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Abstract

In inference, open-set classification is to either classify a
sample into a known class from training or reject it as an
unknown class. Existing deep open-set classifiers train ex-
plicit closed-set classifiers, in some cases disjointly utiliz-
ing reconstruction, which we find dilutes the latent repre-
sentation’s ability to distinguish unknown classes. In con-
trast, we train our model to cooperatively learn reconstruction
and perform class-based clustering in the latent space. With
this, our Gaussian mixture variational autoencoder (GMVAE)
achieves more accurate and robust open-set classification re-
sults, with an average F1 increase of 0.26, through extensive
experiments aided by analytical results.

1 Introduction
Until recently, nearly all classification algorithms have been
designed for closed-set evaluation. This means that all test-
ing classes are seen in training. However, real-world ap-
plications necessitate open-set evaluation where unknown
classes, not seen in training, appear during testing. For in-
stance, computer vision systems in self-driving cars must
classify and navigate around many different objects. Given
the countless number of such possible objects, it is infeasi-
ble for all classes to be seen in training (Sünderhauf et al.
2018). Open-set recognition addresses this generalization of
the classification task.

While there are several facets of open-set learning, in
this paper we focus on training from C known classes for
(C + 1)-class classification. This (C + 1)-th class catches
all unknown test samples not belonging to any of the known
classes. The training and validation data have no unseen
classes from class C + 1. To this end, we present a novel
supervised, Gaussian mixture variational autoencoder (GM-
VAE). The bottleneck latent layer simultaneously learns re-
construction and performs class-based clustering (preserv-
ing closed-set classification ability). This allows the latent
representation to capture complementary structure and clas-
sifier information. Furthermore, the latent layer has the ex-
plicit capability to form multiple subclusters per class. This
challenges the implicit assumption made by many classifi-
cation methods that a class’s embedding is a convex set and
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thus is best represented by a single centroid (Bendale and
Boult 2016; Hassen and Chan 2020; Lee et al. 2018; Yoshi-
hashi et al. 2019). This provides further flexibility in captur-
ing complementary structure and classifier information.

Our contributions are as follows. In §3, we derive GM-
VAE to learn the embedding and amend its objective func-
tion to make open-set recognition more amenable. We also
present a new and simple open-set classification algorithm
that utilizes an “uncertainty” threshold on the learned em-
bedding. Following in §4, we present analytical results re-
garding the number of subclusters and the resulting heuristic
procedure for identifying the appropriate number of subclus-
ters in each class. Finally in §5, we conduct open-set clas-
sification experiments on three standard datasets. Our find-
ings from experiments are two-fold. First, GMVAE outper-
forms a state-of-the-art classification-reconstruction-based,
deep open-set classifier both in terms of accuracy and ro-
bustness to an increasing number of unknown classes. Sec-
ond, the use of extreme value theory (EVT) to infer class-
belongingness (Bendale and Boult 2016; Yoshihashi et al.
2019) may be ill-suited in this classification-reconstruction
open-set framework as we find that ours and another simple
algorithm consistently beat it.

2 Related Work
While closed-set classification has been well-studied, open-
set recognition has been gaining more attention in recent
years. Outlier or novelty detection is a precursor but, unlike
the problem studied herein, is not generally concerned with
distinguishing between the known classes (Geng, Huang,
and Chen 2020; Zhou and Paffenroth 2017). Such methods
may also rely on the use of synthetic, outlier training datasets
(Hendrycks, Mazeika, and Dietterich 2019) whereas we fo-
cus on training with only known classes. Earlier works that
study (C +1)-class classification utilize, for example, SVM
scores (Scheirer et al. 2013; Jain, Scheirer, and Boult 2014)
or sparse representation (Zhang and Patel 2017) to fit EVT-
based densities to predict classes. The use of deep networks
in open-set recognition appears even more recently in stud-
ies such as Bendale and Boult (2016) and Yoshihashi et al.
(2019). Both use similar procedures of fitting EVT-based
densities to the distances between a class’s embedding and
its centroid to approximate probability of class inclusion.
Finally, Oza and Patel (2019) also use a class conditioned
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autoencoder for open-set identification but instead apply an
EVT-based threshold derived from the training data’s recon-
struction error.

