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Abstract
Graphical event models are representations that capture pro-
cess independence between different types of events in mul-
tivariate temporal point processes. The literature consists of
various parametric models and approaches to learn them from
multivariate event stream data. Since these models are inter-
pretable, they are often able to provide beneficial insights
about event dynamics. In this paper, we show how to com-
pactly model the situation where the order of occurrences of
an event’s causes in some recent historical time interval im-
pacts its occurrence rate; this sort of historical dependence is
common in several real-world applications. To overcome the
practical challenge of parameter explosion due to the number
of potential orders that is super-exponential in the number of
parents, we introduce a novel graphical event model based
on a parametric tree representation for capturing ordinal his-
torical dependence. We present an approach to learn such a
model from data, demonstrating that the proposed model fits
several real-world datasets better than relevant baselines. We
also showcase the potential advantages of such a model to an
analyst during the process of knowledge discovery.

1 Introduction & Related Work
Modeling temporal relationships between various types (la-
bels) of events in time-stamped streams of event occurrences
is useful in a wide variety of applications, including sys-
tem reliability, social networks, manufacturing processes,
retail, healthcare, politics, and finance. It is well known that
multivariate event streams in continuous time can be mod-
eled as samples from a marked (or multivariate) point pro-
cess [Aalen, Borgan, and Gjessing 2008; Cox and Lewis
1972] – a stochastic process that involves counting processes
for event labels. Each label is associated with a conditional
intensity function that determines its rate of occurrence at any
time given historical occurrences of its causal event labels.

The literature on multivariate point processes is vast and
varied, spanning parametric as well as neural models for
specifying how conditional intensity rates vary with histori-
cal occurrences. Parametric models that are most popular are
primarily of two types. One stream of research explores multi-
variate Hawkes processes with jumps in intensity at historical
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arrival epochs that decay over time [Bacry, Mastromatteo,
and Muzy 2015; Etesami et al. 2016; Xu, Luo, and Zha 2017;
Yu et al. 2020]. Another line of work considers models where
the conditional intensity rate is a piece-wise constant function
of historical occurrences [Gunawardana, Meek, and Xu 2011;
Parikh, Gunawardana, and Meek 2012; Bhattacharjya, Subra-
manian, and Gao 2018] . Other parametric approaches have
also been pursued [Simma et al. 2008], as have approaches
involving neural architectures [Du et al. 2016; Mei and Eisner
2017; Xiao et al. 2017; Gao et al. 2020].

All the aforementioned temporal models fit within the high-
level framework of graphical event models (GEMs) [Didelez
2008; Meek 2014], which are graphical representations of
marked point processes that explicitly indicate which labels’
historical occurrences have a direct influence on the process
dynamics of any particular event label. Such a graphical
framework improves interpretability and can be tremendously
insightful in applications where knowledge discovery is the
key task. The piece-wise constant family has an additional
advantage beyond interpretability; given a graph, learning
the conditional intensity parameters can typically be done
efficiently using summary statistics [Gunawardana, Meek,
and Xu 2011; Bhattacharjya, Subramanian, and Gao 2018].

Recent work within the piece-wise constant family of
GEMs has shown the promise of ordinal historical depen-
dence, where an event label’s arrival rate is determined by the
recent historical order in which its underlying causal events
have occurred [Bhattacharjya, Gao, and Subramanian 2020].
However, the state-of-the-art model and its associated learner
cannot adequately handle the super-exponential number of
potential orders as a function of the causes. This greatly limits
the model’s applicability on practical datasets as it is often un-
able to identify more than two or three parents. Furthermore,
the model assumes access to user-provided inputs which may
be unavailable without domain expertise. In this paper, we
introduce a novel tree-based representation for conditional in-
tensity parameters that compactly captures ordinal historical
dependence, as well as an associated learner that is effective
and more insightful for real-world datasets.

Motivation. We motivate the model with the help of an
illustrative example involving social unrest. Consider the
(ordinal) graphical event model in Figure 1(a) with 4 types of
recurring events: natural disasters (D) such as earthquakes or
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Figure 1: (a) Structure of an illustrative ordinal graphical event model (OGEM) for social unrest with 4 nodes (event labels):
disaster (D), crisis (C), stimulus (S) and protest (P). Windows for each node are also shown. (b) Illustrative tree parameter
representation for protest (P) events, with conditional intensities for every leaf order representation.

epidemics, socio-economic crises (C) such as food shortages,
government stimulus packages (S) and protests (P). In this
example, a disaster increases the rate of crisis events, while a
government stimulus might be able to dampen crisis events as
well as protests. Stimulus and protest events have self-loops,
with dampening and amplifying effects respectively.

