though prioritized experience replay is
disabled as priorities are inconsistent to calculate between
single-step primitive actions and temporally-extended be-
haviors. Additionally, we use shorter unroll length (40) and
burn-in length (10) than plain R2D2 to account for the use
of temporally-extended behaviors.

For both skill HRL variants, we choose the best meta-
action cost from (0.0, 0.1, 0.15) and the best skill episode
length from (10, 15, 25) for each game. The best values for
each Atari level are recorded in Table 2 in the Appendix.
In all levels, the number of skills is fixed to 16. Results are
averaged over three random seeds.

In Figure 4, we compare the speed of learning over the
first 40 million learner steps of an R2D2 agent that acts
with either Relative VIC skills and primitive actions, base-
line VIC skills and primitive actions, or just primitive ac-
tions. The results are mixed across levels although the Rela-
tive VIC skills show a learning advantage over the baseline
VIC skills and action-baseline R2D2 on most of the games.

To explain the advantage of RVIC skills, we note that in an
environment that is sufficiently large or hard to explore dur-
ing unsupervised training (for example, Montezuma’s Re-
venge which has many rooms that are hard to find by acci-
dent), a skill set that partitions the state space will likely re-
strict skills to partition an incomplete part of the state space,
(say, only the first room in Montezuma’s Revenge). Using
such a set would never allow a meta-controller to explore
outside of the already seen subset of the state-space. RVIC
can be seen as removing potential overfitting to the distribu-
tion of final states seen during the unsupervised pre-training
of skills.
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Related Work
The idea of maximizing the mutual information between an
agent’s behavior and the outcome of that behavior can be
traced back to Klyubin, Polani, and Nehaniv (2005), where
the term ‘empowerment’ was coined to describe this ob-
jective. The empowerment objective was initially limited to
small domains due to the costliness of mutual information
estimation. Mohamed and Rezende (2015) introduced the
idea of maximizing a variational lower bound to scale the
empowerment objective to larger domains. Specifically, the
Barber-Agakov bound was used (Barber and Agakov 2003),
which decomposes the mutual information into a difference
of entropies. The negative condition entropy can be lower-
bounded by learning a ‘reverse predictor’. This can then be
combined with knowledge of the true marginal entropy term
(e.g. the policy) to provide a lower bound on the mutual in-
formation. Gregor, Rezende, and Wierstra (2017) combined
variational empowerment with a latent variable for capturing
closed-loop temporally extended behavior (i.e. an ‘option’,
or, as we refer to in this paper, a ’skill’). This approach, Vari-
tional Intrinsic Control (VIC), parametrized the skill distri-
bution, policy, and skill predictor with neural networks. A
skill was sampled and used to condition the policy for some
duration. Subsequently, the reverse predictor would predict
the sampled skill from the initial and final state. The entropy
of the skill distribution and the skill prediction were opti-
mized directly, and reward functions were derived for appro-
priate credit assignment to the skill distribution and policy.

‘Diversity is All You Need’ (DIAYN) simplified the
VIC algorithm by fixing the option distribution to be the
marginal maximum entropy distribution, which most subse-
quent methods have done as well, including all of those pre-
sented here (Eysenbach et al. 2019). While this work also
added an action entropy term to the objective, we follow
Hansen et al. (2020) in disregarding it, since it is generally
less beneficial in discrete-action environments like the Atari
suite. Indeed, DIAYN differs significantly from this work
in that it only considered environments with explicit state-
representations. This both simplifies the perception aspect
of the policy learning problem as well as provides a strong
inductive bias to the reverse predictor by way of forcing
predictability to only arise from these dimensions. Hansen
et al. (2020) does show strong results on pixel-based envi-
ronments, but only when using continuous skill distributions
that would significantly increase the burden (by exploding
the effective action space) when used for down-stream hier-
archical reinforcement learning.

‘Discriminative Embedding Reward Networks’ (DIS-
CERN) introduced the idea of chaining together sampled
skills rather than resetting the environment state between
each one (Warde-Farley et al. 2019). This greatly increases
the entropy of the initial state distribution, which increases
the difficulty of the learning problem in exchange for de-
coupling skill duration from the final state distribution. For
example, if skills reset the environment on termination, then
the skill duration would have to be hundreds of steps long
to get anywhere in most Atari games. Our method differs
from DISCERN in that we are explicitly interested in rela-
tive skills as opposed to the achievement of absolute goals

represented by desired observations.
Achiam et al. (2018) propose a trajectory-conditional re-

verse predictor motivated by the idea of learning diverse ‘be-
haviors’ rather than diverse goals. Like DIAYN, this method
has not been shown to be effective on pixel-based environ-
ments and relies on a low-frequency heuristic that would
likely be inappropriate for learning skills in Atari games.

