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Abstract

Most unsupervised NLP models represent each word with a
single point or single region in semantic space, while the ex-
isting multi-sense word embeddings cannot represent longer
word sequences like phrases or sentences. We propose a
novel embedding method for a text sequence (a phrase or a
sentence) where each sequence is represented by a distinct
set of multi-mode codebook embeddings to capture different
semantic facets of its meaning. The codebook embeddings
can be viewed as the cluster centers which summarize the
distribution of possibly co-occurring words in a pre-trained
word embedding space. We introduce an end-to-end train-
able neural model that directly predicts the set of cluster cen-
ters from the input text sequence during test time. Our ex-
periments show that the per-sentence codebook embeddings
significantly improve the performances in unsupervised sen-
tence similarity and extractive summarization benchmarks.
In phrase similarity experiments, we discover that the multi-
facet embeddings provide an interpretable semantic represen-
tation but do not outperform the single-facet baseline.

Introduction
Collecting manually labeled data is an expensive and tedious
process for new or low-resource NLP applications. Many of
these applications require the text similarity measurement
based on the text representation learned from the raw text
without any supervision. Examples of the representation in-
clude word embedding like Word2Vec (Mikolov et al. 2013)
or GloVe (Pennington, Socher, and Manning 2014), sentence
embeddings like skip-thoughts (Kiros et al. 2015), contextu-
alized word embedding like ELMo (Peters et al. 2018) and
BERT (Devlin et al. 2019) without fine-tuning.

The existing work often represents a word sequence (e.g.,
a sentence or a phrase) as a single embedding. However,
when squeezing all the information into a single embedding
(e.g., by averaging the word embeddings or using CLS em-
bedding in BERT), the representation might lose some im-
portant information of different facets in the sequence.

Inspired by the multi-sense word embeddings (Lau et al.
2012; Neelakantan et al. 2014; Athiwaratkun and Wilson
2017; Singh et al. 2020), we propose a multi-facet repre-
sentation that characterizes a phrase or a sentence as a fixed
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The company acquired the real property to save tax .
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Figure 1: The input phrase real property is represented by
K = 5 cluster centers. The previous work discovers the
multiple senses by clustering the embedding of observed co-
occurring words. Instead, our compositional model learns to
predict the embeddings of cluster centers from the sequence
of words in the input phrase so as to reconstruct the (unseen)
co-occurring distribution well.

number of embeddings, where each embedding is a cluster-
ing center of the words co-occurring with the input word
sequence.

In this work, a facet refers to a mode of the co-occurring
word distribution, which might be multimodal. For example,
the multi-facet representation of real property is illustrated
in Figure 1. Real property can be observed in legal docu-
ments where it usually means real estate, while real property
can also mean a true characteristic in philosophic discus-
sions. The previous unsupervised multi-sense embeddings
discover those senses by clustering the observed neighbor-
ing words (e.g., acquired, save, and tax) and an important
facet, a mode with high probability, could be represented by
several close cluster centers. Notice that the approaches need
to solve a distinct local clustering problem for each phrase
in contrast with the topic modeling like LDA (Blei, Ng, and
Jordan 2003), which clusters all the words in the corpus into
a global set of topics.
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In addition to a phrase, we can also cluster the nearby
words of a sentence which appears frequently in the corpus.
The cluster centers usually correspond to important aspects
rather than senses (see an example in Figure 2) because a
sentence usually has multiple aspects but only one sense.
However, extending the clustering-based multi-sense word
embeddings to long sequences such as sentences is difficult
in practice due to two efficiency challenges. First, there are
usually many more unique phrases and sentences in a cor-
pus than there are words, while the number of parameters for
clustering-based approaches is O(|V | × |K| × |E|), where
|V | is the number of unique sequences, |K| is the number of
clusters, and |E| is the embedding dimensions. Estimating
and storing such a large number of parameters takes time and
space. More importantly, much more unique sequences im-
ply much fewer co-occurring words to be clustered for each
sequence, especially for sentences. An effective model needs
to overcome this sample efficiency challenge (i.e., sparse-
ness in the co-occurring statistics), but clustering approaches
often have too many parameters to learn the compositional
meaning of each sequence without overfitting.

Nevertheless, the sentences (or phrases) sharing multiple
words often lead to similar cluster centers, so we should be
able to solve these local clustering problems using much
fewer parameters to circumvent the challenges. To achieve
the goal, we develop a novel Transformer-based neural en-
coder and decoder. As shown in Figure 1, instead of clus-
tering co-occurring words beside an input sequence at test
time as in previous approaches, we learn a mapping between
the input sequence (i.e., phrases or sentences) and the corre-
sponding cluster centers during training so that we can di-
rectly predict those cluster centers using a single forward
pass of the neural network for an arbitrary unseen input se-
quence during testing.

To train the neural model that predicts the clustering cen-
ters, we match the sequence of predicted cluster centers and
the observed set of co-occurring word embeddings using a
non-negative and sparse permutation matrix. After the per-
mutation matrix is estimated for each input sequence, the
gradients are back-propagated to cluster centers (i.e., code-
book embeddings) and to the weights of our neural model,
which allows us to train the whole model end-to-end.

