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Abstract

In this paper, we first study the problem of combinatorial
pure exploration with full-bandit feedback (CPE-BL), where
a learner is given a combinatorial action space X ⊆ {0, 1}d,
and in each round the learner pulls an action x ∈ X and re-
ceives a random reward with expectation x⊤θ, with θ ∈ R

d

a latent and unknown environment vector. The objective is to
identify the optimal action with the highest expected reward,
using as few samples as possible. For CPE-BL, we design the
first polynomial-time adaptive algorithm, whose sample com-
plexity matches the lower bound (within a logarithmic factor)
for a family of instances and has a light dependence of ∆min

(the smallest gap between the optimal action and sub-optimal
actions). Furthermore, we propose a novel generalization of
CPE-BL with flexible feedback structures, called combinato-
rial pure exploration with partial linear feedback (CPE-PL),
which encompasses several families of sub-problems including
full-bandit feedback, semi-bandit feedback, partial feedback
and nonlinear reward functions. In CPE-PL, each pull of ac-
tion x reports a random feedback vector with expectation of
Mxθ, where Mx ∈ R

mx×d is a transformation matrix for x,
and gains a random (possibly nonlinear) reward related to x.
For CPE-PL, we develop the first polynomial-time algorithm,
which simultaneously addresses limited feedback, general re-
ward function and combinatorial action space (e.g., matroids,
matchings and s-t paths), and provide its sample complexity
analysis. Our empirical evaluation demonstrates that our algo-
rithms run orders of magnitude faster than the existing ones,
and our CPE-BL algorithm is robust across different ∆min

settings while our CPE-PL algorithm is the first one returning
correct answers for nonlinear reward functions.

1 Introduction

The problem of best arm identification (BAI) is the pure-
exploration framework in stochastic multi-armed bandits. In
BAI, at each step a learner chooses an arm and observes its
reward sampled from an unknown distribution, with the goal
of returning the best arm with the highest expected reward
using as few exploration steps as possible. This problem
abstracts a decision making model in the face of uncertainty
with a wide range of applications, and has received much
attentions in the literature (Even-Dar, Mannor, and Mansour
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2006; Audibert, Bubeck, and Munos 2010; Chen and Li 2015;
Kaufmann, Cappé, and Garivier 2016).

In many application domains, possible actions have a cer-
tain combinatorial structure. For example, each action may
be a size-k subset of keywords in online advertisements (Rus-
mevichientong and Williamson 2006), or an assignment be-
tween workers and tasks in crowdsourcing (Lin et al. 2014),
or a spanning tree in communication networks (Huang, Liu,
and Ding 2008). To deal with such a combinaotrial action
space, the model of combinatorial pure exploration of multi-
armed bandits (CPE-MB) was first proposed by Chen et
al. (2014). In this model, there are d base arms, each of
which is associated with an unknown reward distribution, and
a collection of super arms, each of which is a subset of base
arms. A learner plays a base arm at each step and observes
its random reward, with the goal of identifying the best su-
per arm that maximizes the sum of expected rewards at the
end of exploration. CPE-MB generalizes the classical BAI
problem (Kalyanakrishnan and Stone 2010; Kalyanakrishnan
et al. 2012; Bubeck, Wang, and Viswanathan 2013).

However, many real-world scenarios may not fit into CPE-
MB. In particular, CPE-MB assumes that the learner can
directly play each base arm and observe its outcome, but this
might not be allowed due to system constraints or privacy
issues. Only a few studies avoid such an assumption. Kuroki
et al. (2020b) studied the combinatorial pure exploration with
full-bandit linear feedback (CPE-BL), in which the learner
pulls a super arm (rather than base arm) and only observes
the sum of rewards from the involved base arms. They de-
signed an efficient algorithm for CPE-BL, but the algorithm
is nonadaptive and its sample complexity heavily depends
on the smallest gap between the best and the other super
arms (denoted by ∆min). Rejwan and Mansour (2020) also
designed an efficient algorithm with an adaptive Successive-
Accept-Reject algorithm, but the algorithm only works for
the top-k case of CPE-BL, which we show can be simply
reduced to previous CPE-MB (see Appendix D in the full
version).

Note that CPE-BL can be regarded as an instance of the
best arm identification in linear bandits (BAI-LB), which has
received increasing attention recently (Soare, Lazaric, and
Munos 2014; Tao, Blanco, and Zhou 2018; Fiez et al. 2019).
However, none of the existing algorithms for BAI-LB can
efficiently solve CPE-BL, because their running times have
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polynomial dependence on the size of action space, which is
exponential in the combinatorial setting.

In this paper, we provide the first algorithm solving CPE-
BL that simultaneous achieves the following properties: (a)
polynomial-time complexity, (b) adaptive sampling, such that
the sample complexity is not heavily dependent on ∆min; (c)
general combinatorial constraints, and (d) nearly optimal
sample complexity for some family of instances.