Figure 1(b) shows an illustrative parametric representation
for the rate of protests (P) depending on the order of its
causes {C,P,S} – its parents in Figure 1(a) – in some recent
time window wP (such as a week). The data structure is
a tree that is split based on the number of preceding event
labels, ranging from k = 0 where nothing happens to k = 3
where all 3 parent labels occur in some order. Each node in
the tree represents a grouping of orders of subsets of {C,P,S}
with a fixed length k, where slots are either filled or available
or restricted; we refer to them as order representations. For
instance, [?,¬s] covers orders where the first label can be
any parent but the second cannot be S. The parameters at the
leaves compactly capture the effect of different equivalent
groupings of orders.

In this example, if only a single event (k = 1) occurs in the
window, then whether or not it is a crisis event ([c] vs [¬c])
impacts the rate λp. For k = 2 or k = 3, whether or not a
stimulus is the most recently occurred label is crucial to deter-
mine the rate. There is an additional nuance for k = 3 where
it also matters if a stimulus is provided immediately after a
crisis ([p, c, s] vs [c, p, s]); if not, the government is perceived
to be slow to respond. Note that the representation allows for
complex ordinal historical dependence while enabling param-
eter sharing; here there are 8 parameters rather than one for
each of the 16 possible orders of all subsets of {C,P,S}. The
reduction in the number of parameters is crucial for learning,
as it enables the detection of longer causal orders/chains as
influencers of a label’s arrival rate. Further details regarding
the order representations, how orders are determined from
data when there could be multiple occurrences of the same
label, model learning, etc. will be covered in later sections.

Summary of Contributions. Our main contribution is a
new GEM that deploys an ordinal tree representation for
conditional intensities. The representation is inspired by con-

ditional probability distributions in Bayesian networks [Pearl
1988] that embody context-specific independences [Boutilier
et al. 1996; Geiger and Heckerman 1996; Poole and Zhang
2003]. The novelty lies in the use of a tree for sharing or-
dinal conditional intensity parameters in graphical event
models, making it even more important in practice due to
the super-exponential number of orders of subsets of a set
of parents and the widespread availability of event stream
data. Prior work that has used trees in event models considers
whether events occur in user-provided historical basis func-
tions [Gunawardana, Meek, and Xu 2011]; in contrast, here
we propose an approach that groups parameters for histori-
cal orders. We describe a learning algorithm and show that
the proposed model fits many real-world datasets better than
relevant baselines. The main benefit however comes from
additional insights that the proposed model could provide to
an analyst; we briefly showcase some of these by highlight-
ing differences with baseline models that often learn sparser
graphs and do not distinguish between historical orders.

2 Background
An event stream is a sequence of time-stamped events, D =
{(li, ti)}Ni=1, where event label li occurs at time ti. li belongs
to label set L with cardinality M = |L|, and time ti ∈ R+

lies between t0 = 0 and final time tN+1 = T . All results in
the paper extend to multiple independent streams.

Any event stream in continuous time, under reasonable
regularity conditions, can be modeled as a marked point
process. The dynamics of event occurrences are captured
by conditional intensity functions, which measure the rate
at which an event label occurs. In general, the conditional
intensity for event label X at time t can be written as a
function of the history at that time, ht, i.e. it is denoted
λx(t|ht) where ht = {(li, ti) : ti < t} includes all preceding
events at time t. Not all event labels may however necessarily
influence X’s rate directly, which can be captured using the
notion of process independence [Didelez 2008] in a graphical
representation:
Definition 1. A graphical event model is a framework for
representing a marked point process over event labels L. It
includes:
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• A directed graph G with a node for every event label.
• Conditional intensity functions for each label X ∈ L at

any time t that depend only on historical occurrences of its
parent labels in G. Thus λx(t|ht) = λx(t|[h(U)]t), where
U are X’s parents and [h(U)]t is the restricted history,
[h(U)]t = {(li, ti) : ti < t, li ∈ U}.
We remind the reader that GEMs are merely a family of

models; to specify the model entirely, it is necessary to com-
pletely describe how the conditional intensities vary with
historical occurrences. Furthermore, one cannot consider ar-
bitrary historical dependence for learnability; some sort of
assumptions (such as around stationarity) are required. In
the next section, we discuss historical dependencies where
the recent historical order of occurrences of an event label’s
causes (parents in the GEM graph) impacts its arrival rate.