In the experiments, we evaluate whether the proposed
multi-facet embeddings could improve the similarity mea-
surement between two sentences, between a sentence and
a document (i.e., extractive summarization), and between
phrases. The results demonstrate multi-facet embeddings
significantly outperforms the classic single embedding base-
line when the input sequence is a sentence.

We also demonstrate several advantages of the proposed
multi-facet embeddings over the (contextualized) embed-
dings of all the words in a sequence. First, we discover that
our model tends to use more embeddings to represent an
important facet or important words. This tendency provides
an unsupervised estimation of word importance, which im-
proves various similarity measurements between a sentence
pair. Second, our model outputs a fixed number of facets
by compressing long sentences and extending short sen-
tences. In unsupervised extractive summarization, this ca-

pability prevents the scoring function from biasing toward
longer or shorter sentences. Finally, in the phrase similarity
experiments, our methods capture the compositional mean-
ing (e.g., a hot dog is a food) of a word sequence well and
the quality of our similarity estimation is not sensitive to the
choice of K, the number of our codebook embeddings.

Main Contributions
1. As shown in Figure 1, we propose a novel framework

that predicts the cluster centers of co-occurring word
embeddings to overcomes the sparsity challenges in our
self-supervised training signals. This allows us to extend
the idea of clustering-based multi-sense embeddings to
phrases or sentences.

2. We propose a deep architecture that can effectively en-
code a sequence and decode a set of embeddings. We also
propose non-negative sparse coding (NNSC) loss to train
our neural encoder and decoder end-to-end.

3. We demonstrate how the multi-facet embeddings could be
used in unsupervised ways to improve the similarity be-
tween sentences/phrases, infer word importance in a sen-
tence, extract important sentences in a document. In the
appendix, we show that our model could provide asym-
metric similarity measurement for hypernym detection.

4. We conduct comprehensive experiments in the main pa-
per and appendix to show that multi-facet embedding is
consistently better than classic single-facet embedding
for modeling the co-occurring word distribution of sen-
tences, while multi-facet phrase embeddings do not yield
a clear advantage against the single embedding baseline,
which supports the finding in Dubossarsky, Grossman,
and Weinshall (2018).

Method
In this section, we first formalize our training setup and next
describe our objective function and neural architecture. Our
approach is visually summarized in Figure 2.

Self-supervision Signal
We express tth sequence of words in the corpus as It =
wxt ...wyt<eos>, where xt and yt are the start and end po-
sition of the input sequence, respectively, and <eos> is the
end of sequence symbol.

We assume neighboring words beside each input phrase
or sentence are related to some facets of the se-
quence, so given It as input, our training signal is
to reconstruct a set of co-occurring words, Nt =
{wxt−dt1 , ...wxt−1, wyt+1, ...wyt+dt2}.

1 In our experiments,
we train our multi-facet sentence embeddings by setting Nt
as the set of all words in the previous and the next sentence,
and train multi-facet phrase embeddings by setting a fixed
window size dt1 = dt2 = 5.

Since there are not many co-occurring words for a long
sequence (none are observed for unseen testing sequences),
the goal of our model is to predict the cluster centers of the

1The self-supervised signal is a generalization of the loss for
prediction-based word embedding like Word2Vec (Mikolov et al.
2013). They are the same when the input sequence length |It| is 1.
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Beautiful music starts . The girl sings into a microphone . <eos> A star is born on the stage .
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Figure 2: Our model for sentence representation. We represent each sentence as multiple codebook embeddings (i.e., cluster
centers) predicted by our sequence to embeddings model. Our loss encourages the model to generate codebook embeddings
whose linear combination can well reconstruct the embeddings of co-occurring words (e.g., music), while not able to reconstruct
the negatively sampled words (i.e., the co-occurring words from other sentences).

words that could ”possibly” occur beside the text sequence
rather than the cluster centers of the actual occurring words
in Nt (e.g., the hidden co-occurring distribution instead of
green and underlined words in Figure 2). The cluster cen-
ters of an unseen testing sequence are predictable because
the model could learn from similar sequences and their co-
occurring words in the training corpus.

To focus on the semantics rather than syntax, we view
the co-occurring words as a set rather than a sequence as
in skip-thoughts (Kiros et al. 2015). Notice that our model
considers the word order information in the input sequence
It, but ignores the order of the co-occurring words Nt.

Non-negative Sparse Coding Loss
In a pre-trained word embedding space, we predict the clus-
ter centers of the co-occurring word embeddings. The em-
beddings of co-occurring words Nt are arranged into a ma-
trix W (Nt) = [wt

j ]j=1...|Nt| with size |E| × |Nt|, where
|E| is the dimension of pre-trained word embedding, and
each of its columns wt

j is a normalized word embedding
whose 2-norm is 1. The normalization makes the cosine dis-
tance between two words become half of their squared Eu-
clidean distance.