Next, we propose a more general setting, combinatorial
pure exploration with partial linear feedback (CPE-PL),
which simultaneously models limited feedback, general (pos-
sibly nonlinear) reward and combinatorial action space. In
CPE-PL, given a combinatorial action space X ⊆ {0, 1}d,
where each dimension corresponds to a base arm and each
action x ∈ X can also be viewed as a super arm that con-
tains those dimensions with coordinate 1. At each step the
learner chooses an action (super arm) xt ∈ X to play and
observes a random partial linear feedback with expectation
of Mxt

θ, where Mxt
is a transformation matrix for xt and

θ ∈ R
d is an unknown environment vector. The learner also

gains a random (possibly nonlinear) reward related to xt and
θ, which may not be a part of the feedback and thus may
not be directly observed. Given a confidence level δ, the ob-
jective is to identify the optimal action with the maximum
expected reward with probability at least 1− δ, using as few
samples as possible. CPE-PL framework includes CPE-BL as
its important sub-problem. In CPE-BL, the learner observes
full-bandit feedback (i.e. Mx = x⊤) and gains linear reward
(with expectation of x⊤θ) after each play.

The model of CPE-PL appears in many practical scenarios.
For example, in online ranking (Chaudhuri and Tewari 2017),
a company recommends their products to users by presenting
rankings of entire items, and wants to find the best ranking
with limited feedback on the top-ranked item due to user bur-
den constraints and privacy concerns. In crowdsourcing (Lin
et al. 2014), an employer assigns crowdworkers to tasks ac-
cording to the worker-task performance, and wants to find
the best matching with limited feedback on a small subset of
the completed tasks, owing to the burden of entire feedback
and privacy issues (see Section 4.3 for detailed applications).

We remark that, CPE-PL is a novel and general model that
encompasses several families of sub-problems across full-
bandit feedback, semi-bandit feedback and nonlinear reward
function, and it cannot be translated to CPE-BL or BAI-LB.
For example, when the reward function is (x⊤θ)/‖x‖1 and
Mx = diag(x), CPE-PL reduces to a semi-bandit problem
with nonlinear reward function, and no existing CPE-BL or
BAI-LB algorithm could solve this problem.

Finally, we empirically compare our algorithms with sev-
eral state-of-the-art CPE-BL and BAI-LB algorithms. Our
result demonstrates that (a) our algorithms run much faster
than all others, some of which cannot even finish after days
of running; (b) For CPE-BL, our adaptive algorithm is much
more robust on different ∆min settings than the existing non-
adaptive algorithm; and (c) For CPE-PL, our algorithm is the
only one that correctly outputs the optimal action for a non-
linear reward function among all the compared algorithms.

To summarize, our contributions include: (a) proposing
the first polynomial-time adaptive algorithm for CPE-BL

with general constraints that achieves near optimal sample
complexity for some family of instances; and (b) proposing
the general CPE-PL framework and the first polynomial time
algorithm for CPE-PL with its sample complexity analysis.

Due to the space constraint, full proofs with additional
results and discussions are moved to the appendices in the
full version (Du, Kuroki, and Chen 2020).

1.1 State-of-the-art Related Work

Here we compare with the most related and state-of-the-art
works (see Table 1), and the full discussion and comparison
table with notation definitions are included in Appendix A in
the full version. For CPE-BL, Kuroki et al. (2020b) propose
a polynomial-time but static algorithm ICB, which has a
heavy dependence on ∆min in the sample complexity and
requires a large number of samples for small-∆min instances
empirically (see Appendix I in the full version). Rejwan
and Mansour (2020) develop a polynomial-time adaptive
algorithm CSAR but it only works for the top-k case, which
has a naive reduction to previous CPE-MB (see Appendix D
in the full version).

For BAI-LB where the action space is often considered
small, Tao, Blanco, and Zhou (2018) propose an adaptive
algorithm ALBA with a light ∆min dependence. Fiez et
al. (2019) present the first lower bound and a nearly optimal
algorithm RAGE. Recently, Katz-Samuels et al. (2020) also
design an improved nearly optimal algorithm Peace, which
is built upon the previous RAGE. Degenne et al. (2020) and
Jedra and Proutiere (2020) develop asymptotically optimal
algorithms, but a fair way to compare their results with other
non-asymptotical results is unknown. While the existing BAI-
LB algorithms achieve satisfactory sample complexity, none
of them can efficiently solve CPE-BL with an exponentially
large combinatorial action space. This paper proposes the
first polynomial-time adaptive algorithm for CPE-BL, which
is nearly optimal for some family of instances, and the first
polynomial-time algorithm for CPE-PL.

