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Abstract

Generative models can be trained to emulate complex empiri-
cal data, but are they useful to make predictions in the context
of previously unobserved environments? An intuitive idea to
promote such extrapolation capabilities is to have the archi-
tecture of such model reflect a causal graph of the true data
generating process, such that one can intervene on each node
independently of the others. However, the nodes of this graph
are usually unobserved, leading to overparameterization and
lack of identifiability of the causal structure. We develop a
theoretical framework to address this challenging situation by
defining a weaker form of identifiability, based on the principle
of independence of mechanisms. We demonstrate on toy exam-
ples that classical stochastic gradient descent can hinder the
model’s extrapolation capabilities, suggesting independence
of mechanisms should be enforced explicitly during training.
Experiments on deep generative models trained on real world
data support these insights and illustrate how the extrapolation
capabilities of such models can be leveraged.

1 Introduction
Deep generative models such as Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014), and Variational
Autoencoders (VAEs) (Kingma and Welling 2013; Rezende,
Mohamed, and Wierstra 2014) are able to learn complex
structured data such as natural images. However, once such
a network has been trained on a particular dataset, can it be
leveraged to simulate meaningful changes in the data gener-
ating process? Capturing the causal structure of this process
allows the different mechanisms involved in generating the
data to be intervened on independently, based on the prin-
ciple of Independence of Mechanisms (IM) (Janzing and
Schölkopf 2010; Lemeire and Janzing 2012; Peters, Janzing,
and Schölkopf 2017). IM reflects a foundational aspect of
causality, related to concepts in several fields, such as superex-
ogeneity in economics (Engle, Hendry, and Richard 1983),
the general concept of invariance in philosophy (Woodward
2003) and modularity. In particular, having the internal com-
putations performed by a multi-layer generative model reflect
the true causal structure of the data generating mechanism
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would thus endow it with a form of layer modularity, such
that intervening on intermediate layers causes changes in the
output distribution similar to what would happen in the real
world. We call such ability extrapolation, as it intuitively
involves generalizing beyond the support of the distribution
sampled during training, or its convex hull.

In this paper, we focus on the challenging case where no
additional variables, besides the samples from the data
to generate, are observed (in contrast with related work,
as explained below). In this unsupervised setting, generative
models are typically designed by applying successive trans-
formations to latent variables, leading to a multi-layered ar-
chitecture, where neither the latent inputs nor the hidden lay-
ers correspond to observed variables. We elaborate a general
framework to assess extrapolation capabilities when interven-
ing on hidden layer parameters with transformations belong-
ing to a given group G, leading to the notion of G-genericity
of the chosen parameters. We then show how learning based
on stochastic gradient descent can hinder G-genericity, sug-
gesting additional control on the learning algorithm or the
architecture is needed to enforce extrapolation abilities. Al-
though we see our contribution as chiefly conceptual and
theoretical, we use toy models and deep generative models
trained on real world data to illustrate our framework.

Appendix. Readers can refer to the technical appendix in
the extended version of this paper4 for supplemental figures,
code resources, symbols and acronyms (Table 1), all proofs
(App. A) and method details (App. B).

Related Work. Deep neural network have been leveraged
in causal inference for learning causal graphs between ob-
served variables (Lopez-Paz and Oquab 2016) and associated
causal effects (Louizos et al. 2017; Shalit, Johansson, and
Sontag 2017; Kocaoglu et al. 2017; Lachapelle et al. 2019;
Zhu, Ng, and Chen 2019). Our ultimate goal is more akin to
the use of a causal framework to enforce domain adaptation
(Zhang et al. 2013; Zhang, Gong, and Schölkopf 2015) and
domain shift robustness of leaning algorithms, which has
been done by exploiting additional information in the con-
text of classification (Heinze-Deml and Meinshausen 2017).
Broadly construed, this also relates to zero-shot learning
(Lampert, Nickisch, and Harmeling 2009) and notions of