Similarly, we denote the predicted cluster centers ctk of
the input sequence It as a |E| × K matrix F (It) =
[ctk]k=1...K , where F is our neural network model and K is
the number of clusters. We fix the number of clusters K to
simplify the design of our prediction model and the unsuper-

vised scoring functions used in the downstream tasks. When
the number of modes in the (multimodal) co-occurring dis-
tribution is smaller than K, the model can output multiple
cluster centers to represent a mode (e.g., the music facet in
Figure 2 is represented by two close cluster centers). As a
result, the performances in our downstream applications are
not sensitive to the setting of K when K is larger than the
number of facets in most input word sequences.

The reconstruction loss of k-means clustering in the
word embedding space can be written as ||F (It)M −
W (Nt)||2 =

∑
j ||(

∑
kMk,jc

t
k) −wt

j ||2, where Mk,j =
1 if the jth word belongs to the k cluster and 0 otherwise.
That is, M is a permutation matrix which matches the clus-
ter centers and co-occurring words and allow the cluster cen-
ters to be predicted in an arbitrary order.

Non-negative sparse coding (NNSC) (Hoyer 2002) re-
laxes the constraints by allowing the coefficient Mk,j to be
a positive value but encouraging it to be 0. We adopt NNSC
in this work because we observe that the neural network
trained by NNSC loss generates more diverse topics than k-
means loss does. We hypothesize that it is because the loss
is smoother and easier to be optimized for a neural network.
Using NNSC, we define our reconstruction error as

Er(F (It),W (Nt)) = ||F (It)M
Ot −W (Nt)||2

s.t.,MOt = argmin
M

||F (It)M −W (Nt)||2 + λ||M ||1,

∀k, j, 0 ≤Mk,j ≤ 1, (1)
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where λ is a hyper-parameter controlling the sparsity of M .
We force the coefficient value Mk,j ≤ 1 to avoid the neural
network learning to predict centers with small magnitudes
which makes the optimal values of Mk,j large and unstable.

We adopt an alternating optimization strategy similar to
the EM algorithm for k-means. At each iteration, our E-step
estimates the permutation coefficient MOt after fixing our
neural model, while our M-step treats MOt as constants
to back-propagate the gradients of NNSC loss to our neu-
ral network. A pseudo-code of our training procedure could
be found in the appendix. Estimating the permutation be-
tween the prediction and ground truth words is often compu-
tationally expensive (Qin et al. 2019). Nevertheless, optimiz-
ing the proposed loss is efficient because for each training
sequence It, MOt can be efficiently estimated using con-
vex optimization (our implementation uses RMSprop (Tiele-
man and Hinton 2012)). Besides, we minimize the L2 dis-
tance, ||F (It)M

Ot −W (Nt)||2, in a pre-trained embed-
ding space as in Kumar and Tsvetkov (2019); Li et al. (2019)
rather than computing softmax.

To prevent the neural network from predicting the same
global topics regardless of the input, our loss function for
tth sequence is defined as

Lt(F ) = Er(F (It),W (Nt))− Er(F (It),W (Nrt)), (2)

whereNrt is a set of co-occurring words of a randomly sam-
pled sequence Irt . In our experiment, we use SGD to solve
F̂ = argminF

∑
t Lt(F ). Our method could be viewed as

a generalization of Word2Vec (Mikolov et al. 2013) that can
encode the compositional meaning of the words and decode
multiple embeddings.

Sequence to Embeddings
Our neural network architecture is similar to Transformer-
based sequence to sequence (seq2seq) model (Vaswani et al.
2017). We use the same encoder TE(It), which transforms
the input sequence into a contextualized embeddings

[ext ...eyte<eos>] = TE(wxt ...wyt<eos>), (3)

where the goal of the encoder is to map the similar sen-
tences, which are likely to have similar co-occurring word
distribution, to similar contextualized embeddings.

Different from the typical seq2seq model (Sutskever,
Vinyals, and Le 2014; Vaswani et al. 2017), our decoder
does not need to make discrete decisions because our out-
puts are a sequence of embeddings instead of words. This
allows us to predict all the codebook embeddings in a sin-
gle forward pass as in Lee et al. (2019) without requiring an
expensive softmax layer or auto-regressive decoding.2

To make different codebook embeddings capture differ-
ent facets, we pass the embeddings of <eos>, e<eos>, to
different linear layers Lk before becoming the input of the
decoder TD. The decoder allows the input embeddings to
attend each other to model the dependency among the facets
and attend the contextualized word embeddings from the

2The decoder can also be viewed as another Transformer en-
coder which attends the output of the first encoder and models the
dependency between predicted cluster centers.

encoder, ext
...eyte<eos>, to copy the embeddings of some

keywords in the word sequence as our facet embeddings
more easily. Specifically, the codebook embeddings

F (It) = TD(L1(e<eos>)...LK(e<eos>), ext ...eyte<eos>).

(4)

We find that removing the attention on the
ext

...eyte<eos> significantly deteriorates our valida-
tion loss for sentence representation because there are often
too many facets to be compressed into a single embed-
ding. On the other hand, the encoder-decoder attention
does not significantly change the performance of phrase
representation, so we remove the connection (i.e., encoder
and decoder have the same architecture) in models for
phrase representation. Notice that the framework is flexible.
For example, we can encode the genre of the document
containing the sentence if desired.