Herein, our experimental results are benchmarked against
the Classification-Reconstruction learning for Open-Set
Recognition (CROSR) method (Yoshihashi et al. 2019). We
chose this particular benchmark as it achieves state-of-the-
art open-set classification accuracies and it relies on the
same framework of dual reconstruction-classification learn-
ing with a latent space distance-based threshold. In this spe-
cific open-set realm, GMVAE reveals the pitfall of using a
closed-set, softmax classifier to cluster known classes and
showcases the reduction in open-space risk (Scheirer et al.
2013) from utilizing multiple subclusters per class.

We next summarize CROSR. The latent representation is
a concatenation [y, z] where y is the activation vector of
a closed-set, softmax classifier and z is the reconstructive
latent representation. To learn an effective y and z concur-
rently, Yoshihashi et al. (2019) introduced Deep Hierarchical
Reconstruction Nets (DHRNets). Conceptually, the DHR-
Net architecture is a deep classifier f with autoencoder net-
works hl, h̃l appended at the internal layers xl. Thus, bot-
tleneck representations can be extracted from multi-stage
features of the classifier. The autoencoders’ reconstructions
then form a reverse network to reconstruct the original in-
put. Mathematically, the main-body network f(x) = (y, z)
is comprised of

xl+1 = fl(xl) l-th layer of the DHRNet classifer
zl = hl(xl) encoder network for l-th layer

x̃l = gl(x̃l+1 + h̃l(zl)) decoder network h̃l
and reconstruction network gl for l-th layer

where networks are a series of convolutions and up or down-
sampling layers. For training, Yoshihashi et al. (2019) min-
imizes the sum of the cross-entropy classification error and
the L2 reconstruction errors.

With latent representation [y, z] in hand, CROSR ap-
plies EVT by fitting a Weibull distribution to the hyper-
sphere defined by d(x,Ci) = |[y, z] − µi|2 where µi is
the respective mean within class Ci. A proxy for proba-
bility of class inclusion is then given by P(x ∈ Ci) =

1−WeibullCDF(d(x,Ci); ρi) = exp
{
−
(
d(x,Ci)
ηi

)mi}
and

thresholding is then used to classify a sample as “unknown.”
Here mi and ηi are parameters of the distribution fitted from
class Ci’s training data.

In contrast to DHRNets, Gaussian mixture variational au-
toencoders (Dilokthanakul et al. 2016) are deep generative
models which estimate the density of training data under as-
sumptions on its latent prior. This could lead to more com-
plex latent structures than in classification-based models, es-
pecially with the inclusion of multiple subclusters per class.
However, inference in this unsupervised setting is challeng-
ing, especially with open-set recognition. We address this by
extending this deep generative model to supervised learning
including capturing subclusters within classes.

3 Gaussian Mixture Variational
Autoencoders

In this section we present our complete, novel procedure
for open-set recognition. It follows the same two phases
as previous works: first, learn a latent representation to
(sub)cluster known classes, and second, apply an open-set
classification algorithm on that embedding. Our GMVAE
model is an extension of the Gaussian mixture variational
autoencoder presented in Dilokthanakul et al. (2016) and ex-
plained next.

Variational autoencoders (VAEs) assume data is gener-
ated from a uni-modal Gaussian prior. In Dilokthanakul
et al. (2016), the authors instead choose a mixture of Gaus-
sians as an intuitive extension. In order to maintain standard
backpropagation via the reparametrisation trick, the standard
VAE architecture was altered. The generative model, fac-
torizing as pβ,θ(x, z, w, v) = p(w)p(v)pβ(z|w, v)pθ(x|z),
generates a sample x from the latent variables z, w, and v
with the following process

w ∼ N (0, I), v ∼ Mult(π)

(z|w, v) ∼
K∏
k=1

N
(
µk(w;β), diag

(
σ2
k(w;β)

))vk
(x|z) ∼ N

(
µ(z; θ), diag

(
σ2(z; θ)

))
or B (µ(z; θ))

where K is the user-defined number of mixture compo-
nents and µk(·;β), σ2

k(·;β), µ(·; θ), and σ2(·; θ) are neu-
ral networks parametrized by β and θ, respectively. The
recognition model is then factorized as q(z, w, v|x) =
qφz (z|x)qφw(w|x)pβ(v|z, w) where φz and φw parametrize
neural networks that output means and diagonal co-
variances of the Gaussian posterior variational distribu-
tions. Using Bayes’ rule, the v-posterior term pβ(v|z, w)
can be written in terms of factors of the generative
model. To train, the log-evidence lower bound (ELBO)
Eq(z,w,v|x) [pβ,θ(x, z, w, v)/q(z, w, v|x)] is maximized. In
§3.1 and 3.2, we present the derivation and differences of
our GMVAE. Finally we introduce our new open-set classi-
fication algorithm that utilizes an “uncertainty” threshold in
§3.3.