4https://arxiv.org/abs/2004.00184
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extrapolations explored in the context of dynamical systems
(Martius and Lampert 2016). As an intermediary step, un-
supervised disentangled generative models are considered
as a way to design data augmentation techniques that can
probe and enforce the robustness of downstream classifica-
tion tasks (Locatello et al. 2018; Higgins et al. 2017). A
causal (counterfactual) framework for such disentanglement
has been proposed by Besserve et al. (2020) that leverages
the internal causal structure of generative models to generate
meaningful changes in their output. In order to characterize
and enforce such causal disentanglement properties, the IM
principle has been exploited in empirical studies (Goyal et al.
2019; Parascandolo et al. 2018) and its superiority to statisti-
cal independence has been emphasized (Besserve et al. 2020;
Locatello et al. 2018). However, deriving a measure for IM
is challenging in practice. Our work builds on the idea of
Besserve et al. (2018) to use group invariance to quantify IM
in a flexible setting and relate it to identifiability of the model
in the absence of information regarding variables causing the
observations. Another interesting direction to address identi-
fiability of deep generative model is non-linear ICA, but typi-
cally requires observation of auxiliary variables (Hyvarinen,
Sasaki, and Turner 2019; Khemakhem et al. 2020). Finally,
our investigation of overparameterization relates to previous
studies (Neyshabur et al. 2017; Zhang et al. 2016), notably
arguing that Stochastic Gradient Descent (SGD) implements
an implicit regularization beneficial to supervised learning,
while we provide a different perspective in the context of
unsupervised learning and extrapolation.

2 Extrapolation in Generative Models
2.1 FluoHair: an Extrapolation Example in VAEs
We first illustrate what we mean by extrapolation, and its rele-
vance to generalization and generative models with a straight-
forward transformation: color change. “Fluorescent” hair
colors are at least very infrequent in classical face datasets
such as CelebA5, such that classification algorithms trained
on these datasets may fail to extract the relevant information
from pictures of actual people with such hair, as they are
arguably outliers.

To foster the ability to generalize to such samples, one can
consider using generative models to perform data augmenta-
tion. However, highly realistic generative models also require
training on similar datasets, and are thus very unlikely to
generate enough samples with atypical hair attributes.

Fig. 1 demonstrates a way to endow a generative model
with such extrapolation capabilities: after identifying chan-
nels controlling hair properties in the last hidden layer of
a trained VAE (based on the approach of Besserve et al.
(2020)), the convolution kernel k of this last layer can be
modified to generate faces with various types of fluorescence
(see App. B.1 for details), while the shape of the hair cut, con-
trolled by parameters in the above layers, remains the same,
illustrating layer-wise modularity of the network. Notably,
this approach to extrapolation is unsupervised: no labeling
or preselection of training samples is used. Importantly, in
our framework hair color is not controlled by a disentangled

5
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Figure 1: Illustration of FluoHair extrapolation for a VAE
face generator (left inset). Transformations gk modify kernel
k and the sample distribution D.

latent variable; we rely instead on the structure of VAE/GAN
to intervene on color by changing the synaptic weights corre-
sponding to hidden units influencing hair in the last (down-
stream) convolution layer thereby influencing output RGB
channels (see in App. B.1). Such transformation of an ele-
ment of the computational graph of the generative model will
guide our framework. Although this example provides in-
sights on how extrapolations are performed, it exploits some
features specific to color encoding of images. To illustrate
how our framework helps address more general cases, we will
use a different class of interventions that stretch the visual
features encoded across a hierarchy of convolutional layers
(Model 1, Fig. 2).

2.2 Neural Networks as Structural Causal Models
By selecting the output of a particular hidden layer as inter-
mediate variable V , we represent (without loss of generality)
a multi-layer generative model as a composition of two func-
tions fθk

k (.; ), k = 1, 2, parameterized by θk ∈ Tk, and
applied successively to a latent variable Z with a fixed distri-
bution, to generate an output random variable

X = fθ2
2 (V ) = fθ2

2 (fθ1
1 (Z)) . (1)

Assuming the mappings θk 7→ fk are one-to-one, we abu-
sively denote parameter values by their corresponding func-
tion pair. Besides pathological cases, e.g. “dead” neurons
resulting from bad training initialization, this assumption
appears reasonable in practice.6

An assumption central to our work is that the data gen-
erating mechanism leading to the random variable Y repre-
senting observations corresponds to eq. (1) with the so-called
true parameters θ∗ ∈ T corresponding to (f∗1 , f

∗
2 ). More pre-

cisely both functions f∗1 and f∗2 are assumed to capture causal
mechanisms such that one can interpret eq. (1) as a structural
causal model (Pearl 2000) with causal graph Z → V →X .