Experiments
Quantitatively evaluating the quality of our predicted clus-
ter centers is difficult because the existing label data and
metrics are built for global clustering. The previous multi-
sense word embedding studies often show that multiple em-
beddings could improve the single word embedding in the
unsupervised word similarity task to demonstrate its effec-
tiveness. Thus, our goal of experiments is to discover when
and how the multi-facet embeddings can improve the simi-
larity measurement in various unsupervised semantic tasks
upon the widely-used general-purpose representations, such
as single embedding and (contextualized) word embeddings.

Experiment Setup
Our models only require the raw corpus and sentence/phrase
boundaries, so we will only compare them with other un-
supervised alternatives that do not require any manual la-
bels or multi-lingual resources such as PPDB (Pavlick et al.
2015). To simplify the comparison, we also omit the com-
parison with the methods using character-level information
such as fastText (Bojanowski et al. 2017) or bigram informa-
tion such as Sent2Vec (Pagliardini, Gupta, and Jaggi 2018).

It is hard to make a fair comparison with BERT (Devlin
et al. 2019). Its masked language modeling loss is designed
for downstream supervised tasks and preserves more syntax
information which might be distractive in unsupervised se-
mantic applications. Furthermore, BERT uses word piece to-
kenization while other models use word tokenization. Never-
theless, we still present the performances of the BERT Base
model as a reference even though it is trained using more
parameters, larger embedding size, larger corpus, and more
computational resources compared with our models. Since
we focus on unsupervised setting, we directly use the final
hidden states of the BERT models without supervised fine-
tuning in most of the comparisons. One exception is that we
also report the performance of sentence-BERT (Reimers and
Gurevych 2019) in a low-resource setting.

Our model is trained on English Wikipedia 2016 while the
stop words are removed from the set of co-occurring words.
In the phrase experiments, we only consider noun phrases,
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Input Phrase: civil order <eos>
Output Embedding (K = 1):
e1 — government 0.817 civil 0.762 citizens 0.748
Output Embeddings (K = 3):
e1 — initiatives 0.736 organizations 0.725 efforts 0.725
e2 — army 0.815 troops 0.804 soldiers 0.786
e3 — court 0.758 federal 0.757 judicial 0.736

Input Sentence: SMS messages are used in some countries as re-
minders of hospital appointments . <eos>
Output Embedding (K = 1):
e1 — information 0.702, use 0.701, specific 0.700
Output Embeddings (K = 3):
e1 — can 0.769, possible 0.767, specific 0.767
e2 — hospital 0.857, medical 0.780, hospitals 0.739
e3 — SMS 0.791, Mobile 0.635, Messaging 0.631
Output Embeddings (K = 10):
e1 — can 0.854, should 0.834, either 0.821
e2 — hospital 0.886, medical 0.771, hospitals 0.745
e3 — services 0.768, service 0.749, web 0.722
e4 — SMS 0.891, sms 0.745, messaging 0.686
e5 — messages 0.891, message 0.801, emails 0.679
e6 — systems 0.728, technologies 0.725, integrated 0.723
e7 — appointments 0.791, appointment 0.735, duties 0.613
e8 — confirmation 0.590, request 0.568, receipt 0.563
e9 — countries 0.855, nations 0.737, Europe 0.732
e10 — Implementation 0.613, Application 0.610, Programs 0.603

Table 1: Examples of the codebook embeddings predicted
by our models with differentK. The embedding in each row
is visualized by the three words whose GloVe embeddings
have the highest cosine similarities (also presented) with the
codebook embedding.

and their boundaries are extracted by applying simple reg-
ular expression rules to POS tags before training. We use
the cased version (840B) of GloVe embedding (Pennington,
Socher, and Manning 2014) as the pre-trained word embed-
ding space for our sentence representation and use the un-
cased version (42B) for phrase representation.3 To control
the effect of embedding size, we set the hidden state size in
our transformers as the GloVe embedding size (300).

Limited by computational resources, we train all the mod-
els using one GPU (e.g., NVIDIA 1080 Ti) within a week.
Because of the relatively small model size, we find that our
models underfit the data after a week (i.e., the training loss
is very close to the validation loss).

Qualitative Evaluation
The cluster centers predicted by our model are visualized in
Table 1 (as using girl and lady to visualize the red cluster
center in Figure 2). Some randomly chosen examples are
also visualized in the appendix.

The centers summarize the input sequence well and more
codebook embeddings capture more fine-grained semantic
facets of a phrase or a sentence. Furthermore, the embed-
dings capture the compositional meaning of words. For ex-
ample, each word in the phrase civil order does not mean ini-
tiatives, army, or court, which are facets of the whole phrase.

3nlp.stanford.edu/projects/glove/

When the input is a sentence, we can see that the output em-
beddings are sometimes close to the embeddings of words
in the input sentence, which explains why attending the con-
textualized word embeddings in our decoder could improve
the quality of the output embeddings.

Unsupervised Sentence Similarity
We propose two ways to evaluate the multi-facet embed-
dings using sentence similarity tasks.