2 Problem Statements

Combinatorial pure exploration with full-bandit linear
feedback (CPE-BL). In CPE-BL, a learner is given d
base arms numbered 1, 2, . . . , d. We define X ⊆ {0, 1}d
as a collection of subsets of base arms, which satisfies a
certain combinatorial structure such as size-k subsets, ma-
troids, paths and matchings. A subset of base arms x ∈ X
is called a super arm (or an action). Let m denote the max-
imum number of base arms that a super arm in X contains,
i.e. m = maxx∈X ‖x‖1 (m ≤ d). There is an unknown envi-
ronment vector θ ∈ R

d with ‖θ‖2 ≤ L. At each time step t,
a learner pulls a super arm xt and receives a random reward
(full-bandit feedback) yt = x⊤(θ + ηt), where ηt is a zero-
mean noise vector bounded in [−1, 1]d and it is independent
among different time step t. Let x∗ = argmaxx∈X x⊤θ de-
note the optimal super arm, and we assume that the optimal
x∗ is unique as previous pure exploration works (Chen et al.
2014; Lin et al. 2014; Fiez et al. 2019) do. Let ∆i denote the
gap of the expected rewards between x∗ and the super arm
with the i-th largest expected reward.
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Algorithm Sample complexity Case Problem Type Strategy Time

GCB-PE (ours, Thm. 2) O
( |σ|β2

σL
2
p

∆2
min

log
β2
σL

2
p

∆2
min

δ

)
General CPE-PL Static Poly(d)

PolyALBA (ours, Thm. 1) Õ
(∑⌊ d

2 ⌋
i=2

1
∆2

i

log |X |
δ + d2mξmax(M̃(λ)

−1
)

∆2
d+1

log |X |
δ

)
General CPE-BL Adaptive Poly(d)

ICB (Kuroki et al. 2020b) Õ
(dξmax(M(λ)−1)ρ(λ)

∆2
min

log dξmax(M(λ)−1)ρ(λ)
∆2

minδ

)
General CPE-BL Static Poly(d)

CSAR (Rejwan and Mansour 2020) Õ
(∑d

i=2
1
∆̃2

i

log d
δ

)
Top-k CPE-BL Adaptive Poly(d)

ALBA (Tao, Blanco, and Zhou 2018) Õ
(∑d

i=2
1
∆2

i

(log δ−1 + log |X |)
)

X ⊆ R
d BAI-LB Adaptive Ω(|X |)

RAGE (Fiez et al. 2019) O
(∑⌊log2(4/∆min)⌋

t=1 2(2t)2ρ̃(Y(St)) log(t
2|X |2/δ)

)
X ⊆ R

d BAI-LB Adaptive Ω(|X |)

LinGame(-C) (Degenne et al. 2020) lim supδ→0
Eθ[τδ]

log(1/δ) ≤ minλ∈△(X ) maxx∈X\{x∗}
2||x∗−x||2

M(λ)−1

((x∗−x)⊤θ)2
X ⊆ R

d BAI-LB Adaptive Ω(|X |)

Peace (Katz-Samuels et al. 2020) O
(
(minλ∈△(X ) maxx∈X\{x∗}

||x∗−x||2
M(λ)−1

((x∗−x)⊤θ)2
+ γ∗) log(1/δ)

)
X ⊆ R

d BAI-LB Adaptive Ω(|X |)

LT&S (Jedra and Proutiere 2020) lim supδ→0
Eθ[τδ]

log(1/δ) ≤ minλ∈△(X ) maxx∈X\{x∗}
||x∗−x||2

M(λ)−1

((x∗−x)⊤θ)2
X ⊆ R

d BAI-LB Adaptive Ω(|X |)

Lower Bound (Fiez et al. 2019) Eθ[τδ] ≥ minλ∈△(X ) maxx∈X\{x∗}
||x∗−x||2

M(λ)−1

((x∗−x)⊤θ)2
log(1/2.4δ) X ⊆ R

d BAI-LB - -

Table 1. Comparison between our results and state-of-the-art results for CPE-BL(PL). “General” represents that the algorithm

works for any combinatorial structure. Õ(·) only omits log log factors. Main notations is defined in Section 2.

Given a confidence level δ ∈ (0, 1), the objective is to use
as few samples as possible to identify the optimal super arm
with probability at least 1− δ. This is often called the fixed
confidence setting in the bandit literature, and the number of
samples required by the learner is called sample complexity.

Combinatorial pure exploration with partial-monitoring
linear feedback (CPE-PL). CPE-PL is a generalization
of CPE-BL to partial linear feedback and nonlinear reward
functions. In CPE-PL, each super arm x ∈ X is associated
with a transformation matrix Mx ∈ R

mx×d, whose row di-
mension mx depends on x. At each timestep t, a learner pulls
a super arm xt and observes a random linear feedback vector
yt = Mxt

(θ + ηt) ∈ R
mxt , where ηt is the noise vector.

Meanwhile, the learner gains a random reward with expecta-
tion of r̄(xt, θ). Note that for each pull of super arm xt, the
actual expected reward r̄(xt, θ) may not be part of the linear
feedback vector yt and thus may not be directly observed
by the learner. Similarly, given a confidence δ ∈ (0, 1), the
learner aims to use as few samples as possible to identify the
optimal super arm with probability at least 1− δ.

CPE-PL allows more flexible feedback structures than
CPE-BL or BAI-LB, and encompasses several families of
sub-problems including full-bandit feedback, semi-bandit
feedback and nonlinear reward functions. For example, when
Mx = x⊤ ∈ R

1×d for all x ∈ X , this model reduces to CPE-
BL. When Mx = diag(x) ∈ R

d×d for all x ∈ X , this model
reduces to combinatorial pure exploration with semi-bandit
feedback (see Appendix B in the full version for illustration
examples).