3 Ordinal Historical Dependence
We are interested in a GEM that captures ordinal historical
dependence, but since each parental label may occur several
times in history in a recurring event stream, a masking func-
tion [Bhattacharjya, Gao, and Subramanian 2020] is required,
to retain only distinct label occurrences from history, thereby
determining the active parental order at any time.

Definition 2. A masking function φ(·) converts an event tu-
ple sequence into a sub-sequence where no label is repeated.
Formally, φ(·) takes as input an event sequence s = {(lj , tj)}
and returns s′ = {(lk, tk) ∈ s : lk 6= lm for k 6= m}. It in-
duces a unique event label order on the input sequence s,
through a temporal ordering of the distinct labels in s′.

We consider two cases of masking function φ(·) due to
their simplicity and potential applicability: the ‘first’ and
‘last’ cases, depending on whether only the first or last oc-
currence of an event label in the input sequence is retained.
For example, the ‘first’ and ‘last’ masking functions convert
sequence [(S, 10), (C, 15), (S, 30)] into label orders [S,C]
and [C, S] respectively. These masking functions are suitable
for datasets where events do not occur too often, but other
potential masking functions may also be appropriate.

Definition 3. An order instantiation o for a set of labels Z
is a permutation of a subset of Z. The order instantiation at
time t in an event dataset D over a preceding time window
w is determined by applying masking function φ(·) to events
restricted to labels Z occurring within [max (t− w, 0), t).

In the remainder of the section, we distinguish between
two kinds of ordinal graphical event models (OGEMs) based
on the representation of the conditional intensity functions.

3.1 Tabular Ordinal Graphical Event Model
We borrow terminology from the Bayesian network litera-
ture [Koller and Friedman 2009]: when there is a correspond-
ing conditional intensity parameter for every order instanti-
ation of a node’s parents, we refer to the representation as
tabular. This version of the model in totality is defined as:

Definition 4. A tabular ordinal graphical event
model [Bhattacharjya, Gao, and Subramanian 2020]
for a masking function φ(·) and event label set L includes:

• A directed graph G with a node for every event label.
• Windows for every node in G,W = {wX : X ∈ L}.
• Conditional intensity rate parameters Λ, one for every

node and order instantiation o with respect to the node’s
parents, Λ = {ΛX : X ∈ L} = {λx|o : X ∈ L, ∀o}.
Figure 1(a) shows an illustrative OGEM graph with 4

nodes, along with the windows for every node. Unlike other
parametric models, an OGEM is intended to explicitly rep-
resent different rates for different orders of a node’s parents.
Unfortunately, a tabular OGEM is super-exponential in its
parametric complexity since it has a rate parameter for each
order instantiation; for a node X with parents U, there are∑|U|

i=0
|U|!
i! possible orders. This is problematic from the per-

spective of learning for several reasons; for instance, it is
likely that most order instantiations will never be observed in
the data. Thus, for OGEMs to be practically useful, a more
compact parameter representation is crucial.

3.2 Tree Ordinal Graphical Event Model
Figure 1(b) provides an example where multiple order instan-
tiations share a common rate parameter. For instance, [s, p, c],
[p, s, c], [c, s, p] and [s, c, p] are four distinct order instantia-
tions of size k = 3 for node P with parents {C,P,S} that have
a common rate λ = 0.2. However, it is not obvious how to
formalize parameter compression relative to the exhaustive
ordinal tabular representation. We propose a novel approach
using what we refer to as an order representation.
Definition 5. An order representation r of length k ≤ |U|
for a set of labels Z is a sequence of k slots (i.e. positions
in the sequence) that are either filled with a label in Z or
declared not to belong to a subset of Z (including ∅). It is
feasible if there is at least one order instantiation o of U that
is compatible with r, i.e. satisfies the conditions in each slot.