First way: Since similar sentences should have similar
word distribution in nearby sentences and thus similar code-
book embeddings, the codebook embeddings of a query sen-
tence F̂u(S

1
q) should be able to well reconstruct the code-

book embeddings of its similar sentence F̂u(S
2
q). We com-

pute the reconstruction error of both directions and add them
as a symmetric distance SC:

SC(S1
q , S

2
q ) = Er(F̂u(S

1
q), F̂u(S

2
q))

+ Er(F̂u(S
2
q), F̂u(S

1
q)), (5)

where F̂u(Sq) = [
cq
k

||cq
k||

]k=1...K is a matrix of normalized
codebook embeddings and Er function is defined in equa-
tion 1. We use the negative distance to represent similarity.

Second way: One of the main challenges in unsupervised
sentence similarity tasks is that we do not know which words
are more important in each sentence. Intuitively, if one word
in a query sentence is more important, the chance of observ-
ing related/similar words in the nearby sentences should be
higher. Thus, we should pay more attention to the words in
a sentence that have higher cosine similarity with its multi-
facet embeddings, a summary of the co-occurring word dis-
tribution. Specifically, our importance/attention weighting
for all the words in the query sentence Sq is defined by

aq = max(0,W (Sq)
T F̂u(Sq)) 1, (6)

where 1 is an all-one vector. We show that the attention vec-
tor (denoted as Our a in Table 2) could be combined with
various scoring functions and boost their performances. As
a baseline, we also report the performance of the attention
weights derived from the k-means loss rather than NNSC
loss and call it Our a (k-means).

Setup: STS benchmark (Cer et al. 2017) is a widely used
sentence similarity task. We compare the correlations be-
tween the predicted semantic similarity and the manually
labeled similarity. We report Pearson correlation coefficient,
which is strongly correlated with Spearman correlation in
all our experiments. Intuitively, when two sentences are less
similar to each other, humans tend to judge the similarity
based on how similar their facets are. Thus, we also compare
the performances on the lower half of the datasets where
their ground truth similarities are less than the median simi-
larity in the dataset, and we call this benchmark STSB Low.

A simple but effective way to measure sentence simi-
larity is to compute the cosine similarity between the av-
erage (contextualized) word embedding (Milajevs et al.
2014). The scoring function is labeled as Avg. Besides, we
test the sentence embedding from BERT and from skip-
thought (Kiros et al. 2015) (denoted as CLS and Skip-
thought Cosine, respectively).
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Sentences A man is lifting weights in a garage . A man is lifting weights .
e1 — can 0.872, even 0.851, should 0.850 e1 — can 0.865, either 0.843, should 0.841
e2 — front 0.762, bottom 0.742, down 0.714 e2 — front 0.758, bottom 0.758, sides 0.691
e3 — lifting 0.866, lift 0.663, Lifting 0.621 e3 — lifting 0.847, lift 0.635, Lifting 0.610
e4 — garage 0.876, garages 0.715, basement 0.707 e4 — lifting 0.837, lift 0.652, weights 0.629

Output e5 — decreasing 0.677, decreases 0.655, negligible 0.649 e5 — decreasing 0.709, decreases 0.685, increases 0.682
Embeddings e6 — weights 0.883, Weights 0.678, weight 0.665 e6 — weights 0.864, weight 0.700, Weights 0.646

e7 — cylindrical 0.700, plurality 0.675, axial 0.674 e7 — annular 0.738, cylindrical 0.725, circumferential 0.701
e8 — configurations 0.620, incorporating 0.610, utilizing 0.605 e8 — methods 0.612, configurations 0.610, graphical 0.598
e9 — man 0.872, woman 0.682, men 0.672 e9 — sweating 0.498, cardiovascular 0.494, dehydration 0.485
e10 — man 0.825, men 0.671, woman 0.653 e10 — man 0.888, woman 0.690, men 0.676

Figure 3: Comparison of our attention weights and the output embeddings between two similar sentences from STSB. A darker
red indicates a larger attention value in equation 6 and the output embeddings are visualized using the same way in Table 1.

Method Dev Test
Score Model All Low All Low

Cosine Skip-thought 43.2 28.1 30.4 21.2
CLS BERT 9.6 -0.4 4.1 0.2
Avg 62.3 42.1 51.2 39.1

SC Our c K1 55.7 43.7 47.6 45.4
Our c K10 63.0 51.8 52.6 47.8

WMD
GloVe 58.8 35.3 40.9 25.4

Our a K1 63.1 43.3 47.5 34.8
Our a K10 66.7 47.4 52.6 39.8

Prob WMD
GloVe 75.1 59.6 63.1 52.5

Our a K1 74.4 60.8 62.9 54.4
Our a K10 76.2 62.6 66.1 58.1

Avg
GloVe 51.7 32.8 36.6 30.9

Our a K1 54.5 40.2 44.1 40.6
Our a K10 61.7 47.1 50.0 46.5

Prob avg
GloVe 70.7 56.6 59.2 54.8

Our a K1 68.5 56.0 58.1 55.2
Our a K10 72.0 60.5 61.4 59.3

SIF†
GloVe 75.1 65.7 63.2 58.1

Our a K1 72.5 64.0 61.7 58.5
Our a K10 75.2 67.6 64.6 62.2

Our a (k-means) K10 71.5 62.3 61.5 57.2
sentence-BERT (100 pairs)* 71.2 55.5 64.5 58.2

Table 2: Pearson correlation (%) in the development and
test sets in the STS benchmark. The performances of all
sentence pairs are indicated as All. Low means the perfor-
mances on the half of sentence pairs with lower similarity
(i.e., STSB Low). Our c means our codebook embeddings
and Our a means our attention vectors. * indicates a su-
pervised method. † indicates the methods which use train-
ing distribution to approximate testing distribution. The best
score with and without † are highlighted.