The regret minimization version of CPE-PL has been stud-
ied in Lin et al. (2014); Chaudhuri and Tewari (2016). In this
paper, we study the pure exploration version and inherit the
two technical assumptions from Lin et al. (2014); Chaudhuri
and Tewari (2016) in order to design an efficient algorithm.

Assumption 1 (Lipschitz continuity of the expected reward
function). There exists a constant Lp such that for any x ∈ X
and any θ1, θ2 ∈ R

d, |r̄(x, θ1)− r̄(x, θ2)| ≤ Lp||θ1 − θ2||2.

Assumption 2 (Global observer set). There exists a global

observer set σ = {x1, x2, . . . , x|σ|} ⊆ X , such that

the stacked
∑|σ|

i=1 mxi
× d transformation matrix Mσ =

(Mx1 ;Mx2 ; . . . ;Mx|σ|
) is of full column rank (rank(Mσ) =

d).

Then, the Moore-Penrose pseudoinverse M+
σ satisfies

M+
σ Mσ = Id, where Id is the d × d identity matrix. We

justify Assumption 2 by the fact that without the existence of
global observer set, the learner cannot recover θ and may not
distinguish two different actions. With Assumption 2, we can
systematically construct a global observer set with |σ| ≤ d
by sequentially adding an action that strictly increases the
rank of Mσ, until Mσ reaches the full rank. Section 4.3 pro-
vides more detailed discussion on the global observer set
with applications of CPE-PL.

Notations. For clarity, we also introduce the following
notations. Let [d] = {1, 2, . . . , d}. For a vector x ∈ R

d

and a matrix B ∈ R
d×d, let ‖x‖B =

√
x⊤Bx. For a posi-

tive definite matrix B ∈ R
d×d, we use B1/2 to denote the

unique positive definite matrix whose square is B. For a
given family X , we use △(X ) to denote the set of proba-
bility distributions over X . For distribution λ ∈ △(X ), we
define supp(λ) = {x : λ(x) > 0}, M(λ) = Ez∼λ[zz

⊤]

and M̃(λ) =
∑

x∈supp(λ) xx
⊤. We denote the maximum

(minimal) eigenvalue of matrix B by ξmax(B) (ξmin(B)).

3 Combinatorial Pure Exploration with

Full-bandit Feedback (CPE-BL)

In this section, we propose the first polynomial-time adaptive
algorithm PolyALBA for CPE-BL, and show that its sample
complexity matches the lower bound (within a logarithmic
factor) for a family of instances.

3.1 Algorithm Procedure

ALBA algorithm. Before stating the main algorithm, we in-
troduce the Adaptive Linear Best Arm (ALBA) algorithm for
BAI-LB (Tao, Blanco, and Zhou 2018) (see Algorithm 1 for
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Algorithm 1: ALBA(S, δ) (Tao, Blanco, and Zhou
2018)

Input :Action set S and confidence δ.
1 Initialize S1 ← S;
2 for q ← 1, . . . , ⌊log2 d⌋ do

3 δq ← 6
π2

δ
(q+1)2 ;

4 Sq+1 ← ElimTil⌊ d
2q ⌋(Sq, δq);

5 q ← q + 1;

Output : x ∈ Sq+1

Algorithm 2: ElimTilp(S, δ)

Input :A parameter p, arms set S and confidence
level δ.

1 Compute λ∗
S ← minλ∈△(S) maxx∈S x⊤M(λ)−1x;

2 Initialize S1 ← S, r ← 1;
3 while |Sr| > p do

4 Set εr ← 1/2r, δr ← 6/π2 · δ/r2;

5 θ̂r ← VectorEst(λ∗
S , c0

2+(6+εr/2)d
(ε/2)2 ln 5|S|

δr
);

6 xr ← argmaxx∈Sr
x⊤θ̂r;

7 Sr+1 ← Sr \ {x ∈ Sr | x⊤θ̂r < x⊤
r θ̂r − εr};

8 r ← r + 1;

Output :Sr

its description), which is the key subroutine of our proposed
method PolyALBA. First, we describe the randomized least-
square estimator defined by Tao et al. (2018). Let y1, . . . , yn
be n i.i.d. samples following a given distribution λ ∈ △(X ),
and let the corresponding rewards be r1, . . . , rn respectively.

Let b =
∑n

i=1 riyi. Then, the randomized estimator θ̂ is

given by θ̂ = A−1b, where A = nM(λ) ∈ R
d×d (recall

that M(λ) = Ez∼λ[zz
⊤]). The procedure for computing

the estimate for θ is described in VectorEst (Algorithm 3).
ALBA is an elimination-based algorithm, where in round q it
identifies the top d/2q arms and discards the remaining arms
by means of ElimTilp (Algorithm 2). Note that ALBA(S, δ)
runs in time polynomial to |S|. However, since in CPE-BL,
|X | is exponential to the instance size, it is infeasible to run
ALBA with S = X . Our main contribution is the nontrivial
construction of a polynomial sized S1 to run ALBA with.

