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Abstract
Attention is a commonly used mechanism in sequence pro-
cessing, but it is of O(n2) complexity which prevents its ap-
plication to long sequences. The recently introduced neural
Shuffle-Exchange network offers a computation-efficient al-
ternative, enabling the modelling of long-range dependencies
in O(n log n) time. The model, however, is quite complex,
involving a sophisticated gating mechanism derived from the
Gated Recurrent Unit. In this paper, we present a simple and
lightweight variant of the Shuffle-Exchange network, which
is based on a residual network employing GELU and Layer
Normalization. The proposed architecture not only scales to
longer sequences but also converges faster and provides better
accuracy. It surpasses the Shuffle-Exchange network on the
LAMBADA language modelling task and achieves state-of-
the-art performance on the MusicNet dataset for music tran-
scription while being efficient in the number of parameters.
We show how to combine the improved Shuffle-Exchange
network with convolutional layers, establishing it as a useful
building block in long sequence processing applications.

Introduction
More and more applications of sequence processing per-
formed by neural networks require dealing with long inputs.
A key requirement is to allow modelling of dependencies
between distant parts of the sequences. Such long-range de-
pendencies occur in natural language when the meaning of
some word depends on other words in the same or previous
sentence. There are important cases, e.g., to resolve coref-
erences, when such distant information may not be disre-
garded.

In music, dependencies occur on several scales. At the
finest scale samples of the waveform correlate to form note
pitches, at medium scale neighbouring notes relate to each
other by forming melodies and chord progressions, at coarse
scale common melodies reappear throughout the entire piece
creating a coherent musical form (Thickstun, Harchaoui, and
Kakade 2017; Huang et al. 2019). Dealing with such de-
pendencies requires processing very long sequences (several
pages of text or the entire musical composition) in a manner
that aggregates information from their distant parts. Espe-
cially challenging are approaches that work directly on the
raw audio waveform.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The ability to combine distant information is even more
important for algorithmic tasks where each output symbol
typically depends on every input symbol. The goal of algo-
rithm induction is to derive an algorithm from input-output
examples which are often given as sequences. Algorithmic
tasks are especially challenging due to the need for pro-
cessing sequences of unlimited length. Also, generalization
plays an important role since training is often performed on
short sequences but testing on long ones.

The commonly used attention mechanism (for example,
in Transformers) can deal with such long-range dependen-
cies but its time and space complexity is quadratic depend-
ing on the sequence length, therefore, is not an attractive
choice for long sequences. The attention mechanism’s com-
plexity also makes it slower at inference time, making it less
suitable for tasks with strict latency requirements, such as
realtime sound processing. The recently introduced neural
Shuffle-Exchange networks allow modelling of long-range
dependencies in sequences in O(n log n) time (Freivalds,
Ozoliņš, and Šostaks 2019). The idea is very promising
and offers a computation-efficient alternative to the atten-
tion mechanism. However, the model is quite complex, in-
volving a sophisticated gating mechanism derived from the
Gated Recurrent Unit (Cho et al. 2014).

In this paper, we present a much simpler and faster version
of the neural Shuffle-Exchange network which is based on
the residual network idea employing Gaussian Error Linear
Units (Hendrycks and Gimpel 2016) and Layer Normaliza-
tion (Ba, Kiros, and Hinton 2016) instead of gates.

We empirically validate our improved model on algo-
rithmic tasks, LAMBADA question answering and multi-
instrument musical note recognition (MusicNet dataset). It
surpasses the original Shuffle-Exchange network by 2.1%
on the LAMBADA language modelling task and achieves
state-of-the-art 78.02% average precision score on Music-
Net.

We introduce a modification where we prepend our pro-
posed model with strided convolutions to increase the speed
and applicability to long sequences even more. This change
enables processing a sequence of length 2M symbols in only
3.97 seconds.

Our main contributions are:
• We propose a much simpler and faster Switch Unit – the

core part of the Shuffle-Exchange network. This improve-
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ment leads to higher accuracy and scaling to longer se-
quences. It also makes the model approximately 4 times
faster to train and 2 times faster on inference.

• We surpass the previous state-of-the-art on MusicNet
while being efficient in the number of parameters. Our
proposed improvements to the architecture enable this
state-of-the-art achieving model to run inference on a sin-
gle GPU fast enough to be suitable for realtime audio pro-
cessing.