3.1 Gaussian Mixture Variational Autoencoders
with Multiple Subclusters Per Class

Our GMVAE model nontrivially extends the unsupervised
learning framework of Dilokthanakul et al. (2016) to essen-
tially a Gaussian mixture prior for each class. For notation,
there are C known classes with each class composed of Kc

subclusters where c = 1, 2, ..., C . The samples x ∈ Rd
and labels y ∈ RC as one-hot vectors comprise the labeled,
known data set (x, y) ∈ X . The GMVAE’s generative pro-
cess pβ,θ(x, v, w, z|y) = pθ(x|z)pβ(z|w, y, v)p(w)p(v|y)
is conditioned on class and given by
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w ∼ N (0, I), (v|y) ∈ RKc ∼ Mult(π(y))

(z|w, y, v) ∼
C∏
c=1

Kc∏
k=1

N
(
µck(w;β), diag

(
σ2
ck(w;β)

))yc·vk
(x|z) ∼ B (µ(z; θ)) .

It is common to take π(y) to simply be uniform
for each class. The recognition model is factorized as
qφ(v, w, z|x, y) = pβ(v|z, w, y)qφw(w|x, y)qφz (z|x) where
φ = (φx, φw). We parametrize variational factors with net-
works φ that output mean and diagonal covariance of vari-
ational distributions and specify their form to be Gaussian
posteriors:

(z|x) ∼ N
(
µ(x;φz), diag

(
σ2(x;φz)

))
(w|x, y) ∼ N

(
µ(x, y;φw), diag

(
σ2(x, y;φw)

))
.

There is a pβ factor in the qφ factorization because the pβ
factor can be written in terms of generative factors, lowering
the number of trainable parameters. Using Bayes’, we can
rewrite pβ(v|z, w, y) as

pβ(v|z, w, y) =
pβ(z|w, y, v)p(v|y)∑
v′ pβ(z|w, y, v′)p(v′|y)

. (1)

The details are provided in the technical appendix. Another
benefit is that pβ(v|z, w, y) can be computed for all v with
simply one forward pass. The GMVAE’s ELBO is then given
by

L(K) = Eqφ(v,w,z|x,y)
[
log

pβ,θ(x, v, w, z|y)
qφ(v, w, z|x, y)

]
= Eqφz (z|x) [log pθ(x|z)] (reconstruction)

− Eqφw (w|x,y)qφz (z|x)

[
log qφz (z|x)

−
Kc∑
j=1

pβ(v = j|z, w, y) log pβ(z|w, y, v = j)


(latent covering)

−KL(qφw(w|x, y)||p(w)) (w-prior)
− Eqφw (w|x,y)qφz (z|x) [KL(pβ(v|z, w, y)||p(v|y))]

(subcluster v-prior).

Since K = (K1,K2, ...,KC) is user-defined, the ELBO de-
pendence on K is made explicit and used later in the anal-
yses. The reconstruction term promotes a latent representa-
tion meaningful to reconstruct the samples. The latent cov-
ering term attempts to subcluster the latent representation
based on classes. The w-prior and subcluster v-prior terms
drive those posteriors closer to their respective priors.