Main algorithm. Now we present our proposed algorithm
PolyALBA (see Algorithm 4 for its description), in which
ALBA is invoked with S = S1 with |S1| = d. Set S1 is
constructed by a novel preparation procedure in the first
epoch (q = 0). In this preparation epoch, we first compute
a fixed distribution λ ∈ △(X ) that has a polynomial-size
support and a key parameter α (line 1). Then, based on λ
we apply static estimation to estimate θ, until we see a big
enough gap between the empirically best and (d+ 1)-th best
actions (lines 4–13). The empirical top-d actions, excluding
those that also have big gaps to the best one, form the set S1

(lines 10–11), which is used to call ALBA to obtain the final
result x̂∗.

Note that, computing the empirical best d+ 1 super arms

Algorithm 3: VectorEst(λ, n)

Input :distribution λ and the number of samples n
1 Let y1 . . . , yn be the n samples acquired from

supp(λ) according to the distribution λ;
2 Pull arms y1, . . . , yn;
3 Observe the rewards r1, . . . , rn;

4 A ← n ·∑x∈supp(λ) λ(x)xx
⊤;

5 b ←∑n
i=1 riyi;

Output :The estimate θ̂ ← A−1b

Algorithm 4: PolyALBA

Input :confidence level δ, c0 = max{4L2, 3}.

1 Set q ← 0 and δq ← 6
π2

δ
(q+1)2 ;

2 Compute a distribution λ ← λ∗
Xσ

and parameter

α ←
√
md/ξmin(M̃(λ∗

Xσ
)) by Algorithm 5;

3 r ← 1;
4 while true do

5 Set εr ← 1
2r and δr ← 6

π2

δq
r2 ;

6 ℓ(ε) ← 2m+2α
√
md+4α2d+αεd
ε2 ;

7 θ̂r ← VectorEst(λ, c0ℓ(
εr
2 ) ln(

5|X |
δr

));

8 Select d+ 1 actions x̂1, . . . , x̂d, x̂d+1 with the

highest d+ 1 empirical means x⊤θ̂r in all
x ∈ X ;

9 if x̂⊤
1 θ̂r − x̂⊤

d+1θ̂r > εr then

10 B1 ← {x̂1, . . . , x̂d};

11 S1 ← B1 \ {x ∈ B1 | x̂⊤
1 θ̂r − x⊤θ̂r > εr};

12 break;

13 r ← r + 1;

14 x̂∗ ← output by ALBA(S1, δ1)
Output :x̂∗

Algorithm 5: Computing a distribution λ

Input :d-base arms
1 Choose any d super arms Xσ = {b1, . . . , bd} from X ,

such that rank(X) = d where X = (b1, . . . , bd);

2 λ∗
Xσ

← argminλ∈△(Xσ) maxx∈Xσ
x⊤M(λ)−1x by

the entropy mirror descent algorithm of (Tao, Blanco,
and Zhou 2018) (see Algorithm 8 in Appendix E in
the full version) ;

3 α ←
√

md/ξmin(M̃(λ∗
Xσ

));

Output : λ∗
Xσ

and α

can be done in polynomial time by using Lawler’s k-best
procedure (Lawler 1972). This procedure only requires the
existence of the efficient maximization oracle, which is sat-
isfied in many combinatorial problems such as maximum
matching, shortest paths and minimum spanning tree. More-
over, the computational efficiency of PolyALBA is not merely
owing to the Lawler’s k-best procedure. In fact, even if pre-
vious BAI-LB algorithms apply the same procedure, they
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cannot run in polynomial time since they explicitly maintain
exponential-sized action set and sample on distributions with
exponential supports. These render heavy computation and
memory in every round of previous algorithms. In contrast,
we avoid the naive enumeration and sampling on the com-
binatorial space directly, and instead find empirical top-d
actions as representatives through a novel polynomial-time
computation procedure.

3.2 Theoretical Analysis

Now we provide the sample complexity bound of PolyALBA.

Theorem 1. With probability at least 1− δ, the PolyALBA
algorithm (Algorithm 4) returns the best super arm x∗ with
sample complexity

O

( ⌊ d
2 ⌋∑

i=2

c0
∆2

i

(ln δ−1 + ln |X |+ ln ln∆−1
i )

+
c0d(α

√
m+ α2)

∆2
d+1

(
ln δ−1 + ln |X |+ ln ln∆−1

d+1

)
)
,

where α =
√
md/ξmin(M̃(λ∗

Xσ
)).

Analysis of the statistical and computational efficiency.
The first term in Theorem 1 is for the remaining epochs re-
quired by subroutine ALBA and the second term is for the
preparation procedure. As shown in Theorem 1, our sam-
ple complexity bound has lighter dependence on 1/∆2

min,
compared with the existing result (see Table 1). Now we
explain the key role for the polynomial-time complexity
of PolyALBA in the first epoch played by the distribution
λ∗
Xσ

and parameter α. Notice that even if we employ a uni-
form distribution on a polynomial-size support Xσ ⊆ X ,
i.e., λXσ

= (1/|Xσ|)x∈Xσ
, computing the maximal confi-

dence bound maxx∈X ‖x‖M(λXσ )−1 is NP-hard, while many
(UCB-based) algorithms in LB ignore this issue and simply
use a brute force method. In contrast, PolyALBA utilizes
G-optimal design (Pukelsheim 2006) and runs in polyno-
mial time while guaranteeing the optimality. In the following

lemma, we show that α
√
d gives the upper bound on the

maximal ellipsoidal norm associated to M(λ∗
Xσ

)−1.

