
The Value-Improvement Path:
Towards Better Representations for Reinforcement Learning

Will Dabney,1 André Barreto, 1 Mark Rowland, 1

Robert Dadashi, 2 John Quan, 1 Marc G. Bellemare, 2 David Silver 1

1 DeepMind 2 Google Research
wdabney@google.com

Abstract

In value-based reinforcement learning (RL), unlike in su-
pervised learning, the agent faces not a single, stationary,
approximation problem, but a sequence of value prediction
problems. Each time the policy improves, the nature of the
problem changes, shifting both the distribution of states and
their values. In this paper we take a novel perspective, argu-
ing that the value prediction problems faced by an RL agent
should not be addressed in isolation, but rather as a single,
holistic, prediction problem. An RL algorithm generates a se-
quence of policies that, approximately, improve towards the
optimal policy. We explicitly characterize the associated se-
quence of value functions and call it the value-improvement
path. Our main idea is to approximate the value-improvement
path holistically, rather than to solely track the value function
of the current policy. Specifically, we discuss the impact that
this holistic view of RL has on representation learning. We
demonstrate that a representation that spans the past value-
improvement path will also provide an accurate value approx-
imation for future policy improvements. We use this insight to
better understand existing approaches to auxiliary tasks and
to propose new ones. To test our hypothesis empirically, we
augmented a standard deep RL agent with an auxiliary task of
learning the value-improvement path. In a study of Atari 2600
games, the augmented agent achieved approximately double
the mean and median performance of the baseline agent.

1 Introduction
Whether receiving prescriptive feedback (supervised learn-
ing), or delayed evaluative feedback (reinforcement learn-
ing), machine learning requires generalization from a finite
collection of examples to an unseen population. In super-
vised learning, generalization is sometimes framed as avoid-
ing overfitting to a finite data set, and we might use methods
such as regularization or cross-validation to accomplish this.
In reinforcement learning (RL), generalization is no less im-
portant, and we have the same risk of overfitting to limited
samples. But, additionally, the agent faces a sequence of
learning problems, as the policy is incrementally improved
towards optimality. Ideally the agent should also generalize
across these problems. Although other types of generaliza-
tion play a vital role in all areas of machine learning, we fo-
cus on this particular form of generalization due to its unique

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

role in reinforcement learning. We argue that the RL prob-
lem should be addressed with this peculiarity in mind.

The key problem underlying the ability to approximate
any function is representation learning. Although we are
ultimately interested in the optimal value function, it has
been shown that a representation specialized to this function
may be inadequate for representing the sequence of func-
tions leading to it (McCallum 1996; Li, Walsh, and Littman
2006). We take this argument one step further and note that
we should avoid myopically overfitting the representation to
any value function in this sequence of functions, as each in-
termediate value function serves as a mere “stepping stone”
along the path towards the optimal value function.

In this paper we explicitly characterize the sequence of
value functions produced by RL’s policy improvement pro-
cess, which we call the value-improvement path. We prove
that the efficacy of representation learning depends upon its
ability to represent this path. We use this observation both
to construct new algorithms and to understand existing algo-
rithms for representation learning.

One common and successful way to approach the repre-
sentation learning problem is through the use of auxiliary
tasks: additional prediction problems that shape the repre-
sentation used by the agent (Jaderberg et al. 2017; Belle-
mare et al. 2019). We suggest that predictions based upon
the value-improvement path provide a natural basis for rep-
resentation learning. Furthermore, we analyze how well ex-
isting auxiliary tasks actually span the value-improvement
path. We build on this analysis to propose novel auxiliary
tasks designed with the value-improvement path in mind.

This paper provides several contributions. First, we char-
acterize the nature of the value-improvement path. Second,
we analyze and discuss both existing and novel auxiliary
tasks in relation to their effect on representation general-
ization. Third, we provide theoretical insights that begin to
explain the role of the value-improvement path in repre-
sentation learning for RL. Finally, we present results from
an extensive experimental study of different auxiliary tasks.
This study gives preliminary evidence that representations
which accurately approximate the past value-improvement
path may better approximate future functions on this path.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7160

2 Background
We consider a Markov decision process, or MDP, M .

=
(X ,A, P, r, γ), with finite state space X and action space
A, transition kernel P : X × A → P(X), reward
function r : X × A × X → R, and discount factor
γ ∈ [0, 1). Given a policy π : X → P(A), the action-
value function associated with π gives the expected re-
turn conditioned on each possible starting state-action pair:
Qπ(x, a)

.
= Eπ[

∑
t≥0 γ

tRt|X0 = x,A0 = a], where
Rt

.
= r(Xt, At, Xt+1) are rewards. The task of evaluation

of a policy π consists of computing Qπ . Given a policy π,
we define the associated Bellman operator as

T πQ(x, a)
.
= Eπ,P [r(x, a, x′) + γQ(x′, a′)] ; (1)

it is well known that Qπ is the fixed point of T π (Puterman
1994). The task of control consists of finding a policy π∗

maximizing the associated action-value functionQ∗ .= Qπ
∗
.