3.2 Modification of the ELBO: Removing v-Prior
In this subsection, we propose removing the v-
prior term from the original ELBO to make GM-
VAE more amenable to open-set recognition for
two reasons. First, minimizing the v-prior term
Eqφw (w|x,y)qφz (z|x) [KL(pβ(v|z, w, y)||p(v|y))] is in
direct conflict with the goal of distinct subclustering within
a class. Our goal is to create disjoint subclusters in a class’s
latent representation so as to further provide reconstruction
more flexibility and alleviate the assumption that a class’s
embedding is a convex set. However, notice that the v-prior
term is minimized when pβ(v|z, w, y) = p(v|y) for every
z, w, and y. Combined with (1) and a uniform p(v|y), this
in turn implies that pβ(z|w, y, v = i) = pβ(z|w, y, v = j)
for every w, y, i, and j. Equivalent generative model
distributions leads to mode collapse in the latent subclusters
due to the maximization of the latent covering term. Put
differently, the v-prior term discourages one-hot subcluster
v posteriors. However, this is exactly what is needed to
robustly identify subclusters.

Second, as proven in Proposition 2 in §4, without the v-
prior term the optimal GMVAE loss for C = 1 is non-
increasing with respect to K. This is an analytical result
which provides a heuristic procedure for identifying the ap-
propriate number of subclusters Kc to use for each class.
Given these two reasons, for all the experiments in §5, we
used the following modified ELBO:

Lno v-prior(K) = Eqφz (z|x) [log pθ(x|z)]
−KL(qφw(w|x, y)||p(w))

− Eqφw (w|x,y)qφz (z|x)

[
log qφz (z|x)

−
Kc∑
j=1

pβ(v = j|z, w, y) log pβ(z|w, y, v = j)

 .
In a sense, it is as if we do not impose a prior on the sub-
cluster distributions. While we could have also negated the
v-prior term, simply removing it actually yields the best ex-
perimental results.

3.3 Open-Set Classification Algorithms
With recent literature in open-set recognition, it has nearly
become universal to model class-belongingness by fitting a
Weibull distribution to the tail-end, inlier distances between
a class’s latent representations and its centroid (Bendale
and Boult 2016; Hassen and Chan 2020; Yoshihashi et al.
2019). Indeed, the benchmark method CROSR (Yoshihashi
et al. 2019) achieves state-of-the-art accuracies through this
EVT framework. However, our experiments demonstrate
that two much simpler algorithms can significantly outper-
form CROSR’s EVT-based classification algorithm. While
fitting an EVT distribution to the inlier distances may be an
effective way to model a decision boundary, we believe it
is inherently at odds with distances related to softmax clas-
sifiers. EVT makes use of tail-end data and thus is robust
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to underestimating probability of class inclusion for posi-
tive samples far away from its class’s centroid. However,
this procedure may render inaccurate predictions with em-
beddings that do not optimize for low intra-spread within
each known class. For instance, CROSR’s embedding is
composed of the closed-set, softmax classifier’s activation
vector; this encourages elements of that vector to tend to-
wards positive and negative infinity. This gives rise to known
embeddings being systematically far away from its class’s
centroid. Accordingly, we have empirically observed the
expected effect where the CROSR’S EVT procedure over-
recognizes unknown samples as known.

Next we present the two simple open-set classification al-
gorithms we implemented. While GMVAE outputs a Gaus-
sian distribution in latent space, we simply choose the mean
µ(x;φz) as the effective latent representation. Algorithm 1
is derived from the so-called outlier score from Hassen and
Chan (2020) but is most aptly described as nearest centroid
thresholding on distance to the nearest centroid. This al-
gorithm is modified to incorporate multiple subclusters per
class.

Algorithm 1: Nearest centroid thresholding on dis-
tance to the nearest centroid
Input: Training samples Xc for each known class
c = 1, 2, ..., C and test sample x̂

1. For each class c, compute Kc centroids of
µ(Xc;φz) using k-means clustering. Denote
centroid zck as k-th centroid of class c.

2. Let (c∗, k∗) = argminc,k ||µ(x̂;φz)− zck||2 and
d = minc,k ||µ(x̂;φz)− zck||2

3. If d < τ , predict class as c∗; else, predict class as
unknown C + 1

Experimental results show that thresholding on distance
to the nearest centroid more robustly fits a hypersphere de-
cision boundary around the respective centroid. However, a
similar shortcoming shared with CROSR’s EVT method is
that distance is a rotationally symmetric measure. It does
not include any sense of orientation. We stand to reason that
in any nearest centroid-based algorithm, the open space be-
tween centroids poses the most risk from an open-set clas-
sification standpoint. This leads into the second algorithm
which utilizes a novel threshold on an “uncertainty” quan-
tity U . We define U as the ratio between the distance to the
nearest centroid to the average distance to all other centroids.
At its base, this ratio captures how similar a sample is with
respect to the known classes. So if U = 1, the test sam-
ple’s latent representation is equidistant from all centroids
which can be interpreted as unclassifiable. If U = 0, the test
sample’s latent representation is exactly a centroid meaning
there is no ambiguity in classification. In this way, Algo-
rithm 2 includes a notion of orientation between centroids
as U penalizes the open space directly between centroids
more heavily. This is reminiscent of the nearest neighbors
distance ratio of Mendes Júnior et al. (2017).