Related Work
The attention mechanism (Bahdanau, Cho, and Bengio
2014) has become a standard choice in numerous neural
models, including Transformer (Vaswani et al. 2017) and
BERT (Devlin et al. 2018) which achieved state-of-the-art
accuracy in NLP and related tasks. However, the complex-
ity of the attention mechanism is quadratic depending on the
input length and does not scale to long sequences.

One way to overcome the complexity of attention is cut-
ting the sequence into short segments and using attention
only within the segment boundaries (Al-Rfou et al. 2018).
Various sparse attention mechanisms have been proposed to
deal with the quadratic complexity of dense attention by at-
tending only to a small predetermined subset of locations
(Beltagy, Peters, and Cohan 2020; Zaheer et al. 2020). Re-
former (Kitaev, Kaiser, and Levskaya 2020) uses locality-
sensitive hashing to approximate attention in time O(n log
n). Linformer (Wang et al. 2020) uses a linear complexity
approximation to the original attention by creating a low-
rank factorization of the attention matrix.

Another option for processing long sequences is using
convolutional architectures (Gehring et al. 2017). However,
convolutions are inherently local − the value of a particular
neuron depends on a small neighbourhood of the previous
layer. One way to capture long-range structure is to increase
the receptive field of convolution by using dilated (atrous)
convolution, where the convolution mask is spread out at
regular spatial intervals. Dilated architectures have achieved
great success in image segmentation (Yu and Koltun 2015)
and audio generation (van den Oord et al. 2016).

An important use of sequence processing models is in
learning algorithmic tasks (see Kant (2018) for a good
overview) where the way how memory is accessed is cru-
cial. Neural GPU (Kaiser and Sutskever 2015) utilizes active
memory (Kaiser and Bengio 2016) where computation is
coupled with memory access. Freivalds and Liepins (2018)
proposes DNGPU where the flow of information in the Neu-
ral GPU is facilitated by introducing diagonal gates that im-
proves training and generalization but does not address the
performance problem caused by many layers.

For music transcription tasks convolutional architectures
are common. See (Benetos et al. 2019) for a good overview.
Trabelsi et al. (2018) achieves notable performance on Mu-
sicNet by using a convolutional network based on complex
numbers. Yang et al. (2020) recently proposed a Transformer
network that employs the Fourier transform of the waveform
in the complex domain.

Neural Shuffle-Exchange Networks
Neural Shuffle-Exchange network (Freivalds, Ozoliņš, and
Šostaks 2019) has been recently proposed as an efficient al-
ternative to the attention mechanism that allows modelling
of long-range dependencies in sequences in O(n log n) time.
The neural Shuffle-Exchange network is the neural adap-
tion of the Shuffle-Exchange and the Beneš networks which
are well-known from packet routing tasks in computer net-
works. These networks consist of interleaved shuffle and
switch layers. The shuffle layer permutes the signals. The
switch layer consists of switches. Each switch is configured
to either swap two adjacent signals or leave them unchanged.
The neural Shuffle-Exchange network adapts the structure of
Beneš network and replaces each switch with a Switch Unit
– a learnable 2-to-2 function. See Fig. 1 for an example of
a neural Shuffle-Exchange network routing signals from 8
input sequence addresses to 8 output sequence addresses.

The input to the neural Shuffle-Exchange network is a se-
quence of length n = 2k, k ∈ N, and each element of the
sequence is a vector withm dimensions. The input sequence
is padded to the nearest power of two. The first layer of the
model is a Switch Layer, which consists of n/2 Switch Units
(SU). The input sequence is split into non-overlapping pairs
of adjacent elements, and each pair is processed by a Switch
Unit. Each Switch Unit is a neural network that computes a
2-to-2 function from a pair of elements. The second layer of
the network is a Shuffle Layer, which permutes the inputs
according to the perfect shuffle permutation. Perfect shuffle
permutation maps each input address to an address that is
circularly bit-shifted to the left (e.g. 101 to 011).