RL algorithms based on dynamic programming approach
the control problem by alternating policy evaluation (1) with
policy improvement, in which Qπ is used to compute an im-
proved policy

π′(x)
.
= arg max

a
Qπ(x, a). (2)

It can be shown that Qπ
′ � Qπ , that is, Qπ

′
(x, a) ≥

Qπ(x, a) for all (x, a) ∈ X × A. The alternation between
policy evaluation (1) and policy improvement (2) can hap-
pen at many levels of granularity. For example, if (2) is fol-
lowed by one application of (1) we have the well known
value iteration algorithm. If instead we compute Qπ , which
corresponds to applying T π an infinite number of times, we
recover policy iteration (Howard 1960). Under some mild
assumptions the alternation between (1) and (2) at any level
of granularity converges to Q∗ (Puterman 1994). We will
generically refer to algorithms obtained by alternating one
application of (2) with n applications of (1), where n is pos-
sibly infinite, as value-based algorithms.

In RL it is assumed that the agent does not have ac-
cess to the dynamics of the MDP, and thus the expectation
in (1) is replaced by samples from P (·|x, a). Many RL algo-
rithms can thus be understood as stochastic approximations
of their dynamic programming counterparts; for example,
the stochastic version of value iteration is the well knownQ-
learning algorithm (Watkins and Dayan 1992). For the sake
of exposition, we will refer to both the state-value function
V π and the action-value function Qπ simply as value func-
tions, using their respective symbols to clarify when needed.

Representation learning. Usually the state-action
space X × A is too big to allow for an explicit repre-
sentation of the functions Qπ , so one must resort to an
approximation Q̂π . A common approach is to parametrize
Q̂π(x, a) = φ(x)>θa, where φ : X → RK are features,
θa ∈ RK are modifiable parameters associated with each
a ∈ A, and K ∈ N. Given a set of (possibly non-linear)
features φ : X → RK , policy evaluation comes down
to computing the linear weights (θa|a ∈ A) such that
Q̂π ≈ Qπ . This involves the projection of the Bellman
operator onto the space spanned by φ, ΠΦT πQ̂π for

>

Linear RL Deep RL Deep RL
(with auxiliary)

Figure 1: Linear approximation in RL projects the Bellman
targets onto the space spanned by features. In Deep RL the
representation itself moves to better fit the targets. However,
this can lead to overfitting to the current value function. With
auxiliary tasks the representation is regularized, reducing
representation overfitting.

Φ = 〈φ〉 := Span({φπ1 , . . . , φπk}) (Figure 1, left). The
problem of constructing the basis functions φ is known as
representation learning. Generally K � |X |, so, for a fixed
φ, the space of expressible value functions is much smaller
than the space of all possible value functions. Intuitively,
then, a well-trained map φ should be such that φ(x) captures
the salient information of x ∈ X for return prediction, and
ignores irrelevant details.

Representation learning has been extensively studied as a
separate step in which one learns features φ to be later used
with linear function approximation. Fixed basis methods
such as tile-coding (Sutton and Barto 2018) and the Fourier
basis (Konidaris, Osentoski, and Thomas 2011) often work
well for small input dimensions. However, the field has con-
tinually searched for methods that would adapt the represen-
tation to the MDP structure. For example, proto-value func-
tions (Mahadevan 2005) attempt to capture the eigenvectors
of the matrix (I − γPπ)−1, where Pπ(x′ | x) := EπP (x′ |
x, a) for policy π, and are closely related to successor rep-
resentations (Dayan 1993), slow-feature analysis (Sprekeler
2011), and successor features (Barreto et al. 2017).

In deep reinforcement learning φ and θa are jointly
learned as a (deep) neural network (Mnih et al. 2015). As
long as the network has sufficient representational capacity,
given enough training experience the learned representation
φ(x) will be able to approximate a policy’s value function
arbitrarily well. Thus, some may ask if representation learn-
ing in RL is still an open problem. We argue for the affir-
mative, largely due to the need for generalization to future
value functions. When training in deep RL the representa-
tion itself changes to better fit the value function (Figure 1,
center). This is desirable, but can also lead to highly tempo-
rally correlated features (Kolter and Ng 2009), and a repre-
sentation that is degenerate, in terms of having limited span.
That is, in common machine learning terms, deep RL can,
and does, overfit to the current value function.

Auxiliary tasks. It has been argued in the literature that
one way to capture the relevant information for a good rep-
resentation is to learn about many aspects of the world in
addition to learning a value function (Parr et al. 2008; Song
et al. 2016). One idea in this direction is to define pseudo-
rewards, or cumulants, c : X ×A×X → R, and treat them

7161

as actual rewards, either learning the value of a fixed policy
or solving the induced control problem in parallel with the
solution of the problem of interest (Sutton et al. 2011; Jader-
berg et al. 2017). The intuition here is that these additional
tasks, called auxiliary tasks, help shape the representation φ
(Figure 1, right), and thus limit overfitting.

3 The Value-Improvement Path
The fact that in value-based RL policies are computed
through (2) allows us to think about the problem strictly
in terms of value functions. Ultimately, we are interested in
the optimal value function Q∗, from which an optimal pol-
icy can be readily computed. However, unlike in supervised
learning, in RL we do not have access to samples of Q∗, and
to estimate this function the agent must traverse a path across
the space of value functions Q = {Qπ|π ∈P(A)X }.

