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Abstract

The regret bound of dynamic online learning algorithms is
often expressed in terms of the variation in the function
sequence (VT ) and/or the path-length of the minimizer se-
quence after T rounds. For strongly convex and smooth func-
tions, Zhang et al. (2017) establish the squared path-length of
the minimizer sequence (C∗2,T ) as a lower bound on regret.
They also show that online gradient descent (OGD) achieves
this lower bound using multiple gradient queries per round.
In this paper, we focus on unconstrained online optimization.
We first show that a preconditioned variant of OGD achieves
O
(
min{C∗T , C∗2,T }

)
with one gradient query per round (C∗T

refers to the normal path-length). We then propose online op-
timistic Newton (OON) method for the case when the first
and second order information of the function sequence is pre-
dictable. The regret bound of OON is captured via the quartic
path-length of the minimizer sequence (C∗4,T ), which can be
much smaller than C∗2,T . We finally show that by using mul-
tiple gradients for OGD, we can achieve an upper bound of
O(min{C∗2,T , VT }) on regret.

1 Introduction
Online optimization is modeled as a repeated game between
a learner and an adversary (Hazan 2016). At the t-th round,
t ∈ [T ] , {1, . . . , T}, the learner selects an action xt from a
convex set X ⊆ Rn based on the information from previous
rounds. Then, the adversary reveals a convex function ft :
X → R to the learner that incurs the loss ft(xt). The goal
of online learning is to minimize the regret, which is the
difference between the cumulative loss of the learner and
that of a comparator sequence in hindsight. Depending on
the comparator sequence, the regret can be either static or
dynamic. The static regret is defined with respect to a fixed
comparator as follows

RegsT ,
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1)

Static regret is well-studied in the literature of online op-
timization. Zinkevich (2003) shows that online gradient de-
scent (OGD) provides aO(

√
T ) upper bound on static regret
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for convex functions. Hazan, Agarwal, and Kale (2007) im-
prove this bound to O(log T ) for exp-concave functions as
well as strongly convex functions. These bounds turn out to
be optimal given their corresponding lower bounds (Hazan
2016). A more stringent benchmark for regret can be defined
when the comparator sequence is time-varying, introducing
the notion of dynamic regret (Besbes, Gur, and Zeevi 2015;
Jadbabaie et al. 2015). In this case, the learner’s performance
is measured against the best sequence of actions (minimiz-
ers) at each round as follows

RegdT ,
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (2)

where x∗t , argminx∈X ft(x). More generally, dynamic re-
gret against an arbitrary comparator sequence {ut}Tt=1 is de-
fined as (Zinkevich 2003),

RegdT (u1, . . . ,uT ) ,
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut). (3)

It is well-known that since the function sequence can fluctu-
ate arbitrarily, the worst-case dynamic regret scales linearly
with respect to T . However, when the environment varies
slowly, there is hope to bound dynamic regret.

In the past few years, various studies on dynamic online
learning have provided regret bounds in terms of the varia-
tion in the function sequence and/or the path-length of the
minimizer sequence (Besbes, Gur, and Zeevi 2015; Hall and
Willett 2015; Jadbabaie et al. 2015). The path-length of an
arbitrary sequence {ut}Tt=1 is defined as (Zinkevich 2003),

CT (u1, . . . ,uT ) ,
T∑
t=2

‖ut − ut−1‖ . (4)

Zinkevich (2003) shows that applying OGD for convex
functions results in an upper bound of O(

√
TCT ) on dy-

namic regret. If the function sequence is assumed to be
strongly convex and smooth, the upper bound can be further
improved to O(C∗T ) (Mokhtari et al. 2016), where

C∗T , CT (x∗1, . . . ,x
∗
T ) =

T∑
t=2

∥∥x∗t − x∗t−1
∥∥ .
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Let us now define a new variation measure C∗p,T ( the path-
length of order p) as follows

C∗p,T , Cp,T (x∗1, . . . ,x
∗
T ) =

T∑
t=2

∥∥x∗t − x∗t−1
∥∥p , (5)

with the convention that C∗T = C∗1,T . It can be immediately
seen that any bound of order C∗p,T implies a bound of or-
der C∗q,T for q < p, as long as the minimizer sequence
is assumed to be uniformly bounded (which is the case in
the present work). Recently, Zhang et al. (2017) prove that
by using multiple gradient queries in one round, the regret
of OGD can be improved to O(C∗2,T ), which can be much
smaller than C∗T when the local variations are small. Zhang
et al. (2017) also prove that the boundO(C∗2,T ) is optimal in
the worst-case.