Lemma 1. For λ∗
Xσ

and α obtained by Algorithm 5, it

holds that maxx∈X ‖x‖M(λ∗
Xσ

)−1 ≤ α
√
d, where α =√

md/ξmin(M̃(λ∗
Xσ

)).

From the equivalence theorem for optimal experimen-
tal designs (Proposition 2 in Appendix G in the full ver-

sion), it holds that minλ∈△(X ) maxx∈X ‖x‖M(λ)−1 =
√
d.

From this fact and Lemma 1, we see that λ∗
Xσ

is α (≥
1)-approximate solution to minλ∈△(X ) maxx∈X ‖x‖M(λ)−1

where X can be defined by general combinatorial con-
straints. Note that α can be easily obtained by comput-

ing ξmin(M̃(λ∗
Xσ

)) (recall that M̃(λ) =
∑

x∈supp(λ) xx
⊤).

Therefore, by employing λ∗
Xσ

and a prior knowledge of its
approximation ratio α, we can guarantee that the preparation
sampling scheme identifies a set S1 containing the optimal
super arm x∗ with high probability. In the remaining epochs,

PolyALBA can successfully focus on sampling near-optimal
super arms by ALBA owing to the optimality of S1. Note
that α = 1 if we compute minλ∈△(X ) maxx∈X ‖x‖M(λ)−1

exactly. If we approximately solve it, α is independent on the
arm-selection ratio but it can depend on the support of λ. For
further discussion on improving α, please see Appendix E in
the full version.

Discussion on the optimality. Fiez et al. (2019) give
a sample complexity lower bound for BAI-LB (see Ta-
ble 1) and propose a nearly (within a logarithmic fac-
tor) optimal algorithm RAGE with sample complexity of

O
(∑⌊log2(4/∆min)⌋

t=1 2(2t)2ρ̃(Y(St)) log(t
2|X |2/δ)

)
. Note

that the existing lower bound (Fiez et al. 2019) and nearly
(or asymptotically) optimal algorithms (Fiez et al. 2019; De-
genne et al. 2020; Katz-Samuels et al. 2020) do not consider
computational efficiency for combinatorially-large |X |, and
the lower bound for polynomial-time CPE-BL algorithms is
still an open problem.

When compared to the lower bound (Fiez
et al. 2019), there exists a family of instances
such that ∆⌊d/2(t−2)⌋+1 = 4 · 2−t, t =

2, 3, . . . , log2(
4

∆min
), in which our PolyALBA achieves

O(
∑⌊log2(4/∆min)⌋

t=2 2(2t)2ρ̃(Y(St)) log(t
2|X |2/δ) +

mdξmax(M̃
−1(λ))ρ̃(Y(S1)) log(|X |2/δ)) sample complex-

ity (see Appendix C in the full version for more details).
When ignoring a logarithmic factor and with sufficiently

small ∆min, the additional term related to ξmax(M̃
−1(λ))

is absorbed and the result matches the lower bound, which
shows superiority over other heavily ∆min-dependent
algorithms (Soare, Lazaric, and Munos 2014; Karnin
2016; Kuroki et al. 2020b). Note that the term related to
ξmax(M̃

−1(λ)) can be viewed as the cost for achieving
computational efficiency.

To our best knowledge, our PolyALBA is the first
polynomial-time adaptive algorithm that works for CPE-BL
with general combinatorial structures and achieves nearly op-
timal sample complexity for a family of problem instances.

4 Combinatorial Pure Exploration with

Partial Linear Feedback (CPE-PL)

In this section, we present the first polynomial-time algorithm
GCB-PE for CPE-PL with sample complexity analysis, and
discuss its further improvements via a non-uniform allocation
strategy. We also give practical applications for CPE-PL and
explain the corresponding global observer set and sample
complexity result in these scenarios.

4.1 Algorithm Procedure

We illustrate GCB-PE in Algorithm 6. GCB-PE estimates
the environment vector θ by repeatedly pulling the global
observer set σ = {x1, x2, . . . , x|σ|}, which in turn helps

estimate the expected rewards r̄(x, θ) of all super arms x ∈
X using the Lipschitz continuity (Assumption 1). We call
one pull of global observer set σ one exploration round, the
specific procedure of which is described as follows: for the
n-th exploration round, the learner plays all actions in σ =
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{x1, x2, . . . , x|σ|} once and respectively observes feedback
y1, y2, . . . , y|σ|, the stacked vector of which is denoted by