This special structure of the RL problem creates a num-
ber of challenges. Since we do not have direct access to the
target function we are trying to approximate, we generally
use the approximation itself to build the targets—a strat-
egy sometimes referred to as “bootstrapping” (Sutton and
Barto 2018). This creates a cyclic dependence of the approx-
imation on itself that can lead to instabilities (Baird 1995;
Bertsekas and Tsitsiklis 1996; Van Hasselt et al. 2018). In
fact, many of the techniques currently adopted in deep RL,
like target networks and replay buffers, can be interpreted as
strategies to ameliorate this instability (Mnih et al. 2015).

However, in this paper we focus on another challenging
aspect of the RL problem that has perhaps been overlooked
so far. We argue that, when learning a representation φ(x),
we should keep in mind that we are traversing the space of
value functions, and thus over-specializing φ(x) to a par-
ticular value function is analogous to overfitting to a finite
dataset in supervised learning. In the same way that we take
measures to prevent overfitting in supervised learning, we
should adopt strategies to avoid over-specialization of φ(x).

But how can we tailor φ(x) to a set of value functions
that is not known in advance? One possible approach is to
characterize the entire space of value functions Q and try to
shape φ(x) in order to represent this space as well as pos-
sible. Dadashi et al. (2019) showed that the space of state
value functions V = {V π|π ∈ P(A)X } forms a polytope.
Based on the theory developed by Dadashi et al. (2019), it is
straightforward to show that, as an affine image of V , Q is
also a polytope, so we will use “value polytope” to generi-
cally refer to both V and Q.

Building on Dadashi et al.’s insight, Bellemare et al.
(2019) proposed to shape φ(x) by learning a set of auxiliary
tasks corresponding to value functions that cover the value
polytope as well as possible. Although Bellemare et al.’s ap-
proach is a clear step forward towards recognizing the nature
of the approximation problem in RL, we argue that shaping
the representation taking the entire value polytope Q (or V)
into account may be a stringent requirement in practice. This
is based on the observation that the value functions of inter-
est form a set that is generally much smaller than Q.

As discussed in Section 2, any value-based RL algorithm
computes a sequence of functions that, under some assump-
tions, end in the optimal value function Q∗. We will call this

trajectory in function space the value-improvement path, and
formally define it as follows:

Definition 1. A sequence {Q0, Q1, ..., Q
∗} is called a

value-improvement path if Qi+1 � Qi for i = 0, 1,

Value-improvement paths are worth investigating because
they tend to (approximately) reflect the behavior of algo-
rithms of practical interest. In addition, it might be possible
to exploit the structure in this type of sequence to improve
the generalization ability of the associated algorithm. In the
next section we illustrate these points with a specific exam-
ple of value-improvement path.

Prototypical Example of Value-Improvement Path
In order to provide intuition on the concept of value-
improvement path, it might be instructive to consider for
a moment the scenario studied by dynamic programming,
where it is assumed that the dynamics of the MDP P (·|x, a)
are known (Puterman 1994). This allows for the definition
of algorithms whose value-improvement paths can be eas-
ily analyzed. Perhaps the dynamic programming algorithm
whose value-improvement path is easiest to visualize is pol-
icy iteration (Howard 1960). Policy iteration has very simple
dynamics: starting from a policy π0, compute its value func-
tion,Qπ0 , derive an improved policy π1 based on (2), and so
on, until Qπi = Qπi+1 .

The initial value function Qπ0 is sufficient to fully define
policy iteration’s value path {Qπ0 , Qπ1 , ..., Q∗}; we will
thus useQπ to refer to policy iteration’s value-improvement
path starting at Qπ . The value-improvement path Qπ has
several interesting properties (see Appendix Figure 4):

1. Order: Qπ is a totally ordered set, since for any two
Qπ
′
, Qπ

′′ ∈ Qπ it must be the case that eitherQπ
′ � Qπ′′

or Qπ
′ � Qπ′′ . This is in contrast with Q, which is a par-

tially ordered set.

2. Structure: As long as there is a deterministic way to
break ties in (2), we can think of the space composed of all
policy iteration’s value-improvement paths as a tree-like
structure in which the optimal value function Q∗ is the
root, the first level has all the value functions that lead to
π∗ in one application of (2), and so on. Seen this way, it is
clear that two value-improvement paths Qπ and Qπ′ can
intersect at arbitrary levels of the tree, and if they meet in
Qπi they overlap from that point up, all the way to the root
of the tree. More formally, if Qπi ∈ Qπ and Qπi ∈ Qπ′ ,
given Qπj ∈ Qπ such that Qπj � Qπi , then Qπj ∈ Qπ′ .

3. Size: If Qπ ≺ Qπ
′
, then Qπ /∈ Qπ′ . Also, although

Qπ
′ ∈ Qπ implies that Qπ

′ � Qπ , the converse is not
necessarily true. Importantly, for a fixed discount factor
γ, the size of any value-improvement path Qπ is polyno-
mial in |X | and |A|, even though the number of improving
policies can be exponentially large in |X | (Ye 2011).