We additionally assume that a learning algorithm fits per-
fectly the data distribution by choosing the vector of parame-

6the opposite would mean e.g. for a convolutional layer, that two
different choices of tensors weights lead to the exact same response
for all possible inputs, which appears unlikely
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Figure 2: Numerical illustration for eye generator of Exam-
ple 1. Top row: true parameters. Bottom: another solution
in Sθ∗ . (Top right inset) Illustration of the two successive
convolutions (with additional striding).

ters θ̃. This assumption allows us to focus on the theoretical
underpinnings of extrapolation independent from the widely
addressed question of fitting complex generative models to
observations. In practical settings, this can be approached
by choosing an architecture with universal approximation
capabilities. Let Dθ denote the distribution of output X
for any parameter pair θ in T = T1 × T2, then we have
Y ∼ Dθ∗ = Dθ̃ . The fitted parameters will thus belong to a
solution set Sθ∗ , defined as a set of function pairs that fit the
observational distribution perfectly:

Sθ∗ = {(f1, f2)|D(f1,f2) = Dθ∗} . (2)

If θ̃ = θ∗, we can predict the distribution resulting from
interventions on these parameters in the real world. We call
such case structural identifiability. The IM principle at the
heart of causal reasoning then allows extrapolation to other
plausible distributions of output Y by intervening on one
function while the other is kept fixed (see FluoHair exam-
ple above). In contrast, if Sθ∗ is non-singleton and a value
θ̃ 6= θ∗ is chosen by the learning algorithm, extrapolation
is, in general, not guaranteed to behave like the true solu-
tion. One source on non-identifiability is the possibility that
the pushforward measure of Z by two different functions
f2 ◦f1 = f 6= f ′ = f ′2 ◦f ′1 belonging to the model class may
both match Dθ∗ perfectly. In contrast, we will call function-
ally identifiable a true parameter θ∗ such that the composition
f = f2 ◦ f1 is uniquely determined by Dθ∗ . However, even
a functionally identifiable parameter may not be structurally
identifiable if f may by obtained by composing different
pairs (f1, f2) and (f ′1, f

′
2). This last case is the focus of our

framework, and will be illustrated using the following model.
Model 1 (Linear 2-layer convNet). Assume d, d′ are two
prime numbers7, Z a (2d − 1) × (2d′ − 1) random binary
latent image, such that one single pixel is set to one at each
realization, and probability of this pixel to be located at (i, j)
is πi,j . Let (k1, k2) be two invertible (2d − 1) × (2d′ − 1)
convolution kernels, and

X = k2 ©? V = k2 ©? k1 ©? Z, (3)
7This will allow defining rigorously a group of transformations

for extrapolation.

where©? is the circular convolution (modulo 2d− 1, 2d′− 1).
The reader can refer to App. B.3 for a background on

circular convolution and how it relates to convolutional layers
in deep networks. Such model can be used to put several
copies of the same object in a particular spatial configuration
at a random position in an image. The following example
(Fig. 2) is an “eye generator” putting an eye shape at two
locations separated horizontally by a fixed distance in an
image to model the eyes of a (toy) human face. The location
of this “eye pair” in the whole image may also be random.
Example 1 (Eye generator, Fig. 2). Consider Model 1 with k2

a convolution kernel taking non-zero values within a minimal
square of side δ < d encoding the eye shape, and k1 with
only two non-vanishing pixels, encoding the relative position
of each eye.

2.3 Characterization of the Solution Set
In the context of training such model from data without
putting explicit constraints on each kernel, Model 1 admits
“trivial” alternatives to the true parameters (k∗1 , k

∗
2) to fit the

data perfectly, simply by left-composing arbitrary rescalings
and translations with k∗1 , and right-composing the inverse
transformation to k∗2 . This is in line with observations by
Neyshabur et al. (2017) in ReLU networks (incoming synap-
tic weights of a hidden unit can be downscaled while upscal-
ing all outgoing weights).

To go beyond these mere observations, we systematically
characterize over-parameterization entailed by composing
two functions. Let V be the range of V , we define the subset
Ω of right-invertible functions ω : V → V such that for any
pair (f1, f2), (ω−1 ◦ f1, f2 ◦ ω) also corresponds to a valid
choice of model parameters.8 Trivially, Ω contains at least
the identity map. For any true parameter θ∗, we define the
Composed Over-parameterization Set (COS)

SΩ
θ∗ =

{(
ω−1 ◦ fθ

∗
1

1 , f
θ∗2
2 ◦ ω

)
|ω ∈ Ω

}
. (4)

The COS reflects how “internal” operations in Ω make the
optimization problem under-determined because they can be
compensated by internal operations in neighboring layers.
By definition, the COS is obviously a subset of the solution
set Sθ∗ . But if we consider normalizing flow (NF) models,
in which fk’s are always invertible (following Rezende and
Mohamed (2015)), we can show inclusion turns into equality.
Proposition 1. For an NF model, Ω is a group and for any
functionally identifiable true parameter θ∗, SΩ

θ∗ = Sθ∗ .
Notably, this result directly applies to Model 1 (see Corol-

lary 1 in App. B.6). We will exploit the COS group structure
to study the link between identifiability and extrapolation,
which we define next.