Algorithm 2: Nearest centroid thresholding on un-
certainty U

Input: Training samples Xc for each known class
c = 1, 2, ..., C and test sample x̂

1. For each class c, compute Kc centroids of
µ(Xc;φz) using k-means clustering. Denote
centroid zck as k-th centroid of class c.

2. Let (c∗, k∗) = argminc,k ||µ(x̂;φz)− zck||2,
N =

∑C
c=1Kc, and

U =
minc,k ||µ(x̂;φz)− zck||2

1
N−1

∑
(c,k)6=(c∗,k∗) ||µ(x̂;φz)− zck||2

3. If U < τ , predict class as c∗; else, predict class as
unknown C + 1

4 Identifying the Number of Subclusters in
Each Class

Since the number of subclusters in each class is user-defined,
identifying the appropriate number is critical for model us-
age. A natural procedure that immediately arises is to iter-
atively apply GMVAE to each class’s data alone for an in-
creasing number of subclustersKc. Given the reconstruction
and clustering objectives, the empirical model loss terms
should naturally inform us of the optimal number of subclus-
ters. This is akin to increasing k in k-means clustering and
studying the resulting inertia plot. To this end, in this sec-
tion we first present analytical results regarding the effect of
K = K1 on the optimal C = 1 (single class), original and
modified GMVAE losses. In particular, we show monotonic-
ity of the optimal GMVAE losses with respect to K = K1.
This then provides a foundation for our heuristic procedure
for identifying the ideal number of subclusters in each class.

With two unrestrictive neural network assumptions, we
are able to prove two propositions regarding the effect of K
on the optimal original and modified GMVAE losses. The
assumptions and proofs can be found in the technical ap-
pendix. The first proposition demonstrates that when there
truly is only one subcluster within a class, and we know its
distribution, then the optimal original loss is constant with
respect to K. Since C = 1, we write x instead of (x, y).
Proposition 1. Let us assume that x ∈ X is distributed as
x ∼ pdata = B(µx), C = 1, and Assumption 1 holds. Then
the optimal original GMVAE loss is constant with respect to
K. In fact, we have that min−EX [L(K)] = −EX [log pdata]
for every K ≥ 1 and a globally optimal solution reads

µ(x;φ∗z) = µc=1,k(w;β
∗) = µz

σ2(x;φ∗z) = σ2
c=1,k(w;β

∗) = σ2
z

µ(x, y;φ∗w) = ~0, σ2(x, y;φ∗w) = ~1, µ(z; θ∗) = µx

for any constant vectors µz, σz .
The second proposition makes no data assumptions and

shows that the optimal modified loss with the v-prior re-
moved is non-increasing with respect to K.
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Proposition 2. Let us assumeC = 1 and Assumptions 1 and
2 hold. We have min {−EX [Lno v-prior(K;φz, φw, β, θ)]} ≥
min {−EX [Lno v-prior(K + 1;φz, φw, β, θ)]} for all K ≥ 1.

These proofs do not inform us on the transient dynamics
of training nor even reaching the global optimum. As such,
in the following experimental results section, we apply these
propositions in practice by comparing the latent covering
loss given reconstruction loss for eachK ≥ 1. This answers:
How well does K subclusters “cover” the embedding for a
given reconstruction level? When the latent covering loss’s
decreases begin to diminish (the propositions validate this
expected monotonicity), then it is an indication that addi-
tional subclusters are only marginally beneficial and perhaps
should not be included. It is worth noting from these propo-
sitions that there is no theoretical harm in over-specifying
the number of subclustersK in each class. However, the user
should be aware of the balance between computational diffi-
culty and meaningful subclusters (in terms of reconstruction
structure).