The properties above shed some light on the RL represen-
tation learning problem. Property 2 indicates that the fea-

7162

tures φ(x) should always be able to provide a good ap-
proximation of Q∗—a fact that is not very surprising. Per-
haps more insightful is the fact that, although all value-
improvement paths end at the same point Q∗, the trajectory
they define in the value-function space Q can be quite dis-
tinct. This suggests that the representation learning problem
is context-dependent, in the sense that it can change con-
siderably depending on the value function used as a start-
ing point for the policy iteration process. Another interest-
ing fact, implied by Property 3, is that, once we know Qπ ,
we should only care about the value functions Qπ

′ ∈ Qπ .
Since this set of value functions is in general much smaller
than the entire polytopeQ (see Property 3), focusing our at-
tention to Qπ can significantly influence how we approach
representation learning.

The structure of the value-improvement path may change
depending on how exactly policy evaluation and policy im-
provement are applied. For example, if policy improve-
ment (2) is applied to a subset of the state spaceX only, there
might be many paths from a given function Qπi to the end-
point of the path, Q∗. This means that the tree structure de-
scribed in Property 2 would be replaced by a directed acyclic
graph. Similarly, one should expect the structure of the
value-improvement path to change if policy evaluation is not
carried out to completion. For example, the value iteration
algorithm alternates between a single application of the Bell-
man operator T π defined in (1) and one application of the
policy improvement operator (2); in this case the resulting
value-improvement path will also be quite distinct from the
one induced by policy iteration—in fact, it has been shown
that the intermediate functions obtained by value iteration
do not belong to the value polytopeQ (Dadashi et al. 2019).
Another example of modified policy evaluation is when pol-
icy iteration is performed using approximations Q̂π ≈ Qπ .
In this case the resulting value path Q̂π .

= {Q̂π1 , Q̂π2 , . . . }
may no longer be a value-improvement path (Bertsekas and
Tsitsiklis 1996). The value-improvement path also changes
when we move from dynamic programming to RL, in which
it is assumed that the agent does not have access to the dy-
namics of the MDP. Since in this case policy evaluation (1)
is applied based on samples from P (·|x, a), one has a distri-
bution over possible value-improvement paths.

In this paper we will repeatedly refer to policy iteration’s
value-improvement path Qπ as a prototypical example of
this type of trajectory in function space. In the same way
that knowledge of the structure underlying the true space
Q helps to shape the representation φ(x), we argue that the
properties of Qπ as defined above can help us determine a
suitable φ(x) regardless of the specific way policy evalua-
tion and policy improvement are carried out. We elaborate
on this point next.

4 Representation Learning Through the
Lens of the Value-Improvement Path

We now revisit the formulation of the representation learn-
ing problem in light of the concept of value-improvement
path. Currently representation learning in deep RL is tack-
led in two ways that are, in some sense, the extremes of a

spectrum of possibilities. On one extreme of the spectrum
we have the common practice of ignoring the special struc-
ture of the RL problem and shaping the representation φ(x)
looking only at the current value function. As discussed, this
can lead to overfitting. On the other extreme we have the
recently-proposed approach of shaping φ(x) considering the
entire value polytope Q, which may not be scalable (Belle-
mare et al. 2019). Here we propose an intermediate formu-
lation: representation learning in deep RL should be seen
as the search for φ(x) that allows for good approximations
of all value functions in an algorithm’s value-improvement
path. Using again policy iteration as a prototypical reference
point, we now formally motivate this objective by restating
a result by Munos (2003) in terms of policy iteration’s ap-
proximate value path Q̂π .

Let ‖Q‖2dµ =
∑

(x,a)∈X×A dµ(x, a)Q(x, a)2 be the
(squared) Euclidean norm on RX×A weighted by the train-
ing state-action distribution dµ, and, for any subspace U ⊆
RX , let Π

dµ
U : RX×A → RX×A denote the orthogonal pro-

jection into the subspaceUA ⊆ RX×A with respect to ‖·‖2dµ
(when it is clear from context, we will drop notational de-
pendence on dµ).

Theorem 1. Consider a policy π, a distribution over state-
action pairs, dµ, and a representation φπ : X → RK . Sup-
pose that policy iteration’s approximate value path Q̂π is
well-approximated in the sense that for some ε ≥ 0 and re-
lated distributions dµk (Definition A, Appendix A),

‖Π〈φπ〉Q−Q‖dµk ≤ ε, ∀Q ∈ Q̂π, k ∈ [K]. (3)

Then, for πk representing the policy at the kth iteration of
approximate policy iteration starting with π0 = π, we have

lim sup
k→∞

‖Q∗ −Qπk‖dµ ≤
2γε

(1− γ)2
.

The proofs of our theoretical results can be found in the
Appendix. Theorem 4 extends Munos’ result to action-value
functions, and indicates how long-term performance of ap-
proximate policy iteration is affected by the representation’s
ability to approximate functions in the value-improvement
path. Similar results can be derived for value iteration (Bert-
sekas and Tsitsiklis 1996).