2.4 Extrapolated Class of Distributions
Humans can generalize from observed data by envisioning
objects that were not previously observed, akin to our Fluo-
Hair example (Fig. 1). To mathematically define the notion
of extrapolation, we pick interventions from a group G (i.e. a

8We use the convention A ◦ ω = {f ◦ ω, f ∈ A}.
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set of composable invertible transformations, see App. B.2
for background) to manipulate the abstract/internal represen-
tation instantiated by vector V = f1(Z). Given parameter
pair θ∗ = (f∗1 , f

∗
2 ), we then define the G-extrapolated model

class, which contains the distributions generated by the inter-
ventions on V through the action of the group on f1:

MG(f∗1 ,f∗2 ) =MGθ∗ ,
{
D(g·f∗1 , f∗2 ), g ∈ G

}
, (5)

where g ·f∗1 denotes the group action of g on f∗1 , transforming
it into another function. G thus encodes the inductive bias
used to extrapolate from one learned model to others (when G
is unambiguousMGθ∗ is denotedMθ∗ ). An illustration of the
principle of extrapolated class, is provided in Suppl. Fig. 2.

Choosing the set of considered interventions to have a
group structure allows to have an unequivocal definition of a
uniform (Haar) measure on this set for computing expecta-
tions and to derive interesting theoretical results. Note this
does not cover non-invertible hard interventions that set a
variable to a fixed value y = y0, while shifting the current
value by a constant y → y + g does fit in the group frame-
work. In the context of neural networks, this framework also
allows to model a family of interventions on a hidden layer
which can be restricted to only part of this layer, as done in
the FluoHair example (see App. B.1).

The choice of the group is a form of application-dependent
inductive bias. For Model 1, a meaningful choice is the multi-
plicative group S of integers modulo d (with d prime number,
see App. B.5, such that the group action of stretching the
horizontal image axis {−d+ 1, .., 0, d− 1} by factor g ∈ S
turns convolution kernel k into (g · k)(m,n) = k(gm, gn).
Such stretching is meant to approximate the rescaling of
a continuous axis, while preserving group properties, and
models classical feature variations in naturalistic images (see
App. B.5). As an illustration for Example 1, using this group
action leads to an extrapolated class that comprises models
with various distances between the eyes, corresponding to
a likely variation of human face properties. See Fig. 2, top
row for an example extrapolation using this group. Interest-
ingly, such spatial rescalings also correspond to frequency
axis rescalings in the Fourier domain (see background in
App. B.4). Indeed, let k̂ be the Discrete Fourier Transform
(DFT) of kernel k, (g ·k)(m,n) = k(gm, gn) corresponds to
(g · k̂)(u, v) = k̂(ug−1, ng−1) such that the frequency axis is
rescaled by the inverse of g. Due to the relationship between
convolution and Fourier transform (App. B.4), several results
for Model 1 will be expressed in the Fourier domain where
convolution acts as a diagonal matrix multiplication.

2.5 Extrapolation Replaces Identification:
G-equivalence and G-genericity

As elaborated above, Sθ∗ may not be singleton such that a
solution (f̃1, f̃2) found by the learning algorithm may not be
the true pair (f∗1 , f

∗
2 ), leading to a possibly different extrapo-

lated class when intervening on f1 with elements from group
G. When extrapolated classes happen to be the same, we say
the solution is G-equivalent to the true one.

Definition 1 (G-equivalence). The solution (f̃1, f̃2) is G-

equivalent to the true (f∗1 , f
∗
2 ) if it generates the same extrap-

olated class through the action of G:MG
(f̃1, f̃2)

=MG(f∗1 ,f∗2 ).

An illustration of G-equivalence violation for Example 1
is shown in Fig. 2 (bottom row), and an additional representa-
tion of the phenomenon is given in Suppl. Fig. 2. Such equiv-
alence of extrapolations imposes additional requirements on
solutions. In the NF cases, such constraints rely on the inter-
play between the group structure of Ω (group of the COS in
eq. (4)) that constrains over-parameterization, and the group
structure of G. For Model 1, in the 1D case this leads to

Proposition 2. Assume π̂ has no zero element and d’=1,
the solution (k1, k2) for Model 1 is S-equivalent to true
model (k∗1 , k

∗
2) if and only if there exists one λ ∈ C such that

(k̂1(u)], k̂2(u)]) = (λ−1k̂∗1(u), λk̂∗2(u)) for all u > 0.