5 Experimental Results
The experimental results demonstrate several findings. First,
EVT may not be appropriate in conjunction with closed-
set, softmax classifiers as simple nearest centroid procedures
consistently beat it. Second, even without the added benefit
of subclustering, GMVAE for K = ~1 often leads to a latent
representation more amenable for open-set recognition com-
pared to CROSR. Finally, subclustering within classes rep-
resents a means of bolstering dual supervised-reconstruction
embeddings.

Each dataset has the following composition. The training
data has only labeled samples from the C known classes.
The validation set also only has samples from the same C
classes. The validation set is used to determine the threshold
τ . Finally, the test set has samples from the C known classes
and samples from additional Q unknown classes, which are
all treated as class C + 1.

For each of the experiments below, we perform an
ablation study. Four combinations of model and clas-
sification algorithms were applied: (i) CROSR with
CROSR’s EVT (CROSR+EVT), (ii) CROSR with Algo-
rithm 1 (CROSR+NC-D), (iii) GMVAE with Algorithm
1 (GMVAE+NC-D), and (iv) GMVAE with Algorithm 2
(GMVAE+NC-U). CROSR+NC-D and GMVAE+NC-D are
meant to directly compare the two latent representations’
amenability to open-set recognition. We did not study
CROSR with Algorithm 2 because our “uncertainty” mea-
sure is really a proxy for confidence and it has been shown
that it is erroneous to equate softmax classifiers with confi-
dence (Nguyen, Yosinski, and Clune 2015). Correctly adapt-
ing “uncertainty” to CROSR is outside of this paper’s scope.
For each combination, we calculate the macro-averaged F1
scores (the threshold τ is algorithmically picked based on
the validation set) for an increasing number Q of unknown
classes (and samples). The first two experiments are for
K = ~1 and in the last two, we manufacture classes with
multiple subclusters to apply K = (2, 2).

We optimize over the training set using Adam until the

loss, evaluated on the known validation set, plateaus. For the
MNIST and Fashion MNIST datasets (grayscale images),
the reconstruction distribution used was the unnormalized,
continuous Bernoulli distribution. For the CIFAR-10 dataset
(RGB images), a truncated [0, 1] Gaussian models the recon-
struction. The latent space dimension of z equals 10, 50, 5,
and 20 for the four experiments. A table of GMVAE network
architectures for each experiment can be found in the tech-
nical appendix. We will publish our code upon acceptance
of this paper.

5.1 Fashion MNIST Withholding 4 Classes
The six known classes are t-shirts/tops, trousers, pullovers,
dresses, coats, and shirts, while the four unknown classes are
sandals, sneakers, ankle boots, and bags. Fashion MNIST’s
standard training set is randomly split into the validation set
(6,000 samples of known classes) and training set (30,000
samples). Fashion MNIST’s standard testing set (10,000
samples) is kept the same. We use the same CROSR network
architecture as Yoshihashi et al. (2019) for their MNIST ex-
periment.

Known validation F1 scores versus τ are plotted in Fig-
ure 1 for CROSR+NC-D, GMVAE(K = ~1)+NC-D, and
GMVAE(K = ~1)+NC-U. For the purposes of compar-
ing the distance-based F1 scores, the smallest τ such that
all validation samples are classified as “unknown” C + 1
is standardized to 1. The procedure of Yoshihashi et al.
(2019) is followed and a threshold of 0.5 is used for all
CROSR+EVT experiments. For the other three model and
classification algorithm combinations, we have empirically
observed that a consistently good threshold τ to pick is
where the known validation F1 curve saturates or plateaus
(plotted with dashed lines). This can be thought of as in-
creasing the d or U hypersphere surrounding each class’s
centroid until diminishing classification accuracy returns.
Any larger τ can be thought of as overfitting the known val-
idation set and runs the risk of underclassifying “unknown”
samples. Let τ̃ = min {τ : F1′(τ) ≥ ε1}, then we define
this saturation as min

{
τ : τ > τ̃ and F1′(τ) ≤ ε2

}
. All

of the following experiments’ test F1 scores use this proce-
dure with ε1 = 1.5 and ε2 = 0.4 for picking the threshold τ .
The derivative is approximated using the forward difference.