Finally, Sharma et al. (2020) maximize a partial lower
bound in the same sense that RVIC does. Namely, a dif-
ference of entropies decomposition is used even though the
marginal entropy is not known a priori and must also be
approximated. However, this method is also only shown
to work from explicit state-representations and it is non-
obvious how to modify it to work from pixels. The empirical
stability of both methods suggest that a ‘proper’ lower bound
on a mutual information is not necessary for empowerment
based approaches to succeed.

The concept of affordances was first introduced by Gibson
(1977) within psychology to refer to action possibilities or
opportunities the environment affords an animal at any given
time. An affordance emerges from the relationship between
an agent and its environment. Gibson suggested that humans
are able to easily perceive affordances. Further, Gibson ar-
gues that humans actively alter the environment to change
what the environment affords us. Within the context of rein-
forcement learning, Cruz et al. (2014) demonstrate that giv-
ing agents affordances as prior knowledge can greatly speed
up convergence, and Khetarpal et al. (2020) demonstrate the
ability to use affordances to aid planning in RL with partial-
models and enable better generalization.

Our work differs from these approaches in its ability to
learn affordance-like skills directly from interaction, with-
out any prior knowledge as to what kinds of behavior the en-
vironment affords. Indeed, RVIC can be seen as a possible
mechanism by which knowledge of affordances can arise.
Integrating this mechanism with the rest of the literature on
affordances is a promising avenue for future work.

Discussion
Relative VIC learns meaningfully diverse skills that parti-
tion the space of affordances by incentivizing the skills to be
distinguishable given their first and last states but not distin-
guishable given only the last state. We analyzed the differ-
ence between Relative VIC learned skills and VIC learned
skills on several domains and demonstrate the ability to learn
affordance-like skills from pixels in both the DeepMind
Control Suite and Atari domains. We demonstrate the use-
fulness of Relative VIC skills in the Hierarchical RL frame-
work on Atari and their ability to generalize across various
parts of thei state space.

Some limitations of the method include the use of a fixed
discrete uniform skill prior which implies that all skills
should exist at every state, even if some options don’t make
sense at every state. Additionally, the fixed skill duration
may prove to be too rigid for some environments to use
effectively in HRL. Other potential future direction of this
work include learning the meta-controller policy and skill
policies simultaneously.
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Appendix

Number of actors 256
Batch size 64
Optimizer Adam (2015)
Dense skill reward True
Skill episode count 10
qφ learning rate 10−4

qabsψ learning rate 10−4

πθ learning rate 10−4

πθ target update period 10000
qφ, qabsψ target update period 10
Actor update period 100
0 γ at skill end (Control Suite) False
0 γ at skill end (Atari) True
Skill length (Control Suite) 90
Skill length (Atari) See Table 2
Number of skills 16
qφ, qabsψ shared torso DQN Conv Torso
qφ, qabsψ head hidden size 512

Table 1: A table of hyperparameters for skill learning exper-
iments. Network architecture and hyperparameters for HRL
experiments are identical to those in R2D2. Network archi-
tecture for the Skill-conditioned Q-network is identical to
the recurrent, duelling Q-network used in R2D2, with the ad-
dition of a two layer (sizes 256, 512) MLP skill torso whose
output is concatenated with the output of the convolutional
observation torso before being input to the recurrent core.

Baseline VIC Relative VIC
Meta Skill Meta Skill
action episode action episode
cost length cost length

Amidar 0.15 25 0.15 10
Enduro 0.00 10 0.00 10
Frostbite 0.15 10 0.00 10
M. Revenge 0.00 25 0.10 10
Private Eye 0.00 10 0.15 25
Seaquest 0.15 10 0.00 10

Table 2: A table of the best hyperparameters for each level of
Atari in the HRL experiments. The hyperparameter combi-
nation with the best HRL performance when averaged over
3 random seeds was chosen. Results displayed in Figure 4.
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