Note that all Shuffle Layers are identical and have no
learnable parameters. It is also worth noting that both types
of layers leave the dimensions of the input unchanged. The
third layer of the network is the same as the first layer –
a Switch Layer. The layers keep alternating between Shuffle
Layers and Switch Layers until there are a total of log(n)−1
from each type of layer. This arrangement of layers consti-
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Figure 1: Shuffle-Exchange network routing signals from 8
input sequence addresses (sequence element locations) from
the left to 8 output sequence addresses to the right. Each
green block is a Switch Unit that takes two input elements
and either swaps or leaves them unchanged. A column of
Switch Units forms a Switch Layer. The arrows between two
Switch Layers represent a Shuffle Layer that permutes the
elements. In this figure, the switches are configured to route
an element from address 000 to 111.
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Figure 2: Residual Shuffle-Exchange network with two Beneš blocks and eight inputs. All learnable parameters are within the
Switch Units. The rest of the network is fixed and used for routing information. Any number of Beneš blocks can be added to
increase the depth of the model.

tutes the Shuffle-Exchange network.
The Shuffle-Exchange network is followed by a reversed

Shuffle-Exchange network. The only difference between
these two is that in the reversed Shuffle-Exchange network,
all Shuffle Layers are replaced by inverse Shuffle Layers.
Inverse Shuffle Layer permutes inputs like the regular Shuf-
fle Layer, but the bit shift direction is to the right (e.g.
011 to 101). This combination of regular Shuffle-Exchange
network followed by a reversed Shuffle-Exchange network
forms a Beneš block – a building block of the neural Shuffle-
Exchange network. It has been shown (Dally and Towles
2004) that such a Beneš block can connect any input to any
output for each input-output simultaneously. Therefore, the
neural Shuffle-Exchange network has a ‘receptive field’ of
the size of the whole sequence, and it has no bottleneck.
These properties hold for dense attention but have not been
shown for many sparse attention and dilated convolutional
architectures.

Multiple Beneš blocks can be stacked one after another to
increase the depth of the model. After the last Beneš block,
a final Switch Layer is added to complete the model. Within
each Beneš block the weights are shared for each Switch
Unit in the Shuffle-Exchange network and each Switch Unit
in the reversed Shuffle-Exchange network (see Fig. 2). Such
weight sharing enables generalization on algorithmic tasks
because otherwise there would be no straightforward way
of scaling up the model for sequences that are longer than
the ones observed during training. No significant decrease in
accuracy is observed on other tasks as a result of this weight
sharing scheme.

At the heart of the neural Shuffle-Exchange network is the
Switch Unit. The definition of the original Switch Unit from
the neural Shuffle-Exchange network is:

s = [s1, s2]

r1 = σ(W 1
r s+B1

r )

r2 = σ(W 2
r s+B2

r )

c1 = tanh(Wc1(r
1 � s) +B1

c )

c2 = tanh(Wc2(r
2 � s) +B2

c )

u = σ(Wus+Bu)

s̃ = swapHalf(s1, s2)

[s1o, s
2
o] = u� s̃+ (1− u)� [c1, c2]

For a more detailed description of how this Switch Unit
works, see Freivalds, Ozoliņš, and Šostaks (2019). This for-
mulation of the Switch Unit uses sophisticated gating mech-
anisms similar to Gated Recurrent Unit (Cho et al. 2014)
and is quite complex. Because apart from Switch Units, the
network consists of only fixed non-trainable permutations,
the choice of Switch Unit is critical to the overall perfor-
mance of the network. Some alternatives to the Switch Unit
have been explored, but so far the simpler architectures have
led to a decrease in performance (Freivalds, Ozoliņš, and
Šostaks 2019).

Residual Shuffle-Exchange Network
We propose the Residual Shuffle-Exchange network (RSE),
which keeps the structure from the neural Shuffle-Exchange
network but replaces the Switch Unit with our Residual
Switch Unit (RSU). RSU is based on a residual network and
employs Gaussian Error Linear Unit (GELU) (Hendrycks
and Gimpel 2016) and Layer Normalization. The unit’s de-
sign is similar to the feed-forward block in the Transformer.

RSU takes as an input two vectors [i1, i2] and produces
two vectors [o1, o2] as an output. Each of these vectors is of
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size m, where m is the number of feature maps.
RSU consists of two linear transformations on the fea-

ture dimension. The first linear transformation is followed
by Layer Normalization (LayerNorm) without output bias
and gain (Xu et al. 2019) and then by GELU. By default, we
use a 2x larger hidden layer size than the input of the first
layer, which is a good compromise of speed and accuracy.
A second linear transformation is applied after GELU. The
RSU is defined as follows:

i = [i1, i2]

g = GELU(LayerNorm(Zi))

c =Wg +B

[o1, o2] = σ(S)� i+ h� c
In the above equations, Z, W are weight matrices of size

2m × 4m and 4m × 2m, respectively, S is vector of size
2m and B is a bias vector − all of those are learnable pa-
rameters; h is scalar value, � denotes element-wise vector
multiplication and σ is the sigmoid function. For a visual-
ization of the Residual Switch Unit, see Appendix A.