Besides the path-length, another commonly used regular-
ity measure is VT , the cumulative variation in the function
sequence, defined as

VT ,
T∑
t=2

sup
x∈X
|ft(x)− ft−1(x)|. (6)

Besbes, Gur, and Zeevi (2015) show that the dynamic
regret can be bounded by O(T 2/3(VT + 1)1/3) and
O(
√
T (1 + VT )) for convex functions and strongly convex

functions, respectively. Note that in general CT and VT are
not directly comparable, and Jadbabaie et al. (2015) provide
problem environments where VT and CT are significantly
different in terms of the order.

In this work, we focus on unconstrained online optimiza-
tion for strongly convex and smooth functions and study dy-
namic regret in the sense of (2). Our contribution is three-
fold:
• We propose online preconditioned gradient descent

(OPGD), where the gradient direction is re-scaled by a
time-varying positive-definite matrix at each round. We
show that OPGD achieves the dynamic regret bound
of O

(
min{C∗T , C∗2,T }

)
with one gradient query in each

round. Beside matching the lower bound in (Zhang et al.
2017), the result also entails that OGD and a regularized
variant of online Newton method enjoy the same regret
bound (Section 3.2).

• Inspired by optimistic mirror descent (Rakhlin and Srid-
haran 2013b), where predictions of the gradient sequence
are used, we propose optimistic online Newton (OON) by
incorporating predictions of the Hessian and gradient to
online Newton method. We prove that in this case the dy-
namic regret bound can be further improved to O(C∗4,T )
if the predictions are accurate enough (Section 3.3). This
is verified empirically in Section 6.

• We finally show that by applying multiple gradient
descents, the dynamic regret is upper bounded by
O(min{VT , C∗2,T }). We also construct problem setups
where VT is much larger than C∗2,T in order, and vice
versa (Section 4).

The proofs of our results are provided in the supplementary
material.

2 Related Literature
In this section, we provide related literature on dynamic re-
gret defined in (2) and (3). A summary of the results is tab-
ulated in Tables 1 and 2. In particular, Table 1 summarizes
results with one gradient query per round, whereas Table 2
exhibits those with multiple gradient queries per round.

As previously mentioned, Zinkevich (2003) shows that
when the functions are convex, by applying OGD with a
diminishing step size of 1/

√
t, the dynamic regret defined

in (3) can be bounded by O(
√
T (1 + CT )). Zhang, Lu, and

Zhou (2018) combine OGD with expert advice to improve
the bound to O(

√
T (1 + CT )). Focusing on regret in the

sense of (2), Mokhtari et al. (2016) establish a regret bound
of O(C∗T ) for OGD under strong convexity and smooth-
ness of the function sequence. Lesage-Landry, Taylor, and
Shames (2020) show the same bound for online Newton
method.

To further express the existing regret bounds, we need to
define several other regularity measures. The first one is sim-
ilar to the path-length (4) and is defined as

C ′T (u1, . . . ,uT ) ,
T∑
t=2

‖ut − Φt(ut−1)‖ , (7)

where Φt(·) is a given dynamics (available to the learner).
Hall and Willett (2015) propose a dynamic mirror de-
scent algorithm that incorporates the dynamics {Φt(·)}Tt=1
into online mirror descent and achieves a regret bound of
O(
√
T (1 + C ′T )).

Besbes, Gur, and Zeevi (2015) propose a restarted OGD
and analyze its performance for the case when only noisy
gradients are available to the learner. They prove that the ex-
pected dynamic regret is bounded by O(T 2/3(VT + 1)1/3)

and O(
√
T (1 + VT )) for convex and strongly convex func-

tions, respectively. The restarted OGD of (Besbes, Gur, and
Zeevi 2015) is designed under the assumption that VT (or
an upper bound on VT ) is available to the learner from the
outset.