~yn = (y1; y2; . . . ; y|σ|). The estimate of environment vector

θ in this exploration round is θ̂n = M+
σ ~yn, where M+

σ is
the Moore-Penrose pseudoinverse of Mσ . From Assumption

2, we have E[θ̂n] = θ. Then, we can use the independent

estimates in multiple rounds, i.e., θ̂(n) = 1
n

∑n
j=1 θ̂j , to

obtain an accurate estimate of θ.
Similar to Lin et al. (2014), we define a constant βσ :=

maxη1,··· ,η|σ|∈[−1,1]d ‖(M⊤
σ Mσ)

−1
∑|σ|

i=1 M
⊤
xi
Mxi

ηi‖2,

which only depends on global observer set σ, and bounds
the estimate error of one exploration round, i.e., for any n,

‖θ̂n−θ‖2 ≤ βσ , the proof of which is given in Appendix H.1
in the full version. Based on βσ, we further design a global

confidence radius radn =
√
2β2

σ log(4n
2e2/δ)/n for the

estimate θ̂(n), and show that with high probability, radn

bounds the estimate error of θ̂(n).
Compared with GCB in Lin et al. (2014), which works for

the regret minimization metric of the combinatorial partial
monitoring game with linear feedback problem, GCB-PE
targets the best action identification and mainly controls the
stopping time of the exploration phase rather than balancing
the frequency of exploration and exploitation phases. For the
pure exploration metric, our global confidence radius radn is
novelly designed to bound the estimate error. In addition, the
stopping condition, which uses the designed confidence ra-
dius and Lipschitz continuity of the expected reward function,
is also novelly adopted to fit the CPE-PL setting.

The computational efficiency of GCB-PE relies on the
polynomial-time offline maximization oracle for the specific
combinatorial instance, which is used in the two argmax op-
erations in GCB-PE. It is reasonable to assume the existence
of polynomial-time offline maximization oracle, otherwise
we cannot efficiently address the exponentially large action
space even if the real environment vector θ is known.

4.2 Theoretical Analysis

We give the sample complexity of GCB-PE below.

Theorem 2. With probability at least 1 − δ, the GCB-PE
algorithm (Algorithm 6) will return the optimal super arm
x∗ with sample complexity

O

(
|σ|β2

σL
2
p

∆2
min

log

(
β2
σL

2
p

∆2
minδ

))
,

where |σ| ≤ d.

When the expected reward function is linear, i.e. r̄(x, θ) =
x⊤θ, we have Lp =

√
m, where m (≤ d) is the maxi-

mum number of base arms a super arm contains. In addition,
βσ = Poly(d) in several practical applications of CPE-PL
(see Section 4.3 for our detailed discussion).

Discussion on the optimality. While the sample com-
plexity of GCB-PE is sometimes worse than the CPE-BL
or BAI-LB algorithms (PolyALBA, ALBA and RAGE), it
solves a more general class of problems than CPE-BL and
BAI-LB. We emphasize that our contribution mainly focuses
on proposing the first polynomial-time algorithm GCB-PE

Algorithm 6: GCB-PE

Input :Confidence level δ, global observer set σ,
constant βσ , Lipschitz constant Lp

1 for s = 1, . . . , |σ| do
2 Pull xs in observer set σ, and observe ys;

3 n ← 1;
4 ~y1 ← (y1; y2; . . . ; y|σ|);

5 θ̂1 ← M+
σ ~y1 and θ̂(1) ← θ̂1;

6 while true do

7 x̂ ← argmaxx∈X r̄(x, θ̂(n));

8 x̂− ← argmaxx∈X\{x̂} r̄(x, θ̂(n));

9 radn ←
√

2β2
σ log( 4n2e2

δ
)

n ;

10 if r̄(x̂, θ̂(n))− r̄(x̂−, θ̂(n)) > 2Lp · radn then
11 return x̂;

12 else
13 for s = 1, . . . , |σ| do
14 Pull xs in observer set σ, and observe ys;

15 n ← n+ 1;
16 ~yn ← (y1; y2; . . . ; y|σ|);

17 θ̂n ← M+
σ ~yn;

18 θ̂(n) ← 1
n

∑n
j=1 θ̂j ;

Output : x̂

that simultaneously addresses combinatorial action apace,
partial linear feedback and nonlinear reward function. On

non-uniform or adaptive allocation strategy. GCB-PE
can be further improved by employing a non-uniform
allocation strategy when considering the global observer
set σ with multiplicity: we can obtain such an alloca-
tion by solving an optimization argminλ∈△(σ) βσ(λ)

and rounding the result, where βσ(λ) :=

maxη1,··· ,η|σ|∈[−1,1]d ‖(M⊤
σ Mσ)

−1
∑|σ|

i=1 λiM
⊤
xi
Mxi

ηi‖2.

Since uniform sampling is not essential in our analysis,
the proposed improvement for GCB-PE via non-uniform
allocation does not violate Assumption 2 and keeps our
theoretical analysis. GCB-PE is a static algorithm, and
we leave the study of adaptive strategies for CPE-PL
as future work. In Appendix D in the full version, we
discuss a fully-adaptive algorithm for CPE-BL (special
case of CPE-PL), and show that the result depends on a
non-controllable term M(λ)−1, which indicates that the
static control may be required to deal with linear feedback
efficiently.

