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Abstract

We introduce deep switching auto-regressive factorization
(DSARF), a deep generative model for spatio-temporal data
with the capability to unravel recurring patterns in the data
and perform robust short- and long-term predictions. Simi-
lar to other factor analysis methods, DSARF approximates
high dimensional data by a product between time dependent
weights and spatially dependent factors. These weights and
factors are in turn represented in terms of lower dimensional
latent variables that are inferred using stochastic variational
inference. DSARF is different from the state-of-the-art tech-
niques in that it parameterizes the weights in terms of a deep
switching vector auto-regressive likelihood governed with
a Markovian prior, which is able to capture the non-linear
inter-dependencies among weights to characterize multimodal
temporal dynamics. This results in a flexible hierarchical deep
generative factor analysis model that (i) provides a collection
of potentially interpretable states abstracted from the process
dynamics, and (ii) performs short- and long-term vector time
series prediction in a complex multi-relational setting. Our
extensive experiments, which include simulated data and real
data from a wide range of applications such as climate change,
weather forecasting, traffic, infectious disease spread and non-
linear physical systems attest the superior performance of
DSARF in terms of long- and short-term prediction error,
when compared with the state-of-the-art methods1.

Introduction
Ever-improving sensing technologies offer fast and accurate
collection of large-scale spatio-temporal data in various ap-
plications, ranging from medicine and biology to marketing
and traffic control. In these domains, modeling the temporal
dynamics and spatial relations of data have been investigated
and analysed from different perspectives.

As these multivariate spatio-temporal data often exhibit
high levels of correlation between dimensions, they can nat-
urally be thought of as governed by a smaller number of
underlying components. Tensor/matrix factorization frame-
works are used to describe variability in these correlated
dimensions in terms of potentially lower dimensional unob-
served variables, namely temporal weights and spatial factors.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The source code and experiments are available at
https://github.com/ostadabbas/DSARF

Accordingly, Bayesian probabilistic global matrix/tensor fac-
torization has been investigated in Salakhutdinov and Mnih
(2008); Zhao, Zhang, and Cichocki (2015); Chen et al. (2019)
for time series imputation. Besides, linear temporal dynam-
ics have been adapted into this framework in Xiong et al.
(2010); Charlin et al. (2015); Sun and Chen (2019). A num-
ber of non-Bayesian dynamical matrix factorization meth-
ods have been explored in Rogers, Li, and Russell (2013);
Sun, Parthasarathy, and Varshney (2014); Bahadori, Yu, and
Liu (2014); Cai et al. (2015); Yu, Rao, and Dhillon (2016);
Takeuchi, Kashima, and Ueda (2017); Jing et al. (2018).
Amongst these methods, some assume a linear vector auto-
regressive model for the temporal weights (Bahadori, Yu, and
Liu 2014; Yu, Rao, and Dhillon 2016), and spatial factors
(Takeuchi, Kashima, and Ueda 2017) to model higher-order
auto-regressive dependencies in multivariate time series data.

From another perspective, Bayesian switching linear state-
space models, (Chang and Athans 1978; Hamilton 1990;
Ghahramani and Hinton 2000; Murphy 1998; Fox et al. 2009;
Linderman et al. 2017; Nassar et al. 2019; Becker-Ehmck,
Peters, and Van Der Smagt 2019), have provided a more flex-
ible structure for modeling temporal dynamics characterized
by several modes. These models are specifically useful in the
applications where complex dynamical behaviors can be bro-
ken down into simpler potentially interpretable units, which
in turn provides additional insight into the rich processes gen-
erating complex natural phenomena. These models achieve
globally nonlinear dynamics by composing linear systems
through switching, (Sontag 1981). Besides, Gaussian state
space models adapting neural networks have been used for
approximating nonlinear first-order temporal dynamics in Kr-
ishnan, Shalit, and Sontag (2015); Watter et al. (2015); Karl
et al. (2017); Krishnan, Shalit, and Sontag (2017); Fraccaro
et al. (2017); Becker et al. (2019); Farnoosh et al. (2020).