An order representation r groups order instantiations.
While denoting slots in r, we use the symbol ‘?’ to denote
no restrictions, and negation ‘¬’ to imply a specified restric-
tion. For instance, in Figure 1(b), the order representation
[?, ?,¬s] for orders of length k = 3 keeps the first two slots
unspecified and puts a restriction on the third slot disallowing
event label S, thereby enabling a common rate parameter
for each of [s, p, c], [p, s, c], [c, s, p] and [s, c, p] since it is a
leaf. A tree OGEM is one where parameters are mutually
exclusive and collectively exhaustive order representations:
Definition 6. A tree ordinal graphical event model for a
masking function φ(·) and event label set L includes:
• A directed graph G with a node for every event label.
• Windows for every node in G,W = {wX : X ∈ L}.
• Conditional intensity rate parameters Λ, one for every

node and set of feasible, mutually exclusive and collec-
tively exhaustive order representations r (with respect to
any subset of the node’s parents), Λ = {ΛX : X ∈ L} =
{λx|r : X ∈ L, ∀r}.
While it is not necessary for the conditional intensity pa-

rameters in a tree OGEM to be organized as leaves in a
tree, it is convenient to do so, to enforce mutually exclu-
sive and collectively exhaustive leaf order representations,
in which case we denote them as rL. Indeed, the use of
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slot-specification and slot-restriction complement each other
and both are necessary to enable splitting an internal node
in an order representation tree. For example, splitting the
node order representation [?, ?, ?] of length k = 3 in Fig-
ure 1(b) produces two children which respectively have a
slot-specification and slot-restriction in the third slot. We
describe tree learning in further detail in the next section.

Note that a fully specified order representation of length k
with no further degree of freedom is an order instantiation of
length k, but the flexibility from allowing lack of full spec-
ification enables coverage of variations of prior models in
the literature. The following result highlights some generality
of the tree representation, showing that it encompasses tabu-
lar OGEMs as well as an important special case of another
parametric GEM. All theorem proofs are in Appendix A1.
Theorem 7. A tabular OGEM and a proximal GEM
(PGEM) [Bhattacharjya, Subramanian, and Gao 2018]
where edges from parents have the same window are spe-
cial cases of a tree OGEM.

4 Learning
We present an approach for learning a tree OGEM {G,W,Λ}
from an event dataset D. We focus on learning the tree pa-
rameter representation Λ and a heuristic for windows W .
Details around learning graph G and computation of sum-
mary statistics are relegated to Appendix B as they have been
studied in prior work [Bhattacharjya, Gao, and Subramanian
2020]. Since all GEMs are potentially cyclic, one can learn
the model for each event label separately.

4.1 Learning Tree Parameter Representations
Suppose that an event label X’s parents U and window wX

are known. We take a score-based approach to learn a tree
parameter representation, where the tree consists of a sub-tree
for each order representation length k from 0 to |U|.

Computing the log likelihood and a score that adjusts for
model complexity is reasonably straightforward, at any stage
of tree construction. For event label X in a tree OGEM with
leaf order representations rL and corresponding intensities
λx|rL , its log likelihood for an event dataset D is:

logLX(D) =
∑
rL

(
−λx|rLD(rL) +N(x; rL)log(λx|rL)

)
,

(1)
where N(x; rL) is the number of times X is observed in
the dataset and the order instantiation is consistent with the
order representation rL in the preceding window wX , and
D(rL) is the duration over the entire time period where order
instantiations consistent with the condition rL hold. Counts
and durations depend on the window wX but this is hidden in
the notation for simplicity. We use the Bayesian information
criterion (BIC) score:

SX(U; ΛX ;D) = logLX(D)∗ − γ |ΛX |
2

log(T ), (2)

where logLX(D)∗ is the log likelihood for X from Equa-
tion (1) computed at the maximum likelihood estimates for

1Appendices can be found in the arXiv version of the paper.

Algorithm 1 Learn Tree Representation
1: procedure OPTTREE(event label X , parents U, window wX ,

masking function φ(·), dataset D)
2: Initialize root of tree T
3: for k from 0 to |U| do
4: Learn optimal subtree Tk from procedure ‘OptSubtree’
5: Make its root a child of the tree root
6: return Optimal tree T
1: procedure OPTSUBTREE(event label X , parents U, window
wX , masking function φ(·), dataset D, subtree length k)

2: Initialize representation listR, tree Tk and model informa-
tion for representations I as empty

3: Set root of subtree as r = [?, ?, · · · ] (k times)
4: Add r to listR and tree Tk
5: Compute all model information (summary stats, lambdas,

LL and score) for the root; store in I
6: whileR not empty do
7: Choose any representation r in R and determine all

feasible splits by filling a single slot
8: for both children rC in each feasible split of r do
9: if rC ∈ I then

10: Retrieve model information from I
11: else
12: Compute all model information; store in I
13: Consider feasible split with maximum total score
14: if feasible split and score improvement from this split

over parent > 0 then
15: Make parent r an internal node of tree Tk
16: Add both rC from this split to listR
17: else
18: Remove parent r from listR; make it a leaf node

return Optimal sub-tree Tk for this k; Model info. I

rates
(
λ̂x|rL = N(x;rL)

D(rL)

)
, |ΛX | is the number of conditional

intensities for X in the model, γ is a penalty weight on the
complexity (second) term, typically set to 1, and T is the
time horizon of the event dataset.