In this unit, we use a residual connection that is scaled by
the learnable parameter S, which is restricted to the range
[0,1] by the sigmoid function. Additionally, we scale the new
value c coming out of the last linear transformation by a con-
stant h. We initialize S and h such that the signal travelling
through the network keeps its expected amplitude at 0.25 un-
der the assumption of the normal distribution (which is ob-
served in practice). To have that, we initialize S as σ−1(r)

and h as
√
1− r2∗0.25 where r is an experimentally chosen

constant close to 1. As r approaches 1, RSU and RSE both
start to behave more like identity functions. We use r = 0.9,
which works well. The signal amplitude after LayerNorm is
1, the weight matrix W is initialized to keep this amplitude.
If the amplitude of the input is 0.25, then the expected am-
plitude at the output is also 0.25, which is a good range for
the softmax loss. During training, the network is free to ad-
just these amplitudes, but this initialization provides stable
convergence even for deep networks.

Besides being simpler, the improved design of the RSU
allows not using skip connections between Beneš blocks that
were needed in the original SE network to ensure stable con-
vergence.

Prepending Convolutions
There are tasks, e.g. the MusicNet task, where there is a large
mismatch of information content between input and the
Residual Shuffle-Exchange network – each input unit con-
tains one sample, but Residual Shuffle-Exchange network
requires a large number of feature maps to work well. En-
coding just one number into many feature maps is wasteful.
For such tasks, we prepend the Residual Shuffle-Exchange
network with several strided convolutions to increase the
number of feature maps and reduce the sequence length. We
use convolutions with stride 2 and apply LayerNorm and
GELU after each convolution like in the RSU. Before the
result is passed to the Residual Shuffle-Exchange network, a
linear transformation is applied. An illustration of a concrete
example model with two prepended convolution layers can
be found in Appendix C.

Prepending convolutions shortens the input to the RSE
network and speeds up processing. The obtained accuracy
for the MusicNet is roughly the same. Note that this ap-
proach leads to a shorter output than the input. It may be
necessary to append transposed convolution layers at the end
of the network to upsample the signal back to its original
length. For the MusicNet task, upsampling is not necessary
since we utilize only a few elements of the output sequence.

Evaluation
We have implemented the proposed architecture in Tensor-
Flow. The code is at https://github.com/LUMII-Syslab/RSE.
All models are trained on a single Nvidia RTX 2080 Ti
(11GB) GPU with RAdam optimizer (Liu et al. 2019)

Our models were hand-tuned based on a coarse grid
search of the parameters. Further increasing the model size
leads to overfitting or negligible accuracy increase. For the
other models, we use the hyperparameters that their authors
have reported achieving the highest accuracy.

Algorithmic Tasks
Let us evaluate how well the Residual Shuffle-Exchange
(RSE) network performs on algorithmic tasks in comparison
with the neural Shuffle-Exchange (SE) (Freivalds, Ozoliņš,
and Šostaks 2019). The goal is to infer O(n log n) time algo-
rithms purely from input-output examples. In these tasks, a
single bit change in the input can lead to a completely differ-
ent output. Algorithmic tasks are good benchmarks to eval-
uate the model’s ability to develop a rich set of long-term
dependencies.

We consider long binary addition, long binary multiplica-
tion and sorting, which are common benchmark tasks in sev-
eral papers including (Freivalds, Ozoliņš, and Šostaks 2019;
Kalchbrenner, Danihelka, and Graves 2015; Zaremba and
Sutskever 2015; Zaremba et al. 2016; Joulin and Mikolov
2015; Grefenstette et al. 2015; Kaiser and Sutskever 2015;
Freivalds and Liepins 2018; Dehghani et al. 2018).

The model for evaluation consists of an embedding layer
where each symbol of the input is mapped to a vector of
length m, one or two Beneš blocks and the output layer
which performs a linear transformation to the required num-
ber of classes with a softmax cross-entropy loss for each
symbol independently. We use the RSE model having one
Beneš block for addition and sorting tasks, two blocks for
the multiplication task and m = 192 feature maps.