Another measure is DT , the variation in gradients, which
is defined as

DT ,
T∑
t=1

‖∇ft(xt)−mt‖2 , (8)

where mt is a predictable sequence computed by the learner
before round t (Rakhlin and Sridharan 2013a,b). A special
version of DT with mt = ∇ft−1 is introduced by (Chiang
et al. 2012), and the current definition is used by (Rakhlin
and Sridharan 2013a,b) for studying optimistic mirror de-
scent. Nevertheless, all of these works deal with static re-
gret. Motivated by the fact that various regularity measures
are not directly comparable, Jadbabaie et al. (2015) propose
an adaptive version of optimistic mirror descent to bound
dynamic regret (2). They establish a regret bound in terms
of CT , DT , and VT for convex functions with the assump-
tion that the learner can accumulate each of these measures
on-the-fly. When VT = 0 or CT = 0, their bound recovers
that of (Rakhlin and Sridharan 2013b) on static regret.
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Reference Regret Definition Setup Regret Bound

(2003)
∑

t ft(xt)− ft(ut) Convex O
(√
T (1 + CT (u1, . . . ,uT ))

)
(2015)

∑
t ft(xt)− ft(ut) Convex O

(√
T (1 + C′T (u1, . . . ,uT ))

)
(2015)

∑
t E[ft(xt)]− ft(x∗t ) Convex O

(
T 2/3(1 + VT )

1/3
)

(2015)
∑

t E[ft(xt)]− ft(x∗t ) Strongly Convex O
(√

T (1 + VT )
)

(2015)
∑

t ft(xt)− ft(x∗t ) Convex O
(√
DT + 1 +min

{√
(DT + 1)C∗T , [(DT + 1)VTT ]

1
3
})

(2016)
∑

t ft(xt)− ft(x∗t ) Strongly Convex and Smooth O
(
C∗T
)

(2018)
∑

t ft(xt)− ft(ut) Convex O
(√

T (1 + CT (u1, . . . ,uT ))
)

This work
∑

t ft(xt)− ft(x∗t ) Strongly Convex and Smooth O
(
min{C∗T , C∗2,T }

)
OPGD Algorithm

This work
∑

t ft(xt)− ft(x∗t ) Strongly Convex and Smooth O
(
C∗4,T +D′T

)
OON Algorithm

Table 1: Related works on dynamic online learning (single gradient query in each round). The bounds presented for this work
are on unconstrained setup, whereas other works deal with constrained setup.

Reference Regret Definition Setup Regret Bound

(2017)
∑T
t=1 ft(xt)− ft(x∗t ) Strongly Convex and Smooth O

(
min{C∗T , C∗2,T }

)
This work

∑T
t=1 ft(xt)− ft(x∗t ) Strongly Convex and Smooth O

(
min{VT , C∗2,T }

)
Table 2: Related works on dynamic online learning (multiple gradient queries in each round). The bound presented for this
work is on unconstrained setup, whereas other works deal with constrained setup.

Inspired by the notion of DT , we introduce in Section 3.3
a new regularity D′T defined as

D′T ,
T∑
t=2

∥∥M−1t (·)mt(·)− (∇2ft(·))−1∇ft(·)
∥∥2 , (9)

where Mt(·) and mt(·) denote the predictions of ∇2ft(·)
and ∇ft(·), respectively. We later show that by applying
OON, the dynamic regret bound is O(D′T + C∗4,T ). This is
an improvement over O(C∗2,T ) only if D′T is small, i.e., the
predictions of the learner are accurate enough. Nevertheless,
we also show that if the learner uses stale gradient/Hessian
information in the form of mt = ∇ft−1 and Mt = ∇2ft−1,
the regret is still O(C∗2,T ).

Other related works on dynamic regret include (Ravier,
Calderbank, and Tarokh 2019; Yuan and Lamperski 2020).
Ravier, Calderbank, and Tarokh (2019) assume the func-
tion sequence has a parametrizable structure and quantify
the functional difference in terms of the variation in parame-
ters. They propose an online gradient method combined with
the prediction of the function parameters and show that the
dynamic regret can be bounded in terms of C∗T as well as
the accumulation error in the parameters. Yuan and Lam-
perski (2020) analyze the trade-off between static and dy-
namic regret through studying the effect of forgetting factors
for a class of online Newton algorithms. Ajalloeian, Simon-
etto, and Dall’Anese (2020) study online proximal-gradient
method to track the minimizers of a composite convex func-
tion sequence. They provide, for strongly convex and convex
functions, the regret bounds which take the approximation
error of gradients and the proximal operator into considera-
tion.

We note that Zhang et al. (2017) prove a
O(min{C∗T , C∗2,T }) regret bound with multiple gradi-
ent queries for OGD. We revisit the same algorithm
(in an unconstrained setup) and establish a bound of

O(min{VT , C∗2,T }). The main benefit of the latter is that
VT and C∗2,T are not comparable, whereas C∗2,T = O(C∗T )
as long as the minimizer sequence is bounded.