Algorithm 1 outlines a greedy approach for growing sub-
trees and therefore determining parameters at the leaves. Each
sub-tree starts with the root order representation that groups
all order instantiations of same length. A list of nodesR in
the tree is maintained, as is a data stucture I for storing infor-
mation such as log likelihoods and scores. For each node in
R, all possible feasible splits are considered by filling in any
one available slot in one child and restricting the correspond-
ing slot in the other child; this ensures mutually exclusive
order representations. The split with the optimal score im-
provement is made, and the tree growing procedure continues
until the score cannot be improved. Data structure I stores in-
formation for visited nodes, since it is possible to re-use prior
information at a later splitting decision. Computing the score
for any order representation in the tree requires scanning the
dataset and computing ordinal summary statistics (the counts
and durations in Equation 1); this procedure is outlined in
Appendix B.1 [Bhattacharjya, Gao, and Subramanian 2020].
The following result shows that the order in which nodes in
R are visited does not matter in the greedy procedure.

Theorem 8. The greedy optimal split decision at any node
in the candidate list of nodesR during Algorithm 1 does not
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depend on decisions at other nodes.

In most real-world datasets, a sub-tree does not grow max-
imally towards the full tabular representation; in fact, the en-
tire point is to avoid this situation through parameter sharing.
However, if this does indeed occur, the worst case complexity
for sub-tree construction is as follows:
Theorem 9. The number of nodes and edges in the maxi-
mally grown sub-tree for order representation length k is
O(Mk), and the worst-case time complexity for sub-tree
learning is upper bounded by O(kKMkN), assuming that
event labels occur in roughly the same proportion. Here M
is the number of event labels, N is the number of events and
K = |U| is the parent set size.

4.2 Learning Windows
Windows wX for all nodes X ∈ L can be learned by max-
imizing the log likelihood over an event dataset. We begin
by illustrating some challenges around optimizing the log
likelihood to obtain windows, and then propose a heuristic
approach for window estimation.

Formulation & Challenges. Let us consider a node X in
a tree OGEM and study how one may learn window wX that
optimizes log likelihood; all observations extend to tabular
OGEMs as well. When its parents U are known, recall that
the log likelihood on an event dataset can be written in terms
of counts and durations; after replacing maximum likelihood
estimates for conditional intensities in Equation 1:

logLX(D)∗ =
∑

rL

(
−N(x; rL) +N(x; rL)log

(
N(x;rL)
D(rL)

))
(3)

Both counts N(x; rL) and durations D(rL) are functions of
the window wX , making this a non-linear univariate opti-
mization problem. The maximization problem is however not
concave; in general, it has a large number of local maxima,
depending on how the various counts and durations depend
on window wX . This is illustrated in Appendix B.2 using
the simplest non-trivial case for order-dependent conditional
intensities for any node X in an OGEM.

A Heuristic Algorithm. To avoid the afore-mentioned in-
tractable optimization, we propose a heuristic that leverages
the fact that when a node X has only one parent Z, both tab-
ular and tree OGEMs are identical to a proximal GEM [Bhat-
tacharjya, Subramanian, and Gao 2018], making it relatively
easy to find the optimal window. We use the following no-
tation: {t̂zx} refers to the set of inter-event times from the
most recent occurrence of Z, if Z has occurred, to every
occurrence of X (Z 6= X), and {t̂zz} denotes inter-event
times between Z occurrences, including the time from the
last occurrence of Z to the final time T .
Theorem 10. For a node X with a single parent Z, the log
likelihood maximizing window wX either belongs to or is a
left limit of a window in the candidate set W ∗ = {t̂zx} ∪
max{t̂zz}, where {t̂} denotes inter-event times.