In this paper, we introduce deep switching auto-regressive
factorization (DSARF) in a Bayesian framework. Our method
adds to the current body of knowledge by extending switch-
ing linear dynamical system models and Bayesian dynamical
matrix factorization methods and combining their favorable
properties. Specifically, for temporal dynamic modeling, we
employ a non-linear vector auto-regressive latent model pa-
rameterized by neural networks and governed by a Markovian
chain of discrete switches to capture higher-order multimodal
latent dependencies. This will provide a more flexible model
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that expands prediction horizon and improves long- and short-
term forecasting. In addition, we use a deep generative prior
for estimation of multimodal distributions for spatial factors.
We leverage the tensor/matrix factorization framework to
make our model scalable to high dimensional data and solve
this model efficiently with approximate variational inference.

Our hierarchical generative model with the help of cor-
responding learning and inference algorithm is able to han-
dle missing data and to provide uncertainty measures for
estimations. We demonstrate our model performance using
experiments including simulated and real-world data from
a wide range of application areas. Our experiments show
that DSARF achieves better predictive performance on un-
seen data relative to current state-of-the-art methods when
evaluated based on short- and long-term prediction errors.
In the following section, we provide more motivation and
background regarding our main contributions.

Background and Motivation
Our hierarchical model consists of three components: switch-
ing dynamical systems, non-linear vector auto-regression,
and tensor/matrix factorization, for which we provide reviews
and justifications in this section.

Linear Gaussian dynamical systems operating in
Markov dependent switching environment have long been
investigated in the literature, (Ackerson and Fu 1970; Chang
and Athans 1978; Hamilton 1990; Ghahramani and Hinton
2000; Murphy 1998; Fox et al. 2009). These models, also
known as switching linear dynamical system (SLDS), decom-
pose nonlinear time series data into series of simpler, repeated
dynamical modes. The SLDS model learns the underlying
nonlinear generative process of the data as it breaks down
the data sequences into coherent, potentially interpretable,
discrete units, similar to the piecewise affine (PWA) frame-
work in control systems (Sontag 1981; Juloski, Weiland, and
Heemels 2005; Paoletti et al. 2007) . The generative process
starts with sampling a discrete latent state st ∈ {1, . . . , S}
at each time t = 1, . . . , T according to Markovian dynamics
st|st−1,Φ ∼ πst−1

, where Φ is the Markov transition ma-
trix and πs is the categorical distribution parameter. Then, a
continuous latent state wt ∈ RK is sampled from a normal
distribution whose mean follows a conditionally linear dy-
namics as wt = Astwt−1+bst +νt−1, νt−1

iid∼ N (0,Qst),
for matrices As,Qs ∈ RK×K and vectors bs ∈ RK
for s = 1, 2, . . . , S. Finally, a linear Gaussian observation
xt ∈ RD is generated from the continuous latent state wt
according to xt = Cstwt + dst + µt, µt

iid∼ N (0,Gst), for
matrices Cs ∈ RD×K ,Gs ∈ RD×D and vectors ds ∈ RD.
SLDS parameters are learned in a Bayesian inference ap-
proach. In this framework, the probabilistic dependencies
are in such a way that st+1|st is independent of the contin-
uous state wt, and hence the model cannot learn the transi-
tion of the discrete latent state when continuous latent state
enters a particular region of state space. This problem is
addressed in recurrent switching linear dynamical system
(rSLDS), (Linderman et al. 2017; Nassar et al. 2019) by al-
lowing the discrete state transition probabilities to depend
on the preceding continuous latent state, i.e, st|st−1, wt−1.

rSLDS studies proposed to use auxiliary variable methods
for approximate inference in a multi-stage training process.
Nassar et al. (2019) extended rSLDS of Linderman et al.
(2017) by enforcing a tree-structured prior on the switching
variables in which subtrees share similar dynamics. Becker-
Ehmck, Peters, and Van Der Smagt (2019) proposed to learn
an rSLDS model through a recurrent variational autoencoder
(rVAE) framework, and approximated switching variables by
a continuous relaxation. This amortized inference compro-
mised the applicability of their model on missing data, as
they only included physics-simulated experiments.

The rSLDS prediction horizon is, however, limited as it
adopts first-order linear Markovian dynamics, a prevalent
model in the literature, for both discrete and continuous la-
tent state. On the other hand, we advocate the use of higher-
order dependencies in an auto-regressive approach, as in
Bahadori, Yu, and Liu (2014); Wulsin, Fox, and Litt (2014);
Sun and Chen (2019), namely we introduce deep genera-
tive vector auto-regressive priors for the continuous latent
variable, wt, which gives more flexibility to the model to
expand its prediction horizon and capture higher-order non-
linear auto-regressive relations amongst its continuous latents.
More specifically, we use a weighted combination of a linear
and a non-linear transformation as the relation between two
continuous latent variables wt and wt−`, where ` is a lag set.