In order to deemphasize the syntax parts of the sentences,
Arora, Liang, and Ma (2017) propose to weight the word w
in each sentence according to α

α+p(w) , where α is a constant
and p(w) is the probability of seeing the word w in the cor-
pus. Following its recommendation, we set α to be 10−4 in
this paper. After the weighting, we remove the first princi-
pal component of all the sentence embeddings in the train-
ing data as suggested by Arora, Liang, and Ma (2017) and
denote the method as SIF. The post-processing requires an
estimation of testing embedding distribution, which is not
desired in some applications, so we also report the perfor-
mance before removing the principal component, which is
called Prob avg.

We also test word mover’s distance (WMD) (Kusner et al.
2015), which explicitly matches every word in a pair of sen-
tences. As we do in Prob avg, we apply α

α+p(w) to WMD
to down-weight the importance of functional words, and call
this scoring function as Prob WMD. When using Our a, we
multiple our attention vector with the weights of every word
(e.g., α

α+p(w) for Prob avg and Prob WMD).
To motivate the unsupervised setting, we present the per-

formance of sentence-BERT (Reimers and Gurevych 2019)
that are trained by 100 sentence pairs. We randomly sample
the sentence pairs from a data source that is not included in
STSB (e.g., headlines in STS 2014), and report the testing
performance averaged across all the sources from STS 2012
to 2016. More details are included in the appendix.

Results: In Figure 3, we first visualize our attention
weights in equation 6 and our output codebook embeddings
for a pair of similar sentences from STSB to intuitively ex-
plain why modeling co-occurring distribution could improve
the similarity measurement.

Many similar sentences might use different word choices
or using extra words to describe details, but their possible
nearby words are often similar. For example, appending in
the garage to A man is lifting weights does not significantly
change the facets of the sentences and thus the word garage
receives relatively a lower attention weight. This makes its
similarity measurement from our methods, Our c and Our
a, closer to the human judgment than other baselines.

In Table 2, Our c SC, which matches between two sets
of facets, outperforms WMD, which matches between two
sets of words in the sentence, and also outperforms BERT
Avg, especially in STSB Low. The significantly worse per-
formances from Skip-thought Cosine justify our choice of
ignoring the order in the co-occurring words.

All the scores in Our * K10 are significantly better than
Our * K1, which demonstrates the co-occurring word dis-
tribution is hard to be modeled well using a single embed-
ding. Multiplying the proposed attention weighting consis-
tently boosts the performance in all the scoring functions
especially in STSB Low and without relying on the gen-
eralization assumption of the training distribution. Finally,
using k-means loss, Our a (k-means) K10, significantly de-
grades the performance compared to Our a K10, which jus-
tify the proposed NNSC loss. In the appendix, our methods
are compared with more baselines using more datasets to test
the effectiveness of multi-facet embeddings and our design
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Setting Method R-1 R-2 Len

Unsup,
No

Sent
Order

Random 28.1 8.0 68.7
Textgraph (tfidf)† 33.2 11.8 -

Textgraph (BERT)† 30.8 9.6 -
W Emb (GloVe) 26.6 8.8 37.0

Sent Emb (GloVe) 32.6 10.7 78.2
W Emb (BERT) 31.3 11.2 45.0

Sent Emb (BERT) 32.3 10.6 91.2
Our c (K=3) 32.2 10.1 75.4

Our c (K=10) 34.0 11.6 81.3
Our c (K=100) 35.0 12.8 92.9

Unsup Lead-3 40.3 17.6 87.0
PACSUM (BERT)† 40.7 17.8 -

Sup RL* 41.7 19.5 -

Table 3: The ROUGE F1 scores of different methods on
CNN/Daily Mail dataset. The results with † are taken
from Zheng and Lapata (2019). The results with * are taken
from Celikyilmaz et al. (2018).

choices more comprehensively.

Unsupervised Extractive Summarization
The classic representation of a sentence uses either a sin-
gle embedding or the (contextualized) embeddings of all the
words in the sentence. In this section, we would like to show
that both options are not ideal for extracting a set of sen-
tences as a document summary.

Table 1 indicates that our multiple codebook embeddings
of a sentence capture its different facets well, so we rep-
resent a document summary S as the union of the multi-
facet embeddings of the sentences in the summary R(S) =
∪Tt=1{F̂u(St)}, where {F̂u(St)} is the set of column vectors
in the matrix F̂u(St) of sentence St.