This shows that at least in this model, G-equivalence is
achieved only for solutions that are very similar to the true pa-
rameters θ∗ (up to a multiplicative factor), thus only slightly
weaker than identifiability. As G-equivalence requires knowl-
edge of the true solution, in practice we resort to characteriz-
ing invariant properties ofMθ∗ to select solutions. Indeed,
ifMθ∗ is a set that “generalizes” the true model distribution
Dθ∗ , it should be possible to express the fact that some prop-
erty of Dθ∗ is generic inMθ∗ . Let ϕ be a contrast function
capturing approximately the relevant property of Dθ∗ , we
check that such function does not change on average when
applying random transformations from G, by sampling from
the Haar measure of the group µG ,9 leading to

Definition 2 (Contrast based G-genericity). Let ϕ be a func-
tion mapping distributions on the generator output space to
R, and G a compact group. For any solution (f̃1, f̃2) of the
model fit procedure, we define the generic ratio

ρ(f̃1, f̃2) = ρ(f̃1(Z), f̃2) ,
ϕ(D(f̃1, f̃2))

Eg∼µGϕ(D(g·f̃1, f̃2))
. (6)

Solution (f̃1, f̃2) is G-generic w.r.t. ϕ, whenever it satisfies
ρ(f̃1, f̃2) = 1.

It then follows trivially from the definition that G-
equivalence entails a form of G-genericity.

Proposition 3. For ϕ constant onMGθ∗ , G-equivalent to the
true solution implies G-generic w.r.t. ϕ.

Genericity was originally defined by Besserve et al. (2018)
as a measure of independence between cause V = f1(Z)
and mechanism f2. In practice, genericity is not expected to
hold rigorously but approximately (i.e. ρ should be close to
one). In the remainder of the paper, we use interchangeably
the “functional” notation ρ(f̃1, f̃2) and the original “cause-
mechanism” notation ρ(V , f̃2).

2.6 Link Between Genericity and Direction of
Causation

An interesting application of genericity is identifying the di-
rection of causation : in several settings, if ϕ(f̃1(Z), f̃2) = 1

9µG is a “uniform” distribution on G, see App. B.2
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for the causal direction V → X , reflecting a genericity as-
sumption in a causal relation, then the anti-causal direction
X → V is not generic as ϕ(X, f̃−1

2 ) 6= 1. As genericity,
as measured empirically by its ratio, is only approximate
(ratio not exactly equal to one), comparing genericity of the
directions Z →X andX → Z can be used to support the
validity of the genericity assumption. This comparison is sup-
ported by several works on identifiation of causal pairs using
IM, showing identifiability can be obtained on toy examples
by choosing the direction of causation that maximized gener-
icity (Shajarisales et al. 2015; Zscheischler, Janzing, and
Zhang 2011; Janzing, Hoyer, and Schölkopf 2010; Janzing
et al. 2012). We use spectral independence to check genericity
of neural network architectures in Sec. 4.

2.7 Scale and Spectral Independence
In the case of Example 1 and for stretching transformations,
restricted to the 1D case (d’=1), one reasonable contrast is
the total Power across non-constant frequencies, which can
be written (see App. B.4)

P(X) =
1

d− 1

∑
i6=0

|k̂2(i)k̂1(i)|2 =
〈
|k̂2 � k̂1|2

〉
, (7)

where 〈.〉 denotes averaging over non zero frequencies and
� is the entrywise product. Indeed, this quantity is preserved
when we stretch the distance between both eyes, as long as
they do not overlap. The following result allows to exploit
genericity to find a good solution:
Proposition 4 (Informal, see App. A). For Model 1 in the
1D case, the S-generic ratio with respect to ϕ = P is

ρ(V , k2) =
〈E|k̂2 � V̂ |2〉
〈E|V̂ |2〉〈|k̂2|2〉

=
〈|k̂2 � k̂1|2〉
〈|k̂1|2〉〈|k̂2|2〉

, (8)

Moreover, the true solution of Example 1 is S-generic.
We call ρ the Spectral Density Ratio (SDR), as it appears

as a discrete frequency version of the quantity introduced
by Shajarisales et al. (2015) (baring the excluded zero fre-
quency). We say such S-generic solution w.r.t. ρ satisfies
scale or spectral independence. This supports the use of SDR
to check whether successive convolution layers implement
mechanisms at independent scales.