Adaptive Regret: Beside the works related to the dy-
namic regret, the notion of adaptive regret (Hazan and Se-
shadhri 2007; Daniely, Gonen, and Shalev-Shwartz 2015;
Zhang et al. 2018; Zhang, Liu, and Zhou 2019; Zhang, Lu,
and Yang 2020) is also proposed to capture the dynamics in
the environment. Adaptive regret characterizes a local ver-
sion of static regret, where

RegaT ([r, s]) ,
s∑
t=r

ft(xt)−min
x∈X

s∑
t=r

ft(x),

for each interval [r, s] ⊆ [T ]. Zhang et al. (2018) draw a con-
nection between strongly adaptive regret and dynamic regret
and propose an adaptive algorithm which can bound the dy-
namic regret without prior knowledge of the functional vari-
ation. Zhang, Lu, and Yang (2020) propose a novel algo-
rithm which can minimize the dynamic regret and the adap-
tive regret simultaneously.

3 Main Results
In this section, we present our main results. We
first prove that OPGD achieves the optimal bound of
O
(

min{C∗T , C∗2,T }
)

for dynamic regret (2), matching the
lower bound of (Zhang et al. 2017). Then, we develop a vari-
ant of online Newton method (called OON), which employs
predicted first and second order information in the update.
The bound on the dynamic regret of OON can be improved
to O(C∗4,T ) if the predictions are accurate.

3.1 Preliminaries
Since our results are on strongly convex and smooth func-
tions, we start by their formal definitions below. Through-
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out, we assume that the function sequence {ft}Tt=1 is differ-
entiable.
Definition 1. A function f : X → R is µ-strongly convex
(µ > 0) over the convex set X if

f(x) ≥ f(y)+∇f(y)>(x−y)+
µ

2
‖x− y‖2 , ∀x,y ∈ X .

Definition 2. A function f : X → R is L-smooth (L > 0),
when its gradient is Lipschitz continuous over the convex set
X , where

f(x) ≤ f(y)+∇f(y)>(x−y)+
L

2
‖x− y‖2 , ∀x,y ∈ X .

3.2 Dynamic Regret Bound for Online
Preconditioned Gradient Descent (OPGD)

When the functions are µ-strongly convex and L-smooth,
Mokhtari et al. (2016) prove that the dynamic regret of
OGD can be upper bounded by O(C∗T ). Zhang et al. (2017)
show that multiple gradient descents can help improving it
to O(min{C∗T , C∗2,T }).

We observe that in the unconstrained setup (which im-
plies ‖∇ft(x∗t )‖ = 0 for every t ∈ [T ]), querying just one
gradient in each round is enough to obtainO(C∗2,T ). We ana-
lyze this observation for a slightly more general case where
OGD is preconditioned, i.e., the gradient direction at each
round is re-scaled according to a positive definite matrix.
Our method, called OPGD, is summarized in Algorithm 1.
We establish the regret bound in the following theorem, un-
der an assumption that characterizes the relationship of the
condition number of the matrices used for preconditioning
to parameters µ and L.
Theorem 1. Suppose that for any t ∈ [T ]:

1. The function ft : Rn → R is µ-strongly convex and L-
smooth.

2. The preconditioning matrix At satisfies λ′·I � At � λ·I.
3. The condition number satisfies λ

λ′ < 1 + µ2

4L2 .

If we set η = λ′µ
2L2 , the dynamic regret for the sequence of

actions xt generated by OPGD is bounded as follows

RegdT

≤min



(1)
(
L2

µ

)(
4L2λ−µ2λ′

µ2λ′−4L2(λ−λ′)

)∑T+1
t=2

∥∥x∗t − x∗t−1
∥∥2

+
(
L2λ
λ′µ −

µ
4

)
‖x1 − x∗1‖

2

(2) LD
2

[
‖x1−x∗1‖−γ‖xT−x

∗
T ‖

1−γ

+ 1
1−γ

∑T
t=2

∥∥x∗t − x∗t−1
∥∥ ],

where γ =
√

(λη − µ)/(µ+ λ′

η ) and D ,

maxt=1,...,T ‖xt − x∗t ‖.

The theorem above shows that OPGD achieves
min{O(C∗1,T ), O(C∗2,T )} regret. An immediate corol-
lary is that OGD also achieves the same rate if we set
At = I, which implies λ = λ′ = 1.