We use dataset generators and curriculum learning from
the article introducing neural Shuffle-Exchange networks
(Freivalds, Ozoliņš, and Šostaks 2019). For training, we in-
stantiate several models for sequence lengths (powers of 2)
from 8 to 64 sharing the same weights and train each exam-
ple on the smallest instance it fits. We pad the sequence up
to the required length with zeroes. Figure 3 shows the test-
ing accuracy on sequences of length 64 vs training step. We
can see that on the multiplication task the proposed model
trains much faster than SE, reaching near-zero error in about
20K steps vs 200K steps for the SE. For addition and sorting
tasks, both models perform similarly.

7248



5k 10k 15k 20k0

0

0.1

0.2

0.3

0.4

0.5

0.6
e

rr
o

r

RSE addition RSE sorting RSE multiplication
SE addition SE sorting SE multiplication

step

Figure 3: Test error depending on the training step for
Residual Shuffle-Exchange (RSE) and Shuffle-Exchange
(SE) networks on algorithmic tasks of length 64.
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Figure 4: Test accuracy depending on the length for the
generalization of Residual Shuffle-Exchange (RSE) and
Shuffle-Exchange (SE) to longer sequences on algorithmic
tasks.

We have compared the generalization performance of
both models, see Fig. 4. We train both models on length up
to 64 and evaluate on length up to 4K. On addition and sort-
ing tasks, the proposed RSE model generalizes very well to
length 256 but loses slightly to SE on longer sequences. For
the multiplication task RSE model generalizes reasonably
well to twice as long sequences but not more, where the old
model does not generalize even this much. We have com-
pared our model to the DNGPU – the improved Neural GPU
(Freivalds and Liepins 2018). Our model outperforms it on
all tasks except multiplication. More detailed comparison of
DNGPU and RSE generalization performance can be found
in Appendix B.

LAMBADA Question Answering
The goal of the LAMBADA task is to predict a given tar-
get word from its broad context (on average, 4.6 sentences
collected from novels). The sentences in the LAMBADA
dataset (Paperno et al. 2016) are specially selected such that
giving the right answer requires examining the whole pas-
sage. In 81% cases of the test set the target word can be
found in the text, and we follow a common strategy (Chu
et al. 2017; Dehghani et al. 2018) to choose the target word
as one from the text. The answer will be wrong in the re-
maining cases, so the achieved accuracy will not exceed
81%. Choosing a random word from the passage gives 1.6%
test accuracy (Paperno et al. 2016).

We instantiate the model for input length 256 (all test
and train examples fit into this length) and pad the input
sequence to that length by placing the sequence at a ran-
dom position and adding zeros on both ends. Randomized
padding improves test accuracy. We use a pretrained fastText
1M English word embedding (Mikolov et al. 2018) for the
input words. The embedding layer is followed by 2 Beneš
blocks with 384 feature maps. To perform the answer selec-
tion as a word from the text, each symbol of the output is
linearly mapped to a single scalar and we use softmax loss

over the obtained sequence to select the position of the an-
swer word.

In Table 1, we show the test accuracy and the number of
learnable parameters of our model in the context of results
reported in previous works. The Residual Shuffle-Exchange
network scores better than SE by 2.1% while using 3x less
learnable parameters (Freivalds, Ozoliņš, and Šostaks 2019).
Current state-of-the-art model GPT-3 surpasses our model,
achieving 86.4% accuracy while using about 16000 times
more learnable parameters and pretraining on a huge dataset
(Brown et al. 2020). The performance of GPT-3 is compara-
ble to human performance on this task (Chu et al. 2017). Our
model scores lower than Universal Transformer by 1.66%
(Dehghani et al. 2018) but uses about 14 times fewer pa-
rameters. Our model also scores by 5.34% higher than the
Gated-Attention reader (Chu et al. 2017).

In Fig 5, we compare the training and evaluation time of
Residual Shuffle-Exchange (RSE), neural Shuffle-Exchange
(SE) and Universal Transformer (UT) networks using con-
figurations that reach their best test accuracy. We use the
official Universal Transformer and neural Shuffle-Exchange
implementations and measure the time for one training and
evaluation step on a single sequence. For the Universal
Transformer, we use its base configuration with 152M learn-

Model Parameters (M) Acc (%)

Random word - 1.6
Gated-Attention Reader unknown 49.0
SE 33 52.28
RSE (this work) 11 54.34
Universal Transformer 152 56.0
Human performance - 86.0
GPT-3 175000 86.4

Table 1: Accuracy on LAMBADA word prediction task.
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Figure 5: Evaluation and training time on different input
lengths (log-scale). Each model is evaluated on sequence
lengths that fit in the 11GB of GPU memory. RSE has about
4x faster training and 2x faster inference than SE.
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Figure 6: The MusicNet performance of our model on vari-
ous window sizes. Using window sizes larger than 8K gives
marginal accuracy improvement at a considerable increase
in training time.

able parameters. SE and RSE networks have 384 feature
maps and 2 Beneš blocks, with total parameter count 33M
and 11M, respectively.