3 How Learning Algorithms Affect
Extrapolation Capabilities

3.1 Simplified Diagonal Model
When models are over-parameterized, the learning algorithm
likely affects the choice of parameters, and thus the extrapola-
tion properties introduced above. We will rely on a simplifica-
tion of Model 1, that allows to study the mechanisms at play
without the heavier formalism of convolution operations.
Model 2. Consider the linear generative model of dimension
d− 1 with d prime number

X = ABZ = diag(a)diag(b)Z (9)

with A, B square positive definite (d − 1) × (d − 1) di-
agonal matrices with diagonal coefficient vectors a and b,

respectively, and Z a vector of positive independent random
variables such that E|Zk|2 = 1, ∀k.

Model 2 can be seen as a Fourier domain version of
Model 1, with some technicalities dropped. In particular,
we use real positive numbers instead of complex numbers,
we drop the zero and negative frequencies by labeling di-
mensions as {1, 2, ..., d− 1} modulo d and considering the
multiplicative action of S on these coordinates. We get anal-
ogous results as for Model 1 regarding the solution set and
S-equivalence (see Corol. 2 and Prop. 7 in App. B.6).

In order to measure genericity in a similar way as for
Model 1, the power contrast becomes10

ϕ̃(B,A) = τ
[
ABB>A>

]
=

1

d− 1

d∑
i=1

a2
i b

2
i =

〈
a2 � b2

〉
where τ [M ] is the normalized trace 1

d−1 Tr[M ]. This leads to

Proposition 5. In Model 2, the S-generic ratio w.r.t. ϕ̃(B,A)

is ρ′(B,A) ,

〈
a2 � b2

〉
〈a2〉 〈b2〉

.

3.2 Drift of Over-parameterized Solutions
Consider Model 2 in the (degenerate) case of 1× 1 matrices.
To make the learning closer to a practical setting, we consider
a VAE-like training: conditional on the latent variable z = Z,
the observed data is assumed Gaussian with fixed variance
σ2 and mean given by the generator’s output a · b · z (e.g.
in contrast to 1, noise is added after applying the second
function, and one can retrieve the original setting in the limit
case σ2 = 0). To simplify the theoretical analysis, we study
only the decoder of the VAE, and thus assume a fixed latent
value z = 1, (i.e. the encoder part of the VAE infers a Dirac
for the posterior of Z given the data). Assuming the true
model (a∗ > 0, b∗ > 0), we thus use data sampled from
N (c = a∗b∗, σ2), and learn (a, b) from it, assuming the data
is sampled from a Gaussian with same variance and unknown
mean parameter. First, considering infinite amounts of data,
maximum likelihood estimation amounts to minimizing the
KL-divergence between two univariate Gaussians with same
variance and different mean, equivalent to:

minimize
a,b>0

L(c; (a, b)) = |c− ab|2 . (10)

We study the behavior of deterministic continuous time gra-
dient descent (CTGD) in Prop. 8 of App. B.7. Typical tra-
jectories are represented in red on Fig. 3a. We then consider
the practical setting of SGD (see App. B.8) for training the
VAE’s decoder on the stochastic objective

minimize
a,b>0

`(c0;ω; (a, b)) = |C(ω)− ab|2, C ∼ N (c0, σ
2) .

(11)
The result (green sample path Fig. 3a) is very different from
the deterministic case, as the trajectory drifts along Sc0 to
asymptotically reach a neighborhood of (

√
c0,
√
c0). This

10This contrast is used for causal inference with the Trace Method
(Janzing, Hoyer, and Schölkopf 2010), and relates to spectral inde-
pendence Shajarisales et al. (2015).
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(a) (b)

Figure 3: (a) Gradient descent trajectories on the toy example
of equation (10), c = 1. Thick dots indicate initial value. (b)
SGD trajectories of several Fourier coefficients for Example 1.
Final kernels obtained are on left.

drift is likely caused by asymmetries of the optimization
landscape in the neighborhood of the optimal set Sc0 . This
phenomenon relates to observations of an implicit regulariza-
tion behavior of SGD (Zhang et al. 2016; Neyshabur et al.
2017), as it exhibits the same convergence to the minimum
Euclidean norm solution. We provide a mathematical char-
acterization of the drift in Prop. 9 (App. B.8). This result
states that an SGD iteration makes points in the neighbor-
hood of Sc0 evolve (on average) towards the line {a = b},
such that after many iterations the distribution concentrates
around (

√
c0,
√
c0). Interestingly, if we try other variants of

stochastic optimization on the same deterministic objective,
we can get different dynamics for the drift, suggesting that it
is influenced by the precise algorithm used (see App. B.9 for
the case of Asynchronous SGD (ASGD) and example drift
in blue on Fig. 3a).