Algorithm 1 Online Preconditioned Gradient Descent
(OPGD)

1: Require: Initial vector x1 ∈ Rn, step size η, a sequence
of positive definite matrices At

2: for t = 1, 2, . . . , T do
3: Play xt
4: Observe the gradient of the current action∇ft(xt)
5: xt+1 = xt − ηA−1t ∇ft(xt)
6: end for

Algorithm 2 Optimistic Online Newton (OON)

1: Require: Initial vector x1 = x̂0 ∈ Rn,
2: for t = 1, 2, . . . , T do
3: Play xt
4: Get the predicted second order information Mt+1 and

first order information mt+1 of function ft+1

5: x̂t = x̂t−1 −H−1t (x̂t−1)∇ft(x̂t−1)
6: xt+1 = x̂t −M−1t+1(x̂t)mt+1(x̂t)
7: end for

Corollary 2. Suppose that for any t ∈ [T ], the function
ft : Rn → R is µ-strongly convex and L-smooth, and let
At = I. Then, OPGD amounts to OGD, and it achieves a
regret bound of O

(
min{C∗T , C∗2,T }

)
.

Another corollary of Theorem 1 is on a regularized ver-
sion of online Newton method as follows.
Corollary 3. Suppose that for any t ∈ [T ], the function
ft : Rn → R is µ-strongly convex and L-smooth. Let At =

∇2ft(xt)+ζ ·I where ζ > (L−µ)4L2

µ2 −µ. Then, OPGD cor-
responds to a regularized variant of online Newton method,
and it achieves a regret bound of O

(
min{C∗T , C∗2,T }

)
.

Proof. We just need to verify the third condition in Theorem
1 for which we require

L+ ζ

µ+ ζ
< 1 +

µ2

4L2
⇐⇒ ζ >

(L− µ)4L2

µ2
− µ.

Compared to the regret bound of (Lesage-Landry, Tay-
lor, and Shames 2020) for online Newton method, Corollary
3 puts no constraint on the relative location of the starting
point, i.e., the result is global (and not local). Moreover, the
regret bound is tighter as O(C∗2,T ) always implies O(C∗T )
when the minimizer sequence is uniformly bounded.

3.3 Improved Dynamic Regret Bound for
Optimistic Online Newton (OON)

The optimal bound on static regret for convex functions
is O(

√
T ) (Hazan 2016). However, Rakhlin and Sridharan

(2013b) show that by using gradient predictions, the regret
bound can be O(

√
DT ), which is tighter if the predicted

gradients are close enough to the actual gradients. Essen-
tially, by using the predicted sequence, the learner aims at
taking advantage of the niceness of the adversarial sequence
(if possible).
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In this section, we extend this idea to the case that the
learner can use first and second order information simul-
taneously. The resulting algorithm, called optimistic online
Newton (OON), is summarized in Algorithm 2. The learner
performs a Newton update based on the predicted informa-
tion but corrects this update using the true information. The
following theorem presents the regret bound of OON in a
local sense, which has the potential to significantly outper-
form first-order methods. The local nature of the result is
not surprising as for the classical Newton method, quadratic
convergence guarantee is only local (see e.g., Theorem 1.2.5
of (Nesterov 1998)).
Theorem 4. Suppose that for any t ∈ [T ]:

1. The function ft : Rn → R is µ-strongly convex and L-
smooth.

2. ∃LH > 0 such that ‖Ht(x)−Ht(x
∗
t )‖ ≤ LH ‖x− x∗t ‖,

where Ht(x) = ∇2ft(x).
3. ∃x1 ∈ Rn such that ‖x1 − x∗1‖ ≤

µ
LH

.

4. There exists a bound on local variations, where c̄ ,
maxt∈{2,...,T}

∥∥x∗t − x∗t−1
∥∥ ≤ µ

2LH
.

Then, the dynamic regret for the sequence of actions xt by
OON is bounded by

RegdT ≤ L
(
‖x̂1 − x∗1‖

2 − ρ′ ‖x̂T − x∗T ‖
2

1− ρ′

+
ρ′′

1− ρ′
T∑
t=2

∥∥x∗t − x∗t−1
∥∥4)

+ LD′T + L
∥∥H−11 (x̂0)∇f1(x̂0)

∥∥2 ,
(10)

where ρ′ , 1
16 (1 + c1)2(1 + c2), ρ′′ ,

(LH2µ )2(1 + 1
c1

)2(1 + 1
c2

), c1 and c2 are any posi-

tive constants such that 0 < ρ′ < 1, and D′T ,∑T
t=2

∥∥M−1t (x̂t−1)mt(x̂t−1)−H−1t (x̂t−1)∇ft(x̂t−1)
∥∥2.