Test F1 scores versus the number of unknown classes
Q are plotted in Figure 2. While GMVAE is not as accu-
rate in the closed-set regime, it outperforms CROSR as Q
increases. CROSR’s open-set accuracies, in turn, diminish
as Q increases, CROSR+EVT in particular. GMVAE’s F1
scores are more robust to increasing Q. For all Q ≥ 0,
GMVAE+NC-U’s F1 scores are on average 0.06 greater than
those of CROSR+EVT.

5.2 CIFAR-10 Withholding 4 Classes
The six known classes are airplanes, automobiles, birds,
cats, deer, and dogs. The four unknown classes are frogs,
horses, ships, and trucks. CIFAR-10’s standard training set
is randomly split into the validation set (6,000 samples of
known classes) and training set (24,000 samples). CIFAR-
10’s standard testing set (10,000 samples) is kept the same.
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Figure 1: Fashion MNIST known validation F1 scores versus
τ and the corresponding picked thresholds.

Figure 2: Fashion MNIST open-set test F1 scores.

For both CIFAR-10 experiments, we use the same CROSR
architecture as Yoshihashi et al. (2019) for their CIFAR-10
experiment.

Test F1 scores are plotted in Figure 3. GMVAE con-
sistently beats CROSR and again CROSR+EVT performs
worst. Algorithm 2 augments GMVAE and we deduce this
is because unknown CIFAR-10 samples are more difficult to
distinguish and thus more likely to be embedded to the inte-
rior of known latent clusters where “uncertainty” has more
influence. For all Q ≥ 0, GMVAE+NC-U F1 scores are on
average 0.25 greater than those of CROSR+EVT.

We believe the underlying reason why CROSR’s F1
scores in Figures 3 and 8 are so poor is because the ac-
tivation vector y monopolizes the embedding since the re-
construction latent component z fails to cluster the classes.
This is confirmed with latent t-SNE plots. We first show a
t-SNE plot of the CROSR latent representation components
in Figure 4 to bring into question the explicit use of classi-
fier activation vectors in an open-set recognition embedding.
We see that the reconstruction latent variable z does little to
cluster the known classes and so open-set classification is
dominated by the known classifier’s activation vector y.

In contrast to CROSR, GMVAE’s latent representation
µ(x;φz) in Figure 5 separates classes better (in comparison
to the right figure in Figure 4). GMVAE’s embedding is able
to effectively capture both class and reconstruction infor-

Figure 3: K = ~1 CIFAR-10 open-set test F1 scores.

Figure 4: t-SNE plot of (left) both components [y, z], (cen-
ter) only y, and (right) only z of CROSR’s training latent
representations for the first CIFAR-10 experiment. Stars are
the respective component’s class centroids.

mation simultaneously, leading to more amenable open-set
recognition. As CIFAR-10 images are highly hetergeneous
within classes, we expect class overlap from reconstruction.

Figure 5: t-SNE plot of µ(x;φz) of GMVAE’s training latent
representations for the first CIFAR-10 experiment. Stars are
the class centroids.
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5.3 MNIST with “Even” and “Odd” Classes
The two known classes are “even,” comprised of digits 0 and
2, and “odd,” comprised of digits 1 and 3. The six unknown
classes are digits 4 and greater. MNIST’s standard training
set is randomly split into the validation set (4,000 samples
of known classes) and training set (about 18,000 samples).
MNIST’s standard testing set (10,000 samples) is kept the
same. We use the same CROSR architecture as Yoshihashi
et al. (2019) for their MNIST experiment.

This is a clearcut example where each class has two sub-
clusters. To determine that K = (2, 2) is indeed the optimal
GMVAE selection, we implement the procedure in §4 in Fig-
ure 6. On the left, the mean difference between the K = 1
andK = 2 latent covering loss is 0.86 while the mean differ-
ence between K = 2 and K = 3 is 0.22. This is indicative
of two true subclusters within “even.” Similarly on the right,
the mean difference between K = 1 and K = 2 latent cov-
ering loss is 1.23 while the mean difference between K = 2
and K = 3 is -0.09. This is again indicative of two true sub-
clusters within “odd.” For these plots, the early epochs are
truncated.

Figure 6: The latent covering loss plotted against reconstruc-
tion loss for increasing K for the (left) “even” and (right)
“odd” classes of MNIST.