Bayesian tensor/matrix factorization constitutes the out-
ermost layer of our hierarchical probabilistic model offering
an effective approach to convert massive data into a lower-
dimensional and computationally more tractable set of latent,
e.g., temporal and spatial components. Tensor/matrix factor-
ization frameworks, (Sun, Parthasarathy, and Varshney 2014;
Bahadori, Yu, and Liu 2014; Cai et al. 2015; Zhao, Zhang,
and Cichocki 2015; Yu, Rao, and Dhillon 2016; Takeuchi,
Kashima, and Ueda 2017; Chen et al. 2019), are used to
describe variability in high dimensional correlated data in
terms of potentially lower dimensional unobserved variables
called factors. In other words, given an observation matrix
X ∈ RT×D of spatio-temporal data with T time points and
D spatial locations, these methods decomposeX into a set of
K � D temporal factors (weights) W ∈ RK×T , and spatial
factors F ∈ RK×D as X ≈W>F , where temporal dynam-
ics are modeled in W as first-, e.g., in Sun, Parthasarathy,
and Varshney (2014); Cai et al. (2015), or higher-order linear
dependencies, e.g., in Bahadori, Yu, and Liu (2014); Yu, Rao,
and Dhillon (2016); Takeuchi, Kashima, and Ueda (2017).

While the focus of this paper is on Bayesian switching
dynamical modeling, several studies have employed neural
networks for non-linear Markovian state-space modeling,
(Krishnan, Shalit, and Sontag 2015; Watter et al. 2015; Karl
et al. 2017; Krishnan, Shalit, and Sontag 2017; Fraccaro
et al. 2017; Becker et al. 2019) (a.k.a. SSMs), and multi-
dimansional times series forecasting, (Chang et al. 2018;
Lai et al. 2018; Rangapuram et al. 2018; Li et al. 2019;
Sen, Yu, and Dhillon 2019; Salinas et al. 2020) (denoted by
fNNs here). Deep SSMs operate in an encoding/decoding
framework (similar to VAEs), and are restricted to first-order
Markovian dependencies. fNNs estimate model parameters
from input data using recurrent neural networks (RNNs), e.g.,
in Chang et al. (2018); Lai et al. (2018); Salinas et al. (2020),
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Figure 1: Left: Graphical model representation for deep switching auto-regressive factorization (DSARF). Temporal weights,
w1:T are generated according to a nonlinear auto-regressive model, switched by a Markovian chain of discrete states, s1:t. Spatial
factors, f1:K , come from a shared low-dimensional latent, z. The solid black squares represent nonlinear functions. Right:
Network architectures parameterizing the nonlinear mappings employed in DSARF. A fully connected (FC) layer is defined
for each state s ∈ {1, . . . , S}, and lag l ∈ ` as FCs,l. These layers take as input wt−`, and their outputs are aggregated in the
succeeding layer: e.g., µwθs = FCs( 1

|`|
∑
l∈` PReLU(FCs,l(wt−l))).

Transformers, in Li et al. (2019), or temporal convolution
networks (TCNs), in Sen, Yu, and Dhillon (2019). While lin-
ear vector auto-regression on high-dimensional input data is
adopted in fNNs of Chang et al. (2018); Lai et al. (2018), most
fNNs employ first-order autoregressive models. In addition,
many SSMs and fNNs are not naturally tractable to data with
missing values (without e.g., prior imputation or zero-filling),
since, in training, target values, x1:T , are fed directly to a
neural network for model estimation, e.g, in fNNs, or varia-
tional estimation, i.e, amortized inference in SSMs (see Che
et al. (2018); Ghazi et al. (2018); Rangapuram et al. (2018);
Mattei and Frellsen (2019) for a discussion). As such, the
two recent works, Sen, Yu, and Dhillon (2019); Salinas et al.
(2020), excluded time series with missing values from their
experiments. This is a major motivation for non-amortized
inference in DSARF and some of the comparison baselines in
this paper as the datasets in our experiments have up to 50%
missing values. In the following section, we provide detailed
formulation of DSARF model and its inference procedure.