Auxiliary Tasks and the Value-Improvement Path
The representation learning problem can potentially be ap-
proached in different ways. However, in this section we fo-
cus on a method that is commonly used in practice which
can be interpreted as a way of addressing the problem as
formulated above: auxiliary tasks. Specifically, we will ana-
lyze how well the representation induced by different auxil-
iary tasks span the value-improvement path. We begin with
the standard no-auxiliary-task setting and consider methods
progressively more aligned with approximating the value-
improvement path. As we proceed it will be useful to con-
sider, for each auxiliary task, what subspace the induced rep-
resentation attempts to capture, and how this compares with
that of the value-improvement path. To this end, Figure 2
gives an illustration of each method.

7163

Value-Improvement Path

Q⇡0

Q⇡
Q⇡k

Q⇡⇤

Q⇡k

�

Value-Only

Q⇡k

�

Q
⇡̂⇤
i

i

Cumulant Value

Q⇡k

�Q⇡̂i

Cumulant Policy

Q⇡k

�

Q⇡t<k

Past Policies

Figure 2: Illustration of the relationship between the value-improvement path, Qπ , and auxiliary tasks discussed in this work
(shown as colored dots). The outlined space shows the hull of the value polytope, while the gray curve denotes the value-
improvement path. Potential representations are shown by a solid line denoted Φ.

No auxiliary tasks (value-only). When the training ob-
jective is the accurate evaluation of a fixed policy π, gener-
alization to other policies, improvements or otherwise, can
be very poor. Mathematically, under this objective, the aim
is to find a representation φπ and weights (θπa |a ∈ A) which
obtain a low value for the objective∑

(x,a)∼X×A

dµ(x, a)
(
φπ(x)>θπa 〉 −Qπ(x, a)

)2
, (4)

where dµ is the distribution over training state-action pairs.
If K ≥ |A|, it is possible to achieve zero error on this ob-
jective, by ensuring that the subspace spanned by the coor-
dinates of φ, written 〈φ〉, contains each of the action-value
functionsQπ(·, a) for a ∈ A. To understand how such a rep-
resentation generalizes to the approximation of other value
functions, let Q be a new value function—corresponding to
an improved policy, for example. The optimal approxima-
tion to Q using the representation φπ is given by Π〈φπ〉Q.
Clearly, any representation φπ which achieves zero error on
the objective (4) will achieve at least as good an approxima-
tion performance of Q as the representation comprising the
features {Qπ(·, a)|a ∈ A}, but no further guarantees can be
given. Thus, the following inequality is tight:

‖Π〈φπ〉Q−Q‖ ≤ ‖Π〈Qπ(·,a)|a∈A〉Q−Q‖ .
Cumulant value functions. Alternatively, we may take on
the perspective of Sutton et al. (2011) and construct auxiliary
tasks by learning optimal value-functions of a diverse collec-
tion of cumulants. Let {c1, . . . , cn} be a set of n cumulant
functions, and for i = 1, . . . , n, let π̂i be a policy maxi-
mizing the value for cumulant ci, and Qπ̂ii its action-value
function under ci. We can think of these auxiliary tasks as
capturing a subspace of the space of optimal value functions
induced by all possible cumulants: 〈(I − γPπ

∗
c)−1c|∀c〉.

Given infinite representational capacity, adding additional
auxiliary tasks would monotonically improve the general-
ization error. However, when |φ| is finite, adding auxiliary
tasks necessitates a trade-off between approximation errors.
In this case, there is no reason to expect the space of all
optimal value functions to be well-aligned with the value-
improvement path, except for the final point at the optimal
policy. For this reason we cannot provide much in the way
of generalization guarantees for this auxiliary task. Nonethe-
less, these can still provide regularization and decorrelation

benefits. For example, the UNREAL agent’s pixel control
auxiliary loss is of this type (Jaderberg et al. 2017).

Cumulant policies. Suppose instead we learn Qπ̂ii us-
ing a separate approximator and use Qπ̂i as our auxiliary
task (i.e. the evaluation of the auxiliary policy π̂i on the true
reward function). This would make sure that the value func-
tions used as auxiliary tasks belong toQ. Clearly, the result-
ing method will be sensitive to the distribution of policies
generated by the cumulant functions. However, assuming
the cumulant functions are sufficiently expressive, the result-
ing set of auxiliary policies will eventually cover all deter-
ministic policies. Thus, the representation captures the prin-
cipal components of the value polytope itself (Dadashi et al.
2019). Because the value-improvement path is a subset of
the value polytope, this immediately allows us to apply The-
orem 4. The adversarial value functions method provides a
principled approach to solving the problem of generating a
set of such policies that span the value polytope, but exact
solutions can be intractable (Bellemare et al. 2019).

The value-improvement path is in general much smaller
than the value polytope itself (see Property 3). Consider for
example that for any policy π all policies π̂i with Qπ̂i ≺ Qπ
are not in the path Qπ . The value functions produced by the
above two methods may be entirely unrelated to those in the
value-improvement path.