The theorem indicates that when the predicted informa-
tion (Mt,mt) is close to (Ht,∇ft), D′T would be small
and the dynamic regret bound would be close to O(C∗4,T ).
On the other hand, it can also be shown that if the learner
uses stale information, i.e., Mt = Ht−1 and mt = ∇ft−1,
the regret bound of (10) is O(C∗2,T ), which matches the op-
timal worst-case bound.
Corollary 5. Suppose that the assumptions of Theorem 4
hold. If for t = 2, . . . , T , (Mt,mt) = (Ht−1,∇ft−1), the
dynamic regret for the sequence of actions xt by OON is
bounded by O(C∗2,T ).

4 Dynamic Regret Bound for Online
Multiple Gradient Descents (OMGD)

In this section, we revisit the OMGD algorithm developed
by (Zhang et al. 2017), outlined in Algorithm 3. Zhang et al.
(2017) prove that by applying multiple gradient descents,
the dynamic regret bound is O(min{C∗T , C∗2,T }), which ba-
sically translates to O(C∗2,T ) as soon as the minimizers are
uniformly bounded. We show that the regret bound of Zhang

Algorithm 3 Online Multiple Gradient Descent (OMGD)
(Zhang et al. 2017)

1: Require: Initial vector x1 ∈ Rn, step size η, function
parameters µ and L.

2: for t = 1, 2, . . . , T do
3: Play xt
4: Receive the information of ft
5: Let z(0)t+1 = xt and Kt = d −2 log(t)

log(1− 2ηµL
µ+L )

e
6: for j = 1, 2, . . . ,Kt do
7: z

(j)
t+1 = z

(j−1)
t+1 − η∇ft(z(j−1)t+1 )

8: end for
9: xt+1 = z

(Kt)
t+1

10: end for

et al. (2017) can be made more comprehensive by including
VT , the variation in the function sequence. The new bound,
which takes the form ofO(min{VT , C∗2,T }), is presented be-
low.
Theorem 6. Suppose that for any t ∈ [T ], the function
ft : Rn → R is µ-strongly convex and L-smooth. For any
0 < η ≤ 2

µ+L , the dynamic regret of OMGD is bounded as
follows

RegdT ≤ min

{
(f1(x1)− f1(x∗1)) + 2VT + π2D2L

12
L
2

[
‖x1 − x∗1‖

2
+ 2D2(π

2

6 ) + 2C∗2,T
] ,

(11)
where D , maxt∈[T ] ‖xt − x∗t ‖, and VT is defined with
respect to X being the convex hull of {xt,x∗t }Tt=1.

4.1 Comparison of C∗
2,T and VT

We now show that VT and C∗2,T are not directly comparable
to each other. Therefore, having both of them present in the
regret bound can only make the bound tighter. We construct
two problem environments where C∗2,T � VT and VT �
C∗2,T , respectively.

Consider the following function sequence ft : Rn → R

ft(x) =

{
‖x− x∗‖2 , if t is odd
‖x− x∗‖2 + 1, if t is even

For this function sequence, based on the regularity defini-
tions (5) and (6), it is clear that

C∗2,T =
T∑
t=2

∥∥x∗t − x∗t−1
∥∥2 =

T∑
t=2

‖x∗ − x∗‖2 = 0.

VT =

T∑
t=2

sup
x∈X
|ft(x)− ft−1(x)| = Θ(T ).

In this case, we see that VT is much larger than C∗2,T . On the
other hand, consider another function sequence ft : Rn →
R

ft(x) =

{
‖x‖2
t , if t is odd
‖x−y‖2

t , if t is even

6970



We have that

C∗2,T =
T∑
t=2

∥∥x∗t − x∗t−1
∥∥2 =

T∑
t=2

‖y‖2 = Θ(T ).

VT =
T∑
t=2

sup
x∈X
|ft(x)− ft−1(x)|

=
T∑
t=2

sup
x∈X

∣∣∣∣2x>y + y>y

t

∣∣∣∣ ≤ O(log T ).

We can see that VT is considerably smaller than C∗2,T in this
scenario. With these two examples, it can be seen that if the
regret bound only uses one regularity, it is possible that the
resulting bound is not tight.