Problem Formulation: Deep Switching
Auto-Regressive Factorization

We consider a corpus of N spatio-temporal data {Xn}Nn=1,
where each Xn ∈ RT×D contains T time points and D
spatial locations. We assume that Xn can be decomposed
into a weighted summation of K � D factors over time:

Xn ≈ [w1, · · · , wT ]>n [f1; · · · ; fK ] = W>n F, (1)

where fk ∈ RD is the kth spatial factor and wt ∈ RK are
weights at time t. In order to model temporal dynamics, we
assume that these low dimensional weights, W = {wt}Tt=1,
are generated in accordance with a set of temporal lags, `,
through a deep probabilistic switching auto-regressive model,
governed by a Markovian chain of discrete latent states, S =
{st}Tt=1 as follows: wt ∼ p(wt|wt−`, st), st ∼ p(st|st−1).
In other words, in the underlying state-space model of data,

wt is conditioned on wt−` (weights at the temporal lags spec-
ified in `), and st (state of the model at time t). This encour-
ages a multimodal distribution for the temporal generative
model. We further assume that spatial factors, F = {fk}Kk=1,
come from a shared low dimensional latent variable, z, which
ensures the estimation of a multimodal distribution for the
spatial factors as follows: f1:K ∼ p(F |z), z ∼ p(z).

These assumptions define the graphical model for DSARF
in Fig. 1. We train this hierarchical model using stochas-
tic variational methods (Hoffman et al. 2013; Ranganath
et al. 2013; Kingma and Welling 2014; Rezende and
Mohamed 2015). These methods approximate the pos-
terior pθ(S,W, z, F |X) using a variational distribution
qφ(S,W, z, F ) by maximizing a lower bound (known as
ELBO) L(θ, φ) ≤ log pθ(X):

L(θ, φ) = Eqφ(S,W,z,F )

[
log

pθ(X,S,W, z, F )

qφ(S,W, z, F )

]
(2)

= log pθ(X)− KL(qφ(S,W, z, F ) || pθ(S,W, z, F |X)).

By maximizing this bound with respect to the parameters θ,
we learn a deep generative model that defines a distribution
over datasets pθ(X). By maximizing the bound over the pa-
rameters φ, we perform Bayesian inference by approximating
the distribution qφ(S,W, z, F ) ' pθ(S,W, z, F |X) over la-
tent variables for each data point. Considering the proposed
generative model, the joint distribution of observations and
latents will be (denoting Z = {W, z, F} for brevity):

pθ(X,S,Z) = p(F |z)p(z)
N∏
n=1

p(Xn|Wn, F )p(wn,−`)p(sn,0)

T∏
t=1

p(sn,t|sn,t−1)p(wn,t|wn,t−`, sn,t) (3)

We approximate the posterior distributions of latents with a
fully factorized variational distribution:

q(S,Z) = q(F )q(z)

N∏
n=1

q(wn,−`)q(sn,0)

T∏
t=1

q(sn,t)q(wn,t) (4)
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The ELBO is then derived by plugging in pθ(·) and qφ(·)
from Eq. (3) and Eq. (4) respectively into Eq. (2):

L(θ, φ) =

N∑
n=1

(
Lrec

n + Ls0, w−`
n +

T∑
t=1

(
LS

t,n + LW
t,n

))
+ LF,

Lrec
n = Eq(wn,1:T ,F )

[
log p(Xn|wn,1:T , F )

]
Ls0, w−`

n = −KL
(
q(sn,0)||p(s0)

)
− KL

(
q(wn,−`)||p(w−`)

)
LS

n,t = −Eq(sn,t−1)

[
KL
(
q(sn,t)||p(sn,t|sn,t−1)

)]
LW

n,t = −Eq(sn,t)q(wn,t−`)
[
KL
(
q(wn,t)‖p

(
wn,t|wn,t−`, sn,t)

)]
LF = −Eq(z)

[
KL
(
q(F )||p(F |z)

)]
− KL

(
q(z)||p(z)

)
. (5)

In the following paragraphs, the parameterization of each
term in Eq. (5) is described.