Past policies in the value path. Perhaps we can
improve generalization error by explicitly restricting the
auxiliary value functions to the elements of the value-
improvement path. The future policies, and their value func-
tions, are unknown, but we have already passed through
some sequence of value-policy pairs during training. Rather
than using arbitrary cumulants to generate policies, we can
take advantage of the trajectory of improving policies it-
self to source these auxiliary values. This method involves
taking as the auxiliary tasks the value function for the
past k policies in our trajectory of policy improvement,
(Qπt−k , . . . , Qπt−1). We can also consider a softened ver-
sion of the PastPolicies where each auxiliary task estimates a
different mixture over past value-functions. This can be im-
plemented by simply using a different learning rate for each
auxiliary task and using their average as the bootstrap tar-
get for all tasks. These two auxiliary tasks, PastPolicies and
PastMixture, have not been previously proposed, but viewed

7164

Performance (mean) Performance (median)Generalization error
DoubleDQN
CumulantValues
CumulantPolicies
PastPolicies
PastMixture

Figure 3: (Left) Generalization: Mean-squared error between representations φt and value functions Qk for pairs t, k drawn
throughout training. (Right) Performance: Human-normalized performance on Atari-57. Results averaged over three seeds.

in the context of the value-improvement path we may expect
them to perform well.

The PastPolicies and PastMixtures approaches should be
expected to generalize well backwards toward previous poli-
cies in the trajectory, as these are what they are being trained
on; however, generalization to future values will depend on
the exact shape of the value-improvement path. Interest-
ingly, there is a close connection that can be drawn to op-
timistic approaches to regret minimization with predictable
sequences (Rakhlin and Sridharan 2013; Kalai and Vem-
pala 2005). At an abstract level, representation learning in
the context of value paths can be cast as an online learn-
ing problem: at each time step, we must select a collection
of features, or equivalently, a subspace of RX×A, and a Q-
function is revealed to us, with our loss depending on how
well the Q-function is approximable with our chosen sub-
space. The hypothesis surrounding PastPolicies and Past-
Mixtures is that this problem is not entirely adversarial, and
some useful information for future predictions is contained
within previous losses; in fact, the PastPolicies approach
precisely embodies the follow-the-leader approach to this
online learning problem.

Empirical Analysis
Our goal in this section is to empirically study the effect
of the previously discussed auxiliary tasks on the quality of
the learned representation. Our hypothesis is that methods
with representations that generalize well along the value-
improvement path lead to better long-term control perfor-
mance. Whereas Theorem 4 proves a more rigorous version
of this hypothesis, in this section we test our hypothesis em-
pirically, using a novel evaluation of an agent’s representa-
tions in terms of the generalization error to past and future
value functions in a value path.

For these experiments, we use the Atari-57 benchmark
from the Arcade Learning Environment (Bellemare et al.
2013, ALE). We use Double DQN (van Hasselt, Guez, and
Silver 2016) as our baseline non-auxiliary algorithm, and
compare with each of the auxiliary tasks: CumulantValues,
CumulantPolicies, PastPolicies, and PastMixtures. We gen-
erated the cumulants for CumulantValues and Cumulant-
Policies using a random network (details in Appendix C).
Each auxiliary task is trained as a linear function of the

last hidden layer of the neural network used by Double
DQN, thereby shaping the representation in different ways.
To test our hypothesis that tasks aligned with the value-
improvement path will lead to improved long-term perfor-
mance, we first explicitly evaluate this alignment (in hind-
sight) by measuring approximation error between a repre-
sentation at one point in time and the value functions along
the value path.

Specifically, we carried out the experiment as follows.
While training each agent, for 200 million environment
frames, we saved the current network every 2 million
frames. After training, we evaluated how well, in terms of
mean-squared error, each representation was able to linearly
fit each value function. Specifically, we assess how well the
representation at time t, φt(s), can linearly approximate the
value functions Q̂k for k = t − 15, t − 14, ..., t + 15 (Ap-
pendix C for details).

Figure 3 (left) shows a comparison of the generalization
errors for each agent on a held-out set of transitions. Each
curve can be interpreted as showing the generalization of
a representation to other value functions in the value path:
negative values correspond to past value functions and posi-
tive values to future value functions. Note that in RL we are
generally interested in minimizing the latter. Figure 3 (cen-
ter, right) shows the human-normalized mean and median
scores on Atari-57 (additional results in Appendix E).

These results clearly show two trends. First, the meth-
ods’ ability to generalize to future value functions largely
reflects what our analysis based on the value-improvement
path would predict. Second, and perhaps more important,
the generalization error for future value functions is remark-
ably, although not perfectly, predictive of long-term perfor-
mance, corroborating the main argument of this paper that
the value-improvement path is the space an RL agent should
generalize over. Note that the best performing sets of auxil-
iary sets, PastPolicies and PastMixtures, are actually novel.
It should be straightforward to combine these auxiliary tasks
with most value-based algorithms in the literature.

Note that CumulantValue obtains worse long-term perfor-
mance than other auxiliary tasks. This could (incorrectly)
lead us to conclude that auxiliary tasks should only be de-
fined in terms of the MDP’s actual reward. Although this is

7165

consistent with the main argument of this paper, we believe
there are situations in which having other forms of auxiliary
tasks may be beneficial. A closer inspection of the results
reveals that in some games the CumulantValue task actually
performs best—notably on those games where exploration
is particularly difficult (Appendix Figure 8). We speculate
that auxiliary tasks based on the value of cumulants may be
most useful when the actual reward is sparse. An interesting
direction for future work would be to provide a formal justi-
fication for cumulant-based auxiliary tasks analogous to the
ones provided here for their reward-based counterparts.