The above result shows that when a node has a single par-
ent, one can discover a small number of local maxima from

Algorithm 2 Learn Window and Parameters

1: procedure LEARNWINDOW(event label X , parents U,
masking function φ(·), dataset D, type of model learner:
‘tabular’ or ‘tree’)

2: Compute inter-event times {t̂zx} and {t̂zz} by scan-
ning through the dataset in D

3: Compute candidate window pairs Wc = {wZX},
∀Z,X ∈ L, assuming that Z is the only parent of X

4: S∗ ← −Inf
5: for each label Z in U do . Loop over all parents
6: Compute all model information including SX(U)

and ΛX , using procedure ‘ComputeScore’ with window
wX = wZX fromWc

7: if SX(U) > S∗ then
8: S∗ ← SX(U); w∗X ← wZX ; Λ∗X ← ΛX

return w∗X , Λ∗X

1: procedure COMPUTESCORE(event label X , parent set
Pa(X), window wX , masking function φ(·), dataset D,
type of model learner: ‘tabular’ or ‘tree’)

2: if Learner type is ‘tabular’ then
3: Compute ordinal summary statistics
4: Compute max. likelihood parameter estimates,

log likelihood at these estimates and score (Equation 2)
5: else . Learner type is ‘tree’
6: Run the procedure ‘OptTree’ from Algorithm 1
7: Compute total score by summing the scores of

leaf representations in I
return ΛX and score SX(Pa(X))

the inter-event times in the data, thereby easily computing the
global maximum by exhaustively comparing all local maxima.
Left limiting points are inspected though a hyper-parameter
ε, chosen to be 0.001 for all experiments [Bhattacharjya,
Subramanian, and Gao 2018].

An approach for learning windows using the above result
(as well as conditional intensity parameters), given the parent
set U, is outlined in Algorithm 2. This is shown for both
tabular and tree versions of OGEM. Here, inter-event times
are computed and then candidate windows are obtained by
assuming that a parent Z is the only parent of X . For each
candidate window – one for every parent of X – we compute
the optimal model, and retain the model and window with
the highest score. The OGEM-tree-W model from the experi-
mental section later in the paper uses this heuristic procedure
along with a tree learner for estimating model parameters.

4.3 Learning Parents
Since OGEMs fit within the broad framework of GEMs,
we use a standard score-and-search algorithm to learn the
parents for each node. Specifically, we use the Bayesian
information criterion (BIC) score (Equation 2) with a forward-
backward search algorithm, which has also been deployed
for related graphical models [Bhattacharjya, Subramanian,
and Gao 2018; Nodelman, Shelton, and Koller 2003]. At
each iteration, the search algorithm greedily tests whether
to add or remove a parental candidate for the target node by
checking whether the BIC score improves with the modified
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parental set. The algorithm is outlined in Appendix B.3.
Theorem 11. A forward-backward parent search approach
for nodeX with known windowwX and a constant maximum
number of parents, using tree learning from Algorithm 1, has
worst-case time complexity polynomial in the number of event
labels M and linear in the number of events N .

5 Experiments
5.1 Model Fitting
We test the proposed models on the task of model fitting.

Datasets. We consider the following datasets (see the sec-
ond and third columns of Table 1 for data size information):
• ICEWS [O’Brien 2010]: These are single stream datasets

involving socio-political events, one each for 4 countries in
the Integrated Crisis and Early Warning System (ICEWS)
political event dataset. We chose 4 out of 5 Latin Amer-
ican countries from the ICEWS extract in Bhattacharjya
et al. [2018]. Venezuela was omitted due to inconsistency
between labels while splitting the data into three sets.

• IPTV2 [Luo et al. 2015]: This dataset records users’ TV
watching behavior over almost a year, where event labels
are the TV program categories. We sample 100 users.

• LinkedIn [Xu, Luo, and Zha 2017]: This dataset includes
employment related new roles in a company for anony-
mous LinkedIn users. We sample 1000 employees.

• Mimic-II [Saeed et al. 2011]: These are patient electronic
health records from Intensive Care Unit visits over 7 years.
Small sequences are filtered out, resulting in 650 patients.

• Stack Overflow3 [Grant and Betts 2013]: This tracks user
behavior around receipt of badges to encourage engage-
ment in a question answering website. We sample 1000
users from the Du et al. [Du et al. 2016] data who acquire
one or more of 20 types of badges.