We evaluate sequence lengths that fit in the 11GB of GPU
memory. The Residual Shuffle-Exchange network works
faster and can be evaluated on 4x longer sequences than
Shuffle-Exchange network and 128x longer sequences than
the Universal Transformer.

MusicNet
The music transcription dataset MusicNet (Thickstun, Har-
chaoui, and Kakade 2017) consists of 330 classical mu-
sic recordings paired with the MIDI transcriptions of their
notes. The total length of the recordings is 34 hours, and it
features 11 different instruments. The task is to classify what
notes are being played at each time step given the waveform.
As multiple notes can be played at the same time, this is a
multi-label classification task.

For performing classification, regularly spaced windows
of a given length are extracted from the waveform. We pre-
dict all the notes that are played at the midpoint of the ex-
tracted window.

We use an RSE model with two Beneš blocks with 192
feature maps. We experimentally found this to be the best
configuration. To increase the training speed, we prepend
two strided convolutions in front of that, see analysis of other
options below. To obtain the note predictions, we use the
element in the middle of the sequence output by the RSE
model, linearly transform it to the 128 values, one for each
note pitch, and apply the sigmoid cross-entropy loss function
to perform multi-label classification.

For evaluating the model, we use the average precision
score (APS), which is the area under the precision-recall
curve. This metric is well suited to prediction tasks with im-
balanced classes and is suggested for the MusicNet dataset
in the original paper (Thickstun, Harchaoui, and Kakade
2017). We evaluate APS using the scikit-learn machine
learning library (Pedregosa et al. 2011).

We train the model on different window sizes ranging
from 128 to 8192 (see Fig. 6). We find that larger window

sizes invariably lead to better accuracy. The best APS score
of 78.02% is obtained on length 8192.

The previous state-of-the-art was achieved by the Trans-
lation invariant net (Thickstun et al. 2018). They used task-
specific handcrafted filterbanks to achieve invariance in rep-
resentation with respect to pitch shifts of the input audio. It
incorporates the prior knowledge of invariances in the prob-
lem domain to train on an augmented version of the Mu-
sicNet, where data is pitch-shifted by an integral number of
semitones.

See Table 2 for a comparison with other works. A ma-
jority of the best results on the MusicNet have architectures
that are specialized to use complex-valued data. This can
give an advantage in sound processing tasks where data can
be Fourier-transformed into a complex-valued representa-
tion before it is given as an input to the model. Trabelsi et al.
(2018) achieves 72.90% APS with Deep Complex Network
– a complex-valued convolution architecture. Its real-valued
counterpart Deep Real Network achieves a lower score of
69.80% APS. cgRNN is an RNN that uses a recurrent cell
with complex-valued transitions (Wolter and Yao 2018). It
achieves 53% APS and uses only 2.36M parameters. Yang
et al. (2020) proposed Complex Transformer that achieves
74.22% APS.

We have tested how prepending convolutions impact the
speed and accuracy of the model. We find that one convolu-
tion gives the best results, although the differences are small.
We chose to use two convolutions for a good balance be-

Model Parameters (M) APS (%)

cgRNN 2.36 53.00
Deep Real Network 10.0 69.80
Deep Complex Network 8.8 72.90
Complex Transformer 11.61 74.22
Translation-invariant net unknown 77.3
RSE (this work) 3.06 78.02

Table 2: Performance on the MusicNet dataset.
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Figure 7: Training and evaluation speed (log-scale) depend-
ing on the prepended convolution count on the MusicNet
task.
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Figure 8: Ablation experiments. The plot shows test error
on the multiplication task length 128 vs training step.

tween speed and accuracy.
We use the batch size of one example in this test to see the

sequence length limit our model can be trained and tested on
a single GPU. Fig. 7 shows the training and evaluation speed
of the model depending on the number of convolutions. In-
creasing the number of convolution layers improves training
and evaluation speed, and the version with two convolutions
can be trained on sequences up to length 128K. With 86
predictions per second as in the test set, our state-of-the-art
model can perform inference 1.93 times faster than realtime.
The training lines stop at the length at which the model does
not fit in the GPU memory anymore. Testing lines reach a
2M technical limitation of our implementation.