4.3 Applications for GCB-PL

CPE-PL characterizes more flexible feedback structures than
CPE-BL (or BAI-LB) and finds many real-world applications.
Below we present two practical applications and discuss the
global observer set (Assumption 2) and parameter βσ .

Online ranking. Consider that a company wishes to recom-
mend their products to users by presenting the ranked list of
items. Due to user burden constraints and privacy concerns,
collecting a large amount of data on the relevance of all items
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might be infeasible, and thus the company usually collects
the relevance of only the top-ranked item (Chaudhuri and
Tewari 2015, 2016, 2017). In this scenario, a learner selects
a permutation of d items (each action x is a permutation)
at each step, and observes the relevance of the top-ranked
item, i.e., Mx contains a single row with 1 in the place of the
top-ranked item and 0 everywhere else. The objective is to
identify the best permutation as soon as possible. Then, we
can construct a global observable set σ to be the set of any d
actions which places a distinct item at top. Here Mσ is the

d× d identity matrix and βσ =
√
d.

Task assignments in crowdsourcing. Consider that an em-
ployer wishes to assign crowdworkers to tasks with high
quality performance, and it wants to avoid the high cost and
the privacy concern of collecting each individual worker-task
pair performance (Lin et al. 2014). Thus, the employer se-
quentially chooses an assignment from N workers to M tasks
(each action x is a worker-task matching) and only collects
the sum of performance feedback for 1 ≤ s < N matched
worker-task pairs, i.e., Mx contains a single row with 1s in
the places of s matched pairs and 0 everywhere else. The
objective is to find the best worker-task matching as soon
as possible. For 1 ≤ s < N , Lin et al. (2014) provide a
systematic method to construct a global observer set.

5 Experiments

We conduct experiments for CPE-BL and CPE-PL on the
matching and top-k instances, and compare our algorithms
with the state-of-the-arts in both running time and sample
complexity. Due to the space limit, here we only present
the results on matchings and defer the top-k results with
discussion on ∆min-dependence to Appendix I in the full
version.

We evaluate all the compared algorithms on Intel Xeon
E5-2640 v3 CPU at 2.60GHz with 132GB RAM. For both
CPE-BL and CPE-PL, we set action space X as matchings
in 3-by-3, 4-by-4 and 5-by-5 complete bipartite graphs. The
dimension d, i.e. the number of edges, is set from 9 to 25. The
number of matchings |X | are set from 12 to 480. θ1, . . . , θd
is set as a geometric sequence in [0, 1]. We simulate the
random feedback for action x by a Gaussian distribution with
mean of x⊤θ and unit variance. For CPE-PL, we use the
full-bandit feedback as CPE-BL (Mx = x⊤) but a nonlinear
reward function r̄(x, θ) = x⊤θ/‖x‖1. For each algorithm,
we perform 20 independent runs and present the average
running time and sample complexity with 95% confidence
intervals across runs. In the experiments, RAGE (Fiez et al.
2019) reports memory errors when |X | > 48 due to its heavy
memory burden, and thus we only obtain its results on small-
|X | instances. For PolyALBA, ALBA and RAGE, we obtain
the same sample complexity in different runs, since these
algorithms compute the required samples at the beginning of
each phase and then perform the fixed samples.

Experiments for CPE-BL. For CPE-BL, we compare
our PolyALBA with the state-of-the-art BAI-LB algorithms
ALBA and RAGE in running time and sample complex-
ity. As shown in Figure 1(a) with a logarithmic y-axis, our
PolyALBA runs about two orders of magnitude faster than
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Figure 1. Experimental results of running time and sample
complexity for CPE-BL and CPE-PL.

ALBA and RAGE, and the running time of PolyALBA in-
creases more slowly than the others as |X | increases. Due to
the extra preparation epoch, PolyALBA has a higher sample
complexity, but we argue that in practice one has to keep the
computation time low first to make an algorithm useful, and
for that matter ALBA and RAGE are too slow to run and
PolyALBA is the only feasible option.

Experiments for CPE-PL. For CPE-PL, we compare
GCB-PE with BAI-LB algorithms ALBA and RAGE in
running time and sample complexity on a more challeng-
ing nonlinear reward task. In the experiments for CPE-PL,
ALBA and RAGE return wrong answers because they are
not designed to handle nonlinear reward functions. Never-
theless, we can still analyze the running times presented in
Figure 1(b). It shows that our GCB-PE runs two orders of
magnitude faster than ALBA and RAGE while reporting the
correct answer. In addition, as |X | increases, the running time
of GCB-PE increases in a much slower pace than the oth-
ers. The experimental results demonstrate the capability of
GCB-PE to simultaneously deal with combinatorial action
space, nonlinear reward function and partial feedback in a
computationally efficient way.

6 Future Work

There are several interesting directions worth further investi-
gation. First, it is open to prove a lower bound of polynomial-
time algorithms for both CPE-PL and CPE-BL. Another chal-
lenging direction is to design efficient algorithms for specific
combinatorial cases to choose the global observer set σ and
the distribution λ∗

Xσ
, and derive specific sample complexity

bounds. Furthermore, the extension of CPE-PL to nonlinear
feedback is also a practical and valuable problem.
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