A good summary should cover multiple facets that well
represent all topics/concepts in the document (Kobayashi,
Noguchi, and Yatsuka 2015). The objective can be quantified
as discovering a summary S whose multiple embeddings
R(S) best reconstruct the distribution of normalized word
embedding w in the document D (Kobayashi, Noguchi, and
Yatsuka 2015). That is,

argmax
S

∑
w∈D

α

α+ p(w)
max

s∈R(S)
wTs, (7)

where α
α+p(w) is the weights of words we used in the sen-

tence similarity experiments (Arora, Liang, and Ma 2017).
We greedily select sentences to optimize equation 7 as
in Kobayashi, Noguchi, and Yatsuka (2015).

Setup: We compare our multi-facet embeddings with
other alternative ways of modeling the facets of sentences.
A simple way is to compute the average word embedding as
a single-facet sentence embedding.4 This baseline is labeled
as Sent Emb. Another way is to use the (contextualized) em-
bedding of all the words in the sentences as different facets
of the sentences. Since longer sentences have more words,

4Although equation 7 weights each word in the document, we
find that the weighting α

α+p(w)
does not improve the sentence rep-

resentation when averaging the word embeddings.

we normalize the gain of the reconstruction similarity by the
sentence length. The method is denoted as W Emb. We also
test the baselines of selecting random sentences (Rnd) and
first 3 sentences (Lead-3) in the document.

The results on the testing set of CNN/Daily Mail (Her-
mann et al. 2015; See, Liu, and Manning 2017) are com-
pared using F1 of ROUGE (Lin and Hovy 2003) in Table 3.
R-1, R-2, and Len mean ROUGE-1, ROUGE-2, and average
summary length, respectively. All methods choose 3 sen-
tences by following the setting in Zheng and Lapata (2019).
Unsup, No Sent Order means the methods do not use the
sentence order information in CNN/Daily Mail.

In CNN/Daily Mail, the unsupervised methods which ac-
cess sentence order information such as Lead-3 have perfor-
mances similar to supervised methods such as RL (Celiky-
ilmaz et al. 2018). To evaluate the quality of unsupervised
sentence embeddings, we focus on comparing the unsuper-
vised methods which do not assume the first few sentences
form a good summary.

Results: In Table 3, predicting 100 clusters yields the best
results. Notice that our method greatly alleviates the compu-
tational and sample efficiency challenges, which allows us
to set cluster numbers K to be a relatively large number.

The results highlight the limitation of classic represen-
tations. The single sentence embedding cannot capture its
multiple facets. On the other hand, if a sentence is repre-
sented by the embeddings of its words, it is difficult to elim-
inate the bias of selecting longer or shorter sentences and a
facet might be composed by multiple words (e.g., the input
sentence in Table 1 describes a service, but there is not a
single word in the sentence that means service).

Unsupervised Phrase Similarity
Recently, Dubossarsky, Grossman, and Weinshall (2018)
discovered that the multiple embeddings of each word may
not improve the performance in word similarity benchmarks
even if they capture more senses or facets of polysemies.
Since our method can improve the sentence similarity es-
timation, we want to see whether multi-facet embeddings
could also help the phrase similarity estimation.

In addition to SC in equation 5, we also compute the
average of the contextualized word embeddings from our
transformer encoder as the phrase embedding. We find that
the cosine similarity between the two phrase embeddings is
a good similarity estimation, and the method is labeled as
Ours Emb.

Setup: We evaluate our phrase similarity using SemEval
2013 task 5(a) English (Korkontzelos et al. 2013) and Tur-
ney 2012 (Turney 2012). The task of SemEval 2013 is to
distinguish similar phrase pairs from dissimilar phrase pairs.
In Turney (5), given each query bigram, each model predicts
the most similar unigram among 5 candidates, and Turney
(10) adds 5 more negative phrase pairs by pairing the reverse
of the query bigram with the 5 unigrams.

Results: The performances are presented in Table 4. Ours
(K=1) is usually slightly better than Ours (K=10), and the
result supports the finding of Dubossarsky, Grossman, and
Weinshall (2018). We hypothesize that unlike sentences,
most of the phrases have only one facet/sense, and thus can
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Method SemEval 2013 Turney (5) Turney (10)
Model Score AUC F1 Accuracy Accuracy

BERT CLS 54.7 66.7 29.2 15.5
Avg 66.5 67.1 43.4 24.3

GloVe Avg 79.5 73.7 25.9 12.9
FCT LM† Emb - 67.2 42.6 27.6

Ours SC 80.3 72.8 45.6 28.8
(K=10) Emb 85.6 77.1 49.4 31.8

Ours SC 81.1 72.7 45.3 28.4
(K=1) Emb 87.8 78.6 50.3 32.5

Table 4: Performance of phrase similarity tasks. Every
model is trained on a lowercased corpus. In SemEval 2013,
AUC (%) is the area under the precision-recall curve of clas-
sifying similar phrase pairs. In Turney, we report the accu-
racy (%) of predicting the correct similar phrase pair among
5 or 10 candidate pairs. The results with † are taken from Yu
and Dredze (2015).

be modeled by a single embedding well. In the appendix, the
results on hypernym detection also support this hypothesis.