5 Discussion on Constrained Setup
In this section, we show that for OPGD and OMGD, if
the function domain is constrained, similar theoretical re-
sults can be achieved. Since the domain set is constrained,
a projection step needs to be added (see Algorithms 4 &
5). Note that ΠX (y) = argminx∈X ‖y − x‖ and ΠA

X (y) =

argminx∈X ‖y − x‖A, where ‖x‖A =
√
x>Ax for a

positive-definite matrix A.

Algorithm 4 Online Preconditioned Gradient Descent
(OPGD) for Constrained Setup

1: Require: Initial vector x1 ∈ X , step size η, a sequence
of positive definite matrices At

2: for t = 1, 2, . . . , T do
3: Play xt
4: Observe the gradient of the current action∇ft(xt)

5: xt+1 = ΠAt

X

(
xt − ηA−1t ∇ft(xt)

)
6: end for

Theorem 7. (The constrained version of Theorem 1) Sup-
pose that for any t ∈ [T ]:

1. The function ft : X → R is µ-strongly convex and L-
smooth over X .

2. The preconditioning matrix At satisfies λ′·I � At � λ·I.
3. The condition number satisfies λ

λ′ < 1 + µ2

4L2 .

If we set η = λ′µ
2L2 , the dynamic regret for the sequence of

actions xt generated by Algorithm 4 is bounded as follows

RegdT ≤
L2

µ

(
4L2λ− µ2λ′

µ2λ′ − 4L2(λ− λ′)

) T+1∑
t=2

∥∥x∗t − x∗t−1
∥∥2

+

(
L2λ

λ′µ
− µ

4

)
‖x1 − x∗1‖

2
+
µD

2L

T∑
t=1

‖∇ft(x∗t )‖

+
µ

4L2

T∑
t=1

‖∇ft(x∗t )‖
2
,

where D = maxx,y∈X ‖x− y‖.

Theorem 8. Suppose that for any t ∈ [T ], the function ft :
X → R is µ-strongly convex and L-smooth. For any 0 <
η ≤ 1

L , the dynamic regret of OMGD is bounded as follows

RegdT

≤min


(1) (f1(x1)− f1(x∗1)) + 2VT + π2D2L

12 +

D
∑T
t=2

∥∥∇ft−1(x∗t−1)
∥∥

(2) L
2

[
‖x1 − x∗1‖

2
+ 2D2(π

2

6 ) + 2C∗2,T
]
+

D
∑T
t=1 ‖∇ft(x∗t )‖

,

(12)

where D , maxx,y∈X ‖x− y‖.

For Theorems 7 & 8, if x∗t is inside the relative interior of
X (i.e.,∇ft(x∗t ) = 0) for any t ∈ [T ], the theoretical results
of the unconstrained case can be recovered.

Algorithm 5 Online Multiple Gradient Descent (OMGD)
(Zhang et al. 2017) for Constrained Setup

1: Require: Initial vector x1 ∈ X , step size η, function
parameters µ and L.

2: for t = 1, 2, . . . , T do
3: Play xt
4: Receive the information of ft
5: Let z(0)t+1 = xt and Kt = d −2 log(t)

log(1− 2µ
1/η+µ

)
e

6: for j = 1, 2, . . . ,Kt do

7: z
(j)
t+1 = ΠX

(
z
(j−1)
t+1 − η∇ft(z(j−1)t+1 )

)
8: end for
9: xt+1 = z

(Kt)
t+1

10: end for

6 Experimental Results
(Zhang et al. 2017) show that the regret bound O(C∗2,T ) is
optimal in the worst-case. In Theorem 4, we prove that if
well-predicted function information is applied, the bound
O(C∗2,T ) is possibly improved to O(C∗4,T ) with OON. We
now provide the simulation results verifying this property.
Consider a function sequence of the following form

ft(x) =
(
(x−x∗t )>Qt(x−x∗t )

)2
+

1

2
(x−x∗t )>Qt(x−x∗t ),

where Qt is a positive definite matrix and αI � Qt � βI
(α = 1 and β = 30). Since OON operates in a local sense,
we just need an LH for which Assumption 2 in Theorem 4
holds, when executing step 5 in Algorithm 2.