Models. The OGEMs with tabular and tree representations
are referred to as OGEM-tab and OGEM-tree respectively.
In these models, the user is required to specify a candidate
set of windows as hyper-parameters. OGEM-tree-W refers
to the tree OGEM where windows are learned automatically,
without user input, using the heuristic in Section 4.2. Two
other parametric GEM baselines are also compared:
• Multivariate Hawkes process (MHP) [Bacry et al. 2017]:

We consider a classic multivariate Hawkes process model
with exponential kernels that involves a decay rate and an
infectivity matrix. We use the tick4 library which takes a
least squares objective for learning; this is efficient and
results in a convex quadratic programming problem when
the decay rate is fixed. (See Appendix C.1 for details.)

• Proximal graphical event model (PGEM) [Bhattacharjya,
Subramanian, and Gao 2018]: This piece-wise constant
model allows different windows for different parents but
only accounts for whether a parent has occurred within its
2https://github.com/HongtengXu/Hawkes-Process-

Toolkit/tree/master/Data
3https://archive.org/details/stackexchange
4https://x-datainitiative.github.io/tick/modules/hawkes.html

proximal window. Importantly, it does not distinguish be-
tween orders of causal events. Here the learning approach
also identifies windows using a heuristic.

Experimental Setup. Each dataset is partitioned into three
splits: train (70%), dev (15%) and test (15%), only retain-
ing common event labels across these splits. We use time
to achieve the splits in single stream datasets like ICEWS
countries, e.g. if T = 100 days, then events up to time 70
days are in train. We use the user id to split multiple stream
datasets like IPTV, e.g. for 100 users, streams for 70 of them
make up the train set. We measure each model’s performance
by the log likelihood on the held-out test set.

For all models, if there is a parametric condition that is not
observed in the training data, we use a default intensity rate,
denoted λ0, treated as a hyper-parameter; this is particularly
important for OGEM-tab and a major limitation, since it
may be possible for some order instantiations to never be
observed during training. All hyper-parameter choices are
listed in Appendix C.1. Runtimes for all models range from
minutes to hours depending on the dataset size; these can be
reduced with optimized code and parellization.

Results. Table 1 shows the model goodness-of-fit evalu-
ated by the log-likelihood on the held-out test sets for the
4 single stream ICEWS datasets as well as the 4 multiple
stream datasets. For all OGEM based models, the better per-
forming result between masking function ‘first’ vs. ‘last’ is
shown; we note that this choice does not have much im-
pact for the datasets considered. The results highlight that
with the exception of IPTV and the Mexico ICEWS dataset,
the proposed ordinal models that exploit order tree repre-
sentations (OGEM-tree and OGEM-tree-W) outperform all
other models. The IPTV dataset in particular is clearly bet-
ter suited for self-exciting patterns from a Hawkes process,
which explains its popularity in this literature. Since people
are likely to continue to watch the same kinds of shows in
a short time period, an OGEM with its masking function
that reduces a sequence of the same label to a singleton is
perhaps inappropriate here. For the other datasets, however,
tree OGEMs prove adept at learning distinctive rate parame-
ters for select order instantiations involving several parents.
While OGEM-tab could do the same in principle, i.e. dis-
cover ordinal dependence involving several parents, it incurs
a high penalty due to the resulting parametric complexity.
OGEM-tree and OGEM-tree-W exploit the proposed order
representation to economize on parametric complexity across
several order instantiations over larger parental sets.

5.2 Case Studies
The primary benefit of OGEMs, particularly those with the
tree representation, is that they can be an important compo-
nent of an analyst’s toolkit during the process of knowledge
discovery from event stream data. They are helpful for glean-
ing information and better understanding temporal relation-
ships between event labels. The tree-based representation
allows learning more causal parents from limited data. We
briefly demonstrate this with illustrative examples.
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Dataset N (# events) M (# labels) MHP PGEM OGEM-tab OGEM-tree OGEM-tree-W

ICEWS
Argentina 3252 104 -1419 -1386 -1369 -1366 -1393
Brazil 4249 114 -2169 -2000 -2057 -2050 -1993
Colombia 841 79 -528 -534 -518 -518 -537
Mexico 1905 97 -760 -797 -771 -769 -766

IPTV 332980 16 -64168 -77009 -75114 -72696 -74491

LinkedIn 2932 10 -1593 -1462 -1478 -1418 -1406

Mimic 2419 75 -567 -500 -474 -429 -454

Stack Overflow 71254 22 -52543 -48323 -49344 -49192 -48232

Table 1: Dataset information and log likelihood results for the models on the test sets.

Figure 2: Parents and conditional intensity parameters across some models for badge #6 of Stack Overflow.