Test F1 scores are plotted in Figure 7. Here, CROSR+NC-
D outperforms GMVAE+NC-D but not GMVAE+NC-U.
However, CROSR+EVT again performs worst. There is a
significant increase in GMVAE open-set accuracy and ro-
bustness to increasing Q from utilizing the “uncertainty”
threshold. This algorithm complements the use of class
subclusters as unknown classes’ latent representations are
strategically more likely embedded in the open space be-
tween centroids where U is larger. For all Q ≥ 0,
GMVAE+NC-U F1 scores are on average 0.29 greater than
those of CROSR+EVT.

5.4 CIFAR-10 with “Animals” and “Vehicles”
Classes

The two known classes are “animals,” comprised of cats and
dogs, and “vehicles,” comprised of cars and trucks. The un-
known classes are the other 6 classes. CIFAR-10’s standard
training set is randomly split into the validation set (4,000
samples of known classes) and training set (16,000 sam-
ples). CIFAR-10’s standard testing set (10,000 samples) is
kept the same. Determining that K = (2, 2) is again the
optimal GMVAE selection is qualitatively the same as the

Figure 7: “Even” and “odd” MNIST open-set test F1 scores.

previous experiment. The parallel figures are placed in the
technical appendix.

Test F1 scores are plotted in Figure 8. Discussed in §3.3,
as a result of CROSR’s softmax classifier, the centroids are
not representative and thus its open-set classification suffers.
Again, because of the class subclusters, the “uncertainty”
threshold provides a significant increase in open-set recog-
nition capability. For all Q ≥ 0, GMVAE+NC-U F1 scores
are on average 0.44 greater than those of CROSR+EVT.

Figure 8: K = (2, 2) CIFAR-10 open-set test F1 scores.

6 Conclusion
We developed GMVAE, an extension of Gaussian mix-
ture variational autoencoders, as a better means of dual
reconstruction-classification learning for open-set recogni-
tion. To augment this model we also introduced a novel
“uncertainty” threshold that consistently beats other algo-
rithms. Multiple image recognition experiments demon-
strate that GMVAE outperforms CROSR, a previously state-
of-the-art deep open-set classifier utilizing this same dual
reconstruction-classification framework. The use of multi-
ple subclusters per class and not relying on closed-set, soft-
max classifiers in the embedding, we believe, are instrumen-
tal in these results. Non-convex clustering of known classes
remains an interesting open avenue of research within open-
set recognition.
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Ethics Statement
The immediate motivation for open-set recognition falls un-
der automation. The ability of classifiers to predict unknown
classes would focus and streamline human interaction with
the system. This is perhaps most evident with computer vi-
sion tasks such as those found in automated driving. A pro-
cedure for identifying unknowns is critical when it is im-
possible to include all feasible classes in training. However,
this in turn leads to the larger, ethics-centered question of
how conservatively to proceed given an “unknown” classifi-
cation. For instance, with autonomous driving, this requires
a dilemmic balance between stopping to avoid hitting a po-
tential life and perhaps consistently disrupting traffic flow.

While the focus of open-set recognition has primarily
been image recognition, we also apply GMVAE to cancer
treatment predictions. Cancer treatment regimens often con-
sist of a combination, or “cocktail,” of drugs. The landscape
of cancer drug cocktails evolves with discoveries of novel
cocktails with improved treatment and lessening side effects.
Predicting cancer treatments can, therefore, be naturally for-
mulated in terms of an open-set learning problem. Again,
both physicians and patients may benefit from the automated
efficiencies of this application but there might certainly be
unintended negative effects. Any deep network can suffer
from erroneously learning from demographic data and thus
run the risk of being inappropriately biased. Our system is
no different. While this may not present issues in innocuous
datasets such as CIFAR-10, leveraging any biases in medi-
cal data could put large populations at risk for applications
in medical treatment.

Finally, we have empirically observed that better open-set
recognition often accompanies poorer closed-set classifica-
tion. It seems natural to expect a trade-off between classify-
ing known classes and robustly identifying unknown classes.
And so, the consequences of failure of either open or closed-
set classification can be unbounded in application. The fur-
ther development of more robust and accurate deep open-set
classifiers is therefore of significant importance as automa-
tion increases in the near future.
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