In Appendix C, we provide accuracy measurements de-
pending on the window size and the number of convolu-
tions. We visualize the note predictions and describe the
most common errors in Appendix D. Additional training de-
tails are provided in Appendix E.

Ablation Study
We have chosen the multiplication task as a showcase for
the ablation study. It is a hard task which challenges every
aspect of the model and performance differences are clearly
observable. We use a model with 2 Beneš blocks, 192 feature
maps and train it on length 128. We consider the following
simplifications of the proposed architecture:
• removing LayerNorm (without LayerNorm)
• using ReLU instead of GELU
• removing the residual connection; the last equation of

RSU becomes [o1, o2] = c (without residual)
• setting the residual weight parameter σ(S) to a constant

1 instead of a learnable parameter; the equation becomes
[o1, o2] = i+ h� c (without residual scale)

We can see in Fig. 8 that the proposed baseline performs
the best. Versions without residual connection or normaliza-
tion do not work well. Residual weight parameter and GELU
non-linearity give a smaller contribution to the model’s per-
formance.

We investigate the effect of the RSU hidden layer size on
performance. Parameter count and speed of the model is di-
rectly proportional to the hidden layer size; therefore, we
want to select the smallest size, which gives a good perfor-
mance. By default, we use 2m feature maps where m is the
number of feature maps of the model. Versions with half
as large or twice as large hidden layer size are explored.
We discover that a larger hidden layer size leads to better
performance. We consider the choice of 2m hidden layer
size a good compromise between performance and parame-
ter count. The experimental results for various hidden layer
sizes are found in Appendix F.

We have performed ablation experiments also for LAM-
BADA and MusicNet tasks with similar conclusions, but the
differences are much less pronounced.

Conclusions

We have proposed a simpler and faster version of the neu-
ral Shuffle-Exchange network. It has O(n log n) complexity
and enables processing of sequences up to length 2 million
where standard methods, like attention, fail. While keeping
the overall successful connectivity structure of the Shuffle-
Exchange network, we have shown that using residual con-
nections instead of gated connections in its design, gives
a significant boost to the training speed and achieved ac-
curacy. Additionally, we have shown how to combine the
model with strided convolutions that increase its speed and
sequence length that can be processed.

The proposed model achieves state-of-the-art accuracy in
recognizing musical notes directly from the waveform – a
task where the ability to process long sequences is crucial.
Notably, our architecture uses significantly fewer parameters
than most of the previous best models for this task.

Our experiments confirm the Residual Shuffle-Exchange
network as a useful building block for long sequence pro-
cessing applications.
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Shuffle-Exchange Networks – Sequence Processing in O(n
log n) Time. In Advances in Neural Information Processing
Systems 32, 6626–6637. Curran Associates, Inc.

Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; and Dauphin,
Y. N. 2017. Convolutional Sequence to Sequence Learning.
In Precup, D.; and Teh, Y. W., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, 1243–1252.
PMLR.
Grefenstette, E.; Hermann, K. M.; Suleyman, M.; and Blun-
som, P. 2015. Learning to Transduce with Unbounded Mem-
ory. In Cortes, C.; and Lee D.D. et al., eds., Advances
in Neural Information Processing Systems 28, 1828–1836.
Curran Associates, Inc.
Hendrycks, D.; and Gimpel, K. 2016. Gaussian Error Linear
Units (GELUs). arXiv preprint arXiv:1606.08415 .
Huang, C.-Z. A.; Vaswani, A.; Uszkoreit, J.; Simon, I.;
Hawthorne, C.; Shazeer, N.; Dai, A. M.; Hoffman, M. D.;
Dinculescu, M.; and Eck, D. 2019. Music Transformer. In
International Conference on Learning Representations.
Joulin, A.; and Mikolov, T. 2015. Inferring Algorithmic Pat-
terns with Stack-Augmented Recurrent Nets. In Cortes, C.;
and Lee D.D. et al., eds., Advances in Neural Information
Processing Systems 28, 190–198. Curran Associates, Inc.
Kaiser, Ł.; and Bengio, S. 2016. Can Active Memory Re-
place Attention? In Lee, D.; and Luxburg U.V. et al., eds.,
Advances in Neural Information Processing Systems 29,
3781–3789. Curran Associates, Inc.
Kaiser, Ł.; and Sutskever, I. 2015. Neural GPUs learn algo-
rithms. arXiv preprint arXiv:1511.08228 .
Kalchbrenner, N.; Danihelka, I.; and Graves, A. 2015. Grid
long short-term memory. arXiv preprint arXiv:1507.01526 .
Kant, N. 2018. Recent Advances in Neural Program Syn-
thesis. arXiv preprint arXiv:1802.02353 .
Kitaev, N.; Kaiser, Ł.; and Levskaya, A. 2020. Reformer:
The Efficient Transformer. In International Conference on
Learning Representations.
Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; and
Han, J. 2019. On the Variance of the Adaptive Learning
Rate and Beyond. arXiv preprint arXiv:1908.03265 .
Mikolov, T.; Grave, E.; Bojanowski, P.; Puhrsch, C.; and
Joulin, A. 2018. Advances in Pre-Training Distributed Word
Representations. In Calzolari, N.; and Choukri, Khalid et al.,
eds., Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018). Eu-
ropean Language Resources Association (ELRA).
Paperno, D.; Kruszewski, G.; Lazaridou, A.; Pham, Q. N.;
Bernardi, R.; Pezzelle, S.; Baroni, M.; Boleda, G.; and
Fernández, R. 2016. The LAMBADA dataset: word pre-
diction requiring a broad discourse context. In Proceedings
of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), 1525–1534.
ACL (Association for Computational Linguistics).
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learning
in Python. Journal of machine learning research 12(Oct):
2825–2830.

7252



Thickstun, J.; Harchaoui, Z.; Foster, D. P.; and Kakade,
S. M. 2018. Invariances and Data Augmentation for Su-
pervised Music Transcription. In International Conference
on Acoustics, Speech, and Signal Processing (ICASSP).
Thickstun, J.; Harchaoui, Z.; and Kakade, S. M. 2017.
Learning Features of Music from Scratch. In International
Conference on Learning Representations (ICLR).
Trabelsi, C.; Bilaniuk, O.; Zhang, Y.; Serdyuk, D.; Subrama-
nian, S.; Santos, J. F.; Mehri, S.; Rostamzadeh, N.; Bengio,
Y.; and Pal, C. J. 2018. Deep Complex Networks. arXiv
preprint arXiv:1705.09792 .
van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.;
Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A. W.;
and Kavukcuoglu, K. 2016. WaveNet: A Generative Model
for Raw Audio. In SSW - the 9th ISCA Speech Synthesis
Workshop, Sunnyvale, CA, USA, 2016, 125.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is All you Need. In Guyon, I.; and Luxburg U.V.
et al., eds., Advances in Neural Information Processing Sys-
tems 30, 5998–6008. Curran Associates, Inc.
Wang, S.; Li, B.; Khabsa, M.; Fang, H.; and Ma, H. 2020.
Linformer: Self-Attention with Linear Complexity. arXiv
preprint arXiv:2006.04768 .
Wolter, M.; and Yao, A. 2018. Complex gated recurrent neu-
ral networks. In Advances in Neural Information Processing
Systems, 10536–10546.
Xu, J.; Sun, X.; Zhang, Z.; Zhao, G.; and Lin, J. 2019. Un-
derstanding and Improving Layer Normalization. In Ad-
vances in Neural Information Processing Systems, 4383–
4393.
Yang, M.; Ma, M. Q.; Li, D.; Tsai, Y. H.; and Salakhutdinov,
R. 2020. Complex Transformer: A Framework for Modeling
Complex-Valued Sequence. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 4232–4236.
Yu, F.; and Koltun, V. 2015. Multi-scale context aggregation
by dilated convolutions. arXiv preprint arXiv:1511.07122 .
Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti,
C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.;
et al. 2020. Big bird: Transformers for longer sequences.
arXiv preprint arXiv:2007.14062 .
Zaremba, W.; Mikolov, T.; Joulin, A.; and Fergus, R. 2016.
Learning simple algorithms from examples. In International
Conference on Machine Learning, 421–429.
Zaremba, W.; and Sutskever, I. 2015. Reinforcement
Learning Neural Turing Machines-Revised. arXiv preprint
arXiv:1505.00521 .

7253