Stack Overflow. Figure 2 compares the learned parents
and some parameters from various models on a particular
label – badge #6 – from the Stack Overflow dataset. Here
MHP learns a dense infectivity matrix and therefore many
parents, making it less useful for understanding causal factors
(parameters for MHP as well as experimental details are
supplied in Appendix C.2). While it is possible to learn a
sparser and more interpretable infectivity matrix in MHP,
the model only allows excitation and cannot account for
inhibitory effects. OGEM-tab only learns few parents due
to the large penalty it incurs from model complexity. Both
PGEM and OGEM-tree show that badge #4 can have an
inhibitory effect on acquiring badge #6. OGEM-tree also
recognizes that someone with more distinct kinds of badges
is more likely to receive this badge; it can do so because it
only uses 9 parameters over 5 parents in this case.

ICEWS. OGEMs could also be suitable while mining a
dataset for finding parental orders associated with the highest
conditional intensity rates. Studying these orders could help
an analyst synthesize ‘stories’ around event labels of interest.
From analysis on a larger extract of a few Latin American
countries in the ICEWS political event dataset, where events
are tuples of the form (Source Actor, Action, Target Actor),
we observe historical order often has a major effect on events
involving protest or fighting between actors. In particular,
an escalation of events or a conciliatory effort immediately
followed by aggression increases the rate of protests. We
share two examples of this analysis, shown as parental order
instantiation with the highest rate −→ event label of interest:
• (Citizen (Peru), Appeal, Head of Govt. (Peru)); (Police

(Peru), Fight, Citizen (Peru))−→ (Protester (Peru), Protest,

Govt. (Peru))
• (Protester (Venezuela), Protest, Military (Venezuela));

(Military (Venezuela), Fight, Citizen (Venezuela));
(Protester (Venezuela), Protest, Govt. (Venezuela)) −→
(Protester (Venezuela), Protest, Govt. (Venezuela))

For this analysis, we used the ‘last’ masking function φ(·),
γ = 0.1 and λ0 = 0.001.

6 Conclusions
We have proposed a novel graphical event model that uses
a tree representation for capturing ordinal historical depen-
dence in conditional intensity functions for multivariate point
processes. Specifically, we make the following contributions:
1) an efficient tree ordinal GEM, improving upon a simpler
tabular representation; 2) practical efficient learning algo-
rithms of tree OGEM parameters as well as structure, plus a
heuristic for estimating windows that could also be applied to
prior work; and 3) empirical studies that show the competitive
performance of tree OGEM over relevant baselines. Future
work could pursue other heuristics for learning windows such
as those suggesting a more comprehensive set of candidate
windows, as well as variations involving choice of masking
function and other compact parameter representations.
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Ethical Statement
This paper is concerned with a particular class of graphical
event model, namely a tree-based ordinal graphical event
model (OGEM). Our contribution here is primarily around
formulating the model and proposing a machine learning
approach that uses event stream data involving various kinds
of events. The applicability is therefore broad, making the
model suitable for all sorts of domains with access to such
datasets, including system reliability, social networks, man-
ufacturing processes, retail, healthcare, politics and finance.
Since the proposed model is able to explicitly capture ordinal
historical dependence from an event label’s parent causes,
we have made the case that it could be a useful addition to an
analyst’s toolkit around discovery from event datasets.

One has to exercise necessary caution in interpreting the
graphical event model structure resulting from our proposed
model and algorithm as a causal graph. While the OGEM
tree model has a specific causal semantic interpretation with
respect to the dependence of the instantaneous rate of a child
node on the order of historical event occurrences of event
types in its parental set, it might be better understood as
a statistical, multivariate stochastic process model, particu-
larly since latent variables are often prevalent in real-world
datasets. Our work here is observational and not based on in-
terventions for deducing controlled cause-effect relationships,
which is the gold standard in causal inference. Practitioners
that apply these models in real-life problems should there-
fore exercise necessary caution with respect to drawing any
cause-effect conclusions based on the resulting models. Jux-
taposing relevant domain knowledge and expertise in the
chosen application area alongside our proposed model would
indeed be beneficial towards interpreting the accompanying
cause-effect semantics carefully and appropriately.

The proposed learning algorithm is dependent on the event
dataset, so we note that any bias in the sensing and recording
of events in the input dataset naturally carries over into the
learned model structure as well as parameters that result
from our algorithm. However, as long as the data collection
process is appropriately set up, the authors do not see any
bias or fairness related concern stemming from the proposed
innovation that exploits order representations to express and
learn an OGEM tree model.
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