As a final demonstration, we combine PastMixtures with
the state-of-the-art Rainbow agent (Hessel et al. 2018). Fig-
ure 5 (Appendix) shows that, despite an existing auxiliary
task effect from distributional RL, PastMixtures leads to im-
proved performance of this state-of-the-art agent.

5 Discussion and Related Work
Auxiliary tasks were introduced with Sutton et al.’s (2011)
Horde architecture, though at the time they were not explic-
itly aimed at improving an agent’s representation. Later, the
UNREAL agent introduced an auxiliary task, pixel control,
to an A3C-like agent, and showed that these significantly
improved performance (Jaderberg et al. 2017). However, the
trade-offs between the auxiliary losses and primary loss re-
quired close tuning of hyper-parameters. Fedus et al. (2019)
proposed learning the distribution of returns for multiple
discount factors. Analysis of the relationship between these
functions and the value-improvement path is an interesting
direction for future work.

Bellemare et al. (2019) recently argued for a geometric
approach to the representation learning problem based upon
the insights surrounding the value polytope (Dadashi et al.
2019). Their proposed representational loss takes the form
of a minimization of the maximum projection error against
a finite set of adversarial value functions.

In this paper we focused on how the concept of value-
improvement path can be leveraged for representation learn-
ing through the use of auxiliary tasks. One can take the
ideas presented one step further and treat the entire value-
improvement path as a stationary object that can be approx-
imated as a single function (Schaul et al. 2015; Borsa et al.
2019). This opens up interesting possibilities in terms of
how to adjust such a function: since in general every sample
transition can be linked to a specific policy π in the value-
improvement path, one could think of a training regime that
is exclusively “on-policy” (Sutton and Barto 2018).

There is also an intriguing connection between the value-
improvement path and distributional RL. As discussed, one
way to implement the PastMixtures auxiliary tasks is to
adopt a different learning rate for each auxiliary task and
use their average as the bootstrap target for all tasks. Inter-
estingly, this can be seen as performing an update similar to
quantile regression distributional RL, but in which the asym-
metric weights are replaced with symmetric weights (Dab-
ney et al. 2018a,b). This connection suggests an explanation
as to why distributional RL is so effective in shaping the
representation—a question still open in the literature. We
discuss this subject in more detail in Appendix F.

6 Conclusions
In this paper we discussed the problem of representation
learning in the context of RL. We argued that one should ad-
dress this problem keeping in mind that learning a represen-
tation for RL is considerably different from the correspond-
ing problem in supervised learning. As a consequence, the
common practice of treating each policy evaluation as a con-
ventional supervised learning problem may lead to an over-
specialization to intermediate target value functions whose
interest for RL is only transient. This is analogous to the
problem of overfitting in supervised learning. Under this
premise, we presented the following contributions:

1. A new formulation of representation learning in RL in
terms of an algorithm’s value-improvement path.

2. An interpretation of the commonly-used practice of using
auxiliary tasks as a way of addressing the representation
learning problem under our new formulation. Specifically,
we analyzed how well auxiliary tasks used in the litera-
ture, and also new ones, span the value-improvement path.

3. Two novel auxiliary tasks inspired by the concept of
value-improvement path, PastPolicies and PastMixtures,
that showed strong performance and can be readily com-
bined with value-based agents in the literature.

4. A novel study investigating the effect of auxiliary tasks
on the quality of the representation learned. This study
is based on an original way of assessing the generaliza-
tion ability of an approximator that estimates how much
it spans a value-improvement path by looking at how well
it can represent past and future value functions.

We believe the insights above shed light on the represen-
tation learning problem in the context of RL, allowing a bet-
ter understanding of practices already used and potentially
serving as an inspiration for the design of new methods.

Acknowledgments
The authors wish to thank colleagues at DeepMind and
Google for their encouragement and feedback throughout
the process of working on this paper. In particular, to Georg
Ostrovski and Doina Precup for discussions and thoughts on
a previous draft. As well, we thank the anonymous reviewers
for their constructive feedback.

References
Baird, L. 1995. Residual algorithms: Reinforcement learn-
ing with function approximation. In International Confer-
ence on Machine Learning (ICML).

Barreto, A.; Dabney, W.; Munos, R.; Hunt, J.; Schaul, T.;
van Hasselt, H.; and Silver, D. 2017. Successor Features for
Transfer in Reinforcement Learning. In Neural Information
Processing Systems (NIPS).

Barth-Maron, G.; Hoffman, M. W.; Budden, D.; Dabney, W.;
Horgan, D.; TB, D.; Muldal, A.; Heess, N.; and Lillicrap, T.
2018. Distributed Distributional Deterministic Policy Gra-
dients. In International Conference on Learning Represen-
tations (ICLR).