The hessian of ft(·) can be written as follows

∇2ft(x) =4(x− x∗t )
>Qt(x− x∗t )Qt

+8Qt(x− x∗t )(x− x∗t )
>Qt + Qt,

which implies ft(·) is α-strongly convex ∀t. We now discuss
the choice of LH to ensure Assumptions 2 in Theorem 4
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Figure 1: Dynamic regrets of OON using perfectly-predicted
and stale function information.

hold. Based on the hessian expression, we have

‖Ht(x̂t−1)−Ht(x
∗
t )‖

≤
∥∥∥4(x̂t−1 − x∗t )

>Qt(x̂t−1 − x∗t )Qt

∥∥∥
+
∥∥∥8Qt(x̂t−1 − x∗t )(x̂t−1 − x∗t )

>Qt

∥∥∥
≤12 ‖Qt‖2 ‖x̂t−1 − x∗t ‖

2 ≤ 12β2 ‖x̂t−1 − x∗t ‖
2

≤12β2 α

LH
‖x̂t−1 − x∗t ‖ ,

where the last inequality comes from ‖x̂t−1 − x∗t ‖ ≤ α
LH

(see the supplementary material). Let LH = 12β2 α
LH

,
Assumption 2 holds for iterate x̂t. Knowing that LH =√

12β2α, we have

‖x1 − x∗1‖ = ‖x̂0 − x∗1‖ ≤
α

LH
=

√
α

12β2
,

which defines the range to generate x1.
To let the function sequence evolve in an adversarial way,

the optimal point of the next function is randomly selected
from the sphere centered at the current optimal point with
radius α

LH
.

In this experiment, we compare the results of two
strategies: one uses the perfectly-predicted infor-
mation ((Mt,mt) = (Ht,∇ft)), and the other
one uses the information of the previous function
((Mt,mt) = (Ht−1,∇ft−1)). Theoretically, the re-
gret of the first strategy is upper bounded by O(C∗4,T ) and
the regret of the second one is bounded by O(C∗2,T ) (see
Corollary 5). In Fig. 1, we can see that the regret incurred
using the stale function information grows much faster than
the one using the perfectly-predicted information, which
verifies the theoretical advantage of OON.

7 Concluding Remarks
In this paper, we revisited the dynamic regret for online op-
timization, where the function sequence is strongly convex
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Figure 2: Dynamic regrets of OON using perfectly-predicted
function information.

and smooth. We first proposed online preconditioned gra-
dient descent (OPGD), which achieves the optimal regret
bound of O

(
min{C∗T , C∗2,T }

)
with one gradient query per

round. Next, we developed optimistic online Newton (OON)
method, which uses predictions of Hessians and gradients
in the update process. We proved a (local) dynamic regret
bound scaling as O(D′T + C∗4,T ), where D′T measures the
dissimilarity between the predicted information and the true
information. If D′T is small, this algorithm provides an im-
provement over the regret rate of O(C∗2,T ). It is also intrigu-
ing to see if the idea of optimistic online learning can be
extended to quasi Newton like methods and get improved
bounds in terms of DT when only predictable gradients are
available. We further verified that a conservative learner, that
uses stale (previous round) information, always incurs a re-
gret that is no worse than O(C∗2,T ), recovering the optimal
worst-case. We finally revisited the online multiple gradi-
ent descent (OMGD) algorithm of (Zhang et al. 2017) and
provided complementary analysis that shows the regret rate
of O(min{VT , C∗2,T }) for OMGD. The main benefit of the
bound is that VT andC∗2,T are not comparable, and including
VT in the regret bound can make it tighter.

Our results mainly provide the following insight about
dynamic online learning. It is unlikely that the smooth-
ness assumption alone can provide improved regret rates
over convex setting. In classical optimization with time-
invariant functions, smoothness does provide faster conver-
gence rates for optimization algorithms (e.g., gradient de-
scent). Whereas in dynamic online setting, since the adver-
sary can change the function sequence drastically, the ac-
tion xt depending on the information of {fs}t−1s=1 may suffer
a large cost. Therefore, the assumption of strong convexity
comes to rescue by translating the closeness of objective val-
ues to the closeness of actions. As a result, with smoothness
and strong convexity together, dynamic regret bounds can be
considerably better than the convex case. Given the potential
improvement of OON over OGD, it would also be interest-
ing to see whether we can leverage predicted higher-order
information to further improve the dynamic regret bound.
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Broader Impact
This paper should be of interest to the online learning and
optimization community. We do not anticipate any future
societal consequences as this work contributes to theoreti-
cal online optimization.
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