Latent States (S) We assume that each data point at a spe-
cific time, xn,t, belongs to a specific state out of S possible
states. This is declared by the categorical variable sn,t in our
temporal generative model. These discrete latents, sn,1:T , are
configured in a Markov chain and govern the state transitions
over time as follows (n is dropped hereafter):

pθ(st|st−1) = Cat(Φθπst−1
), qφ(st−1) = Cat(πst−1

), (6)

where πst−1
= [π1, · · · , πS ] is the S-dimensional posterior

parameter vector of st−1, representing probabilities of the
categorical distribution, and Φθ ∈ RS×S is a valid probabil-
ity transition matrix. In practice, we pass Φθ πst−1 from a
softmax function to ensure a valid probability vector.

Temporal Latents (W ) We adopt a switching Gaussian
dynamic for the temporal latent transitions governed by the
discrete latent states, st. In other words, we assume that
the marginal distribution of temporal weights, wt, follows a
Gaussian mixture in the latent space, such that:

pθ(wt|wt−`, st = s) = N
(
µwθs(wt−`),Σ

w
θs(wt−`)

)
,

where s ∈ {1, · · · , S}, and state-specific µwθs(·) and diagonal
Σwθs(·) are parameterized by multilayer perceptrons (MLPs),
hence, follow a nonlinear vector auto-regressive model given
wt−`, temporal weights in accordance with a lag set `, as
input (e.g., wt−1, wt−2). Namely, we feed wt−` to a multi-
head MLP for estimating the Gaussian parameters, e.g.,

µwθs = FCs(hs), hs =
∑
l∈`

σ(FCs,l(wt−l)),

where FC denotes a fully connected layer and σ is a non-
linear activation function. We further combine a linear vector
auto-regression (VAR) of wt−` with the estimated mean from
MLP to support both linear and nonlinear dynamics:

µwt|wt−`, st=s = (1− gs)� VARθs(wt−`) + gs � µwθs(wt−`),

where � is an element-wise multiplication and gs ∈ [0, 1] is
a gating vector estimated from wt−` using an MLP.

Spatial Factors (F ) As with the temporal latents, we as-
sume a diagonal Gaussian distribution for spatial factors
parameterized with an MLP as:

pθ(F |z) = N
(
µFθ (z),ΣFθ (z)

)
,

where z itself is sampled from a normal distribution: z ∼
N (0, I). Introducing z, as a low dimensional spatial embed-
ding, encourages the estimation of a multimodal distribu-
tion among spatial factors. Namely, marginalizing p(F, z) =
p(F |z)p(z) over z leads to a Gaussian-mixture prior over
K factors in F (given the nonlinear mapping from z that
parameterizes the Gaussian p(F |z)). Whereas a matrix Nor-
mal prior on F , as in Sun and Chen (2019), naively assumes
that f1:K have a unimodal distribution and uncorrelated ele-
ments, DSARF is able to encode such correlations by jointly
estimating the factors from z.

Expected Log Likelihood Finally, having the temporal
weights and spatial factors, we can recover the data by incor-
porating our initial factorization assumption from Eq. (1):

Xn ∼ pθ(Xn|Wn, F ) = N
([
wn,1, · · · , wn,T

]>
F, σ2

0

)
,

where σ0 is a hyperparameter for observation noise.

Variational Parameters We introduce trainable varia-
tional parameters, φ, as mean and diagonal covariance of
a Gaussian distribution for each data point to define a fully
factorized variational distribution on the latents:

q(z;φz), q(F ;φF ),
{
q(wn,t;φ

w
n,t)
}N, T
n=1, t=−`

We approximate variational parameters for dis-
crete latents,

{
q(sn,t;φ

s
n,t)
}N, T
n=1, t=1

, with posteriors{
p(sn,t|wn,t)

}N, T
n=1, t=1

to compensate information loss
induced by the mean-field approximation:

q(st;φ
s
t ) ' p(st|wt) =

Eq(st−1)q(wt−`)

[
p(st|st−1)p(wt|wt−`, st)

]
∑S
s=1 Eq(st−1)q(wt−`)

[
p(st = s|st−1)p(wt|wt−`, st = s)

] (7)

This approximation has a two-fold advantage: (1) spares the
model additional trainable parameters for the variational dis-
tribution, and (2) further couples together the generative and
variational parameters of discrete and continuous latents, and
together with Eq. (6) resolve the open loop issue mentioned
in Linderman et al. (2017