7166

Bellemare, M. G.; Dabney, W.; Dadashi, R.; Taiga, A. A.;
Castro, P. S.; Roux, N. L.; Schuurmans, D.; Lattimore, T.;
and Lyle, C. 2019. A Geometric Perspective on Optimal
Representations for Reinforcement Learning. In Neural In-
formation Processing Systems (NeurIPS).

Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A dis-
tributional perspective on reinforcement learning. In Inter-
national Conference on Machine Learning (ICML).

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An evaluation
platform for general agents. Journal of Artificial Intelligence
Research 47: 253–279.

Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming, volume 5. Athena Scientific Belmont, MA.

Borsa, D.; Barreto, A.; Quan, J.; Mankowitz, D. J.; van Has-
selt, H.; Munos, R.; Silver, D.; and Schaul, T. 2019. Uni-
versal Successor Features Approximators. In International
Conference on Learning Representations (ICLR).

Dabney, W.; Ostrovski, G.; Silver, D.; and Munos, R. 2018a.
Implicit Quantile Networks for Distributional Reinforce-
ment Learning. In International Conference on Machine
Learning (ICML).

Dabney, W.; Rowland, M.; Bellemare, M. G.; and Munos, R.
2018b. Distributional reinforcement learning with quantile
regression. In AAAI Conference on Artificial Intelligence.

Dadashi, R.; Taı̈ga, A. A.; Roux, N. L.; Schuurmans, D.; and
Bellemare, M. G. 2019. The value function polytope in re-
inforcement learning. International Conference on Machine
Learning (ICML) .

Dayan, P. 1993. Improving generalization for temporal
difference learning: The successor representation. Neural
Computation 5(4): 613–624.

Fedus, W.; Gelada, C.; Bengio, Y.; Bellemare, M. G.; and
Larochelle, H. 2019. Hyperbolic discounting and learning
over multiple horizons. arXiv preprint arXiv:1902.06865 .

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and Sil-
ver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI Conference on Artificial
Intelligence.

Howard, R. 1960. Dynamic Programming and Markov Pro-
cesses. Cambridge, MA: MIT Press.

Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.;
Leibo, J. Z.; Silver, D.; and Kavukcuoglu, K. 2017. Re-
inforcement learning with unsupervised auxiliary tasks.
In International Conference on Learning Representations
(ICLR).

Kalai, A.; and Vempala, S. 2005. Efficient algorithms for
online decision problems. Journal of Computer and System
Sciences 71(3): 291–307.

Kolter, J. Z.; and Ng, A. Y. 2009. Regularization and feature
selection in least-squares temporal difference learning. In
International Conference on Machine Learning (ICML).

Konidaris, G.; Osentoski, S.; and Thomas, P. 2011. Value
function approximation in reinforcement learning using the
Fourier basis. In AAAI Conference on Artificial Intelligence.

Li, L.; Walsh, T.; and Littman, M. 2006. Towards a unified
theory of state abstraction for MDPs. In International Sym-
posium on Artificial Intelligence and Mathematics (ISAIM).

Mahadevan, S. 2005. Proto-value functions: Developmen-
tal reinforcement learning. In International Conference on
Machine Learning (ICML).

McCallum, A. K. 1996. Reinforcement Learning with Selec-
tive Perception and Hidden State. Ph.D. thesis, University
of Rochester.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529.

Munos, R. 2003. Error bounds for approximate policy it-
eration. In International Conference on Machine Learning
(ICML).

Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and
Littman, M. L. 2008. An analysis of linear models, linear
value-function approximation, and feature selection for re-
inforcement learning. In International Conference on Ma-
chine Learning (ICML).

Puterman, M. L. 1994. Markov Decision Processes. John
Wiley & Sons, Inc.

Rakhlin, S.; and Sridharan, K. 2013. Optimization, learning,
and games with predictable sequences. In Neural Informa-
tion Processing Systems (NIPS).

Rowland, M.; Dadashi, R.; Kumar, S.; Munos, R.; Belle-
mare, M. G.; and Dabney, W. 2019. Statistics and samples
in distributional reinforcement learning. International Con-
ference on Machine Learning (ICML) .

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International Con-
ference on Machine Learning (ICML).

Song, Z.; Parr, R. E.; Liao, X.; and Carin, L. 2016. Lin-
ear feature encoding for reinforcement learning. In Neural
Information Processing Systems (NIPS).

Sprekeler, H. 2011. On the relation of slow feature analy-
sis and Laplacian eigenmaps. Neural computation 23(12):
3287–3302.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT Press.

Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski,
P. M.; White, A.; and Precup, D. 2011. Horde: A scalable
real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).

Van Hasselt, H.; Doron, Y.; Strub, F.; Hessel, M.; Sonnerat,
N.; and Modayil, J. 2018. Deep reinforcement learning and
the deadly triad. arXiv preprint arXiv:1812.02648 .

7167

van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double Q-learning. In AAAI Con-
ference on Artificial Intelligence.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
Learning 8(3): 279–292.
Ye, Y. 2011. The simplex and policy-iteration methods are
strongly polynomial for the Markov decision problem with
a fixed discount rate. Mathematics of Operations Research
36(4): 593–603.

7168