We now get back to the multidimensional setting for
Model 2. The above SGD results trivially apply to each com-
ponent, which evolve independently from each other. Impor-
tantly, the next proposition shows that the SGD solution then
drifts towards the matrix square root solution

√
A∗B∗ for

both factors, leading to a violation of genericity.
Proposition 6. In Model 2, assume diagonal coefficients of
the true parameters A∗ and B∗ are i.i.d. sampled from two
arbitrary non constant distributions. Then, the approximation
of SGD solution A = B =

√
A∗B∗ satisfies

ρ′(B, A) −→
d→+∞

E[c21]/E[c1]2 > 1, and is thus not S-generic.

The solution chosen within Sc by the SGD algorithm is
thus suboptimal for extrapolation.

3.3 Extension to Convolutional Model 1
We show qualitatively how the above observations for
Model 2 can provide insights for Model 1. Using the same
VAE-like SGD optimization framework for this case, where
we consider Z deterministic, being this time a Dirac pixel at
location (0, 0). We apply the DFT toX in Model 1 and use
the Parseval formula to convert the least square optimization
problem to the Fourier domain (see App. B.4). Simulating
SGD of the real and imaginary parts of k̂1 and k̂2, we see

in Fig. 3b the same drift behavior towards solutions having
identical squared modulus (|k̂1|2 = |k̂2|2), as described for
Model 2 in Sec. 3.2, reflecting the violation of S-genericity
by SGD of Prop. 6. As

ρ′(|k̂∗1 |2, |k̂∗2 |2) = ρ(k∗1 , k
∗
2) . (12)

this supports a violation of S-genericity for the convolution
kernels, such that the SGD optimization of Model 1 is also
suboptimal for extrapolation.

3.4 Enforcing Spectral Independence
In order to enforce genericity and counteract the effects
of SGD, we propose to alternate the optimization of the
model parameters with SDR-based genericity maximization.
To achieve this, we multiply the square difference between
the SDR and its ideal value of 1 by the normalization term〈
|k̂i2|2

〉
and alternate SGD steps of the original objective

with gradient descent steps of the following problem

minimize
k̂2

(ρ(k∗1 , k
∗
2)− 1)

2 〈|k̂2|2〉2 =
〈
|k̂2|2�

(
|k̂1|2

〈|k̂1|2〉
− 1
)〉2

.

(13)
Performance of this procedure is investigated in App. B.12.

4 Experiments on Deep Face Generators
We empirically assess extrapolation abilities of deep convo-
lutional generative networks, in the context of learning the
distribution of CelebA. We used a plain β-VAE11 ((Higgins
et al. 2017)) and the official tensorlayer DCGAN implemen-
tation12. The general structure of the VAE is summarized in
Suppl. Fig. 1b and the DCGAN architecture is very similar
(details in Suppl. Table 2). Unless otherwise stated, our anal-
ysis is done on the generative architecture of these models
(VAE encoder, GAN generator). We denote the 4 different
convolutional layers as indicated in Suppl. Fig. 1b: coarse
(closest to latent variables), intermediate, fine and image level.
The theory developed in previous sections was adapted to
match these applied cases, as explained in App. B.10.

4.1 Stretching Extrapolations
Extrapolations were performed by applying a 1.5 fold hori-
zontal stretching transformation to all maps of a given hid-
den convolutional layer and compare the resulting perturbed
image to directly stretching to the output sample. The extrap-
olated images obtained by distorting convolutional layers’
activation maps are presented in the two middle rows of
Fig. 4a for the VAE trained with 10000 iterations. Note the
top and bottom rows respectively correspond to the original
output samples, and the result of trivially applying stretch-
ing directly to them (these are only provided for comparison
with respect to extrapolated samples). This affects differently
features encoded at different scales of the picture: stretch-
ing the intermediate level activation maps (second row of
Fig. 4a) mostly keeps the original dimensions of each eye,
while inter-eye distance stretches in line with extrapolation

11
https://github.com/yzwxx/vae-celebA

12
https://github.com/tensorlayer/dcgan
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Figure 4: VAE stretching extrapolations. (a-c) VAE extrapolation samples (a-b classical VAE training, c using VAE interleaved
with SDR optimization, see text). (d-f) Pixel difference between stretched output and extrapolated samples. (g) Evolution of
MSE when stretching at the fine level, with and without SDR optimization. See also Suppl. Fig. 3.