Even though being slightly worse, the performances of
Ours (K=10) remain strong compared with baselines. This
implies that the similarity performances are not sensitive to
the number of clusters as long as sufficiently large K is used
because the model is able to output multiple nearly dupli-
cated codebook embeddings to represent one facet (e.g., us-
ing two centers to represent the facet related to company in
Figure 1). The flexibility alleviates the issues of selecting K
in practice. Finally, the strong performances in Turney (10)
verify that our encoder respects the word order when com-
posing the input sequence.

Related Work
Topic modeling (Blei, Ng, and Jordan 2003) has been ex-
tensively studied and widely applied due to its interpretabil-
ity and flexibility of incorporating different forms of input
features (Mimno and McCallum 2008). Cao et al. (2015);
Srivastava and Sutton (2017) demonstrate that neural net-
works could be applied to discover semantically coherent
topics. Instead of optimizing a global topic model, our goal
is to efficiently discover different sets of topics/clusters on
the words beside each (unseen) phrase or sentence.

Sparse coding on word embedding space is used to model
the multiple facets of a word (Faruqui et al. 2015; Arora et al.
2018), and parameterizing word embeddings using neural
networks is used to test hypothesis (Han et al. 2018) and
save storage space (Shu and Nakayama 2018). Besides, to
capture asymmetric relations such as hypernyms, words are
represented as single or multiple regions in Gaussian embed-
dings (Vilnis and McCallum 2015; Athiwaratkun and Wil-
son 2017) rather than a single point. However, the challenges
of extending these methods to longer sequences are not ad-
dressed in these studies.

One of our main challenges is to design a loss for learn-
ing to predict cluster centers while modeling the dependency
among the clusters. This requires a matching step between
two sets and computing the distance loss after the match-
ing (Eiter and Mannila 1997). One popular loss is called

Chamfer distance, which is widely adopted in the auto-
encoder models for point clouds (Yang et al. 2018a; Liu
et al. 2019), while more sophisticated matching loss options
are also proposed (Stewart, Andriluka, and Ng 2016; Balles
and Fischbacher 2019). The goal of the previous studies fo-
cuses on measuring symmetric distances between the ground
truth set and predicted set (usually with an equal size), while
our loss tries to reconstruct the ground truth set using much
fewer codebook embeddings.

Other ways to achieve the permutation invariant loss
for neural networks include sequential decision mak-
ing (Welleck et al. 2018), mixture of experts (Yang et al.
2018b; Wang, Cho, and Wen 2019), beam search (Qin et al.
2019), predicting the permutation using a CNN (Rezatofighi
et al. 2018), Transformers (Stern et al. 2019; Gu, Liu,
and Cho 2019; Carion et al. 2020) or reinforcement learn-
ing (Welleck et al. 2019). In contrast, our goal is to effi-
ciently predict a set of cluster centers that can well recon-
struct the set of observed instances rather than directly pre-
dicting the observed instances.

Conclusions
In this work, we propose a framework for learning the co-
occurring distribution of the words surrounding a sentence
or a phrase. Even though there are usually only a few words
that co-occur with each sentence, we demonstrate that the
proposed models can learn to predict interpretable cluster
centers conditioned on an (unseen) sentence.

In the sentence similarity tasks, the results indicate that
the similarity between two sets of multi-facet embeddings
well correlates with human judgments, and we can use the
multi-facet embeddings to estimate the word importance
and improve various widely-used similarity measurements
in a pre-trained word embedding space such as GloVe. In a
single-document extractive summarization task, we demon-
strate multi-facet embeddings significantly outperform clas-
sic unsupervised sentence embedding or individual word
embeddings. Finally, the results of phrase similarity tasks
suggest that a single embedding might be sufficient to repre-
sent the co-occurring word distribution of a phrase.
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Ethics Statement
We propose a novel framework, neural architecture, and loss
to learn multi-facet embedding from the co-occurring statis-
tics in NLP. In this study, we exploit the co-occurring re-
lation between a sentence and its nearby words to improve
the sentence representation. In our follow-up studies, we dis-
cover that the multi-facet embeddings could also be used to
learn other types of co-occurring statistics. For example, we
can use the co-occurring relation between a scientific pa-
per and its citing paper to improve paper recommendation
methods in Bansal, Belanger, and McCallum (2016). Paul,
Chang, and McCallum (2021) use the co-occurring relation
between a sentence pattern and its entity pair to improve re-
lation extraction in Verga et al. (2016). Chang et al. (2021)
use the co-occurring relation between a context paragraph
and its subsequent words to control the topics of language
generation. In the future, the approach might also be used
to improve the efficiency of document similarity estima-
tion (Luan et al. 2020).

On the other hand, we improve the sentence similarity and
summarization tasks in this work using the assumption that
important words are more likely to appear in the nearby sen-
tences. The assumption might be violated in some domains
and our method might degrade the performances in such do-
mains if the practitioner applies our methods without con-
sidering the validity of the assumption.
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