ability that we introduced in Sec. 2 (Model 1). This suggests
that the detrimental effect of SGD optimization investigated
in Sec. 3.2 did not affect this layer. One plausible interpre-
tation of this good extrapolation behavior is the fact that, in
contrast with our toy examples, the intermediate level layer
contains a large number of channels trained in parallel trough
backpropagation. This may limit the propensity of the overpa-
rameterized solutions associated to a single channel to drift,
due to the multiple pathways exploited during optimization.
In contrast, extrapolation of the fine level activation maps
(second row of Fig. 4a), results in slight vertical artifacts; a
weaker extrapolation capability possibly related to the smaller
number of channels in this layer. Interestingly, Fig. 4b repli-
cating the result but after 40000 additional training iterations
shows perturbed images of poorer quality for this layer. This
suggests, as predicted in Section 3.2, a decrease of extrap-
olation capabilities with excessive training, as the drifting
regime shown in Fig. 3b takes over. In particular, stronger
periodic interference patterns like in Fig. 2 (bottom row) ap-
pear for the stretching of the fine level hidden layer, which
comprises fewer channels, and are thus likely to undergo an
earlier drift regime (compare Figs. 4b vs. 4a, 3rd row). To
quantify this effect, we tracked the evolution (as the num-
ber of iterations grows) of the mean square errors for the
complete picture (Fig. 4g), resulting from the stretch of the
fine level convolutional layer. This difference grows as the
training progresses and the same trend can be observed for
the mean squared error of the complete picture.

We next investigated whether enforcing more S-genericity
between layers during optimization can temper this effect.
We trained a VAE by alternatively minimizing spectral de-
pendence of eq. (13) at image, fine and intermediate levels,
interleaved with one SGD iteration on the VAE objective.
Fig. 4c,g show a clear effect of spectral independence mini-
mization on limiting the increase in the distortions as training
evolves. This is confirmed by the analysis of pixel difference
for 50000 iterations, as seen in Fig. 4f: perturbations of the
intermediate and fine level exhibit better localization, com-
pared to what was obtained at the same number of iterations
(Fig. 4e) with classical VAE training, supporting the link
between extrapolation and S-genericity of Sec. 2.7. See also
App. B.13.

Image level     Finer level     Interm. level    Higher level
Encoder
Decoder

0 6 0 6 0 6 0 6

Figure 5: Superimposed SDR histograms of trained VAE
decoder and encoder for different hidden layers.

4.2 Genericity of Encoder versus Decoder
The above qualitative results suggest that extrapolation capa-
bilities are observable to some extent in vanilla generative
architectures (the decoder of a VAE), but vary depending
on the layer considered and can be improved by SDR opti-
mization. We complement these qualitative observations by a
validation of the genericity assumption based on the compar-
ison with ”inverse” architecture (the encoder of a VAE, see
App. B.10), in line with Sec. 2.6. We study the distribution of
the SDR statistic between all possible (filter, activation map)
pairs in a given layer. The result for the VAE is shown in
Fig. 5, exhibiting a mode of the SDR close to 1 - the value of
ideal spectral independence - for layers of the decoder, which
suggests genericity of the convolution kernels between suc-
cessive layers. Interestingly, the encoder, which implements
convolutional layers of the same dimensions in reverse order,
exhibits a much broader distribution of the SDR at all levels,
especially for layers encoding lower level image features.
This is in line with results stating presented in Sec. 2.6, that
if a mechanism (here the generator) satisfies the principle
of independent causal mechanisms, the inverse mechanism
(here the encoder) will not (Shajarisales et al. 2015). In sup-
plemental analysis, (App. B.13, Suppl. Fig. 5), we performed
the same study on GANs.

Conclusion. Our framework to study extrapolation abil-
ities of multi-layered generators based on Independence of
Mechanisms replaces causal identifiability by a milder con-
straint of genericity, and shows how SGD training may be
detrimental to extrapolation. Experiments are consistent with
these insights and support spectral independence is a interest-
ing indicator of IM in convolutional generative models. This
provides insights to train statistical models that better capture
the mechanisms of empirical phenomena.
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Ethical Impact
Although this work is mostly theoretical and conceptual, we
anticipate the following impact of this research direction.
First, our work addresses how to enforce a causal structure in
generative models trained from data. This allows developing
statistical models that can better capture the outcomes of pre-
viously unseen perturbations to the system that generated the
data, and as a consequence can have a positive impact on our
ability to learn from observed data in context where experi-
ments are impossible for ethical and practical reasons. Our
focus on the notion of extrapolations is particularly suited
to be investigate unprecedented climatic, economical and
societal challenges facing humankind in the near future. Ad-
ditionally, augmenting the learning algorithms of artificial
systems with causal principles may allow more autonomy and
robustness when facing novel environment, possibly leading
to both positive and negative societal outcomes. Our approach
however proposes a way to understand, formulate and control
what kind of robustness should or should not be enforced,
providing decision makers with information to guide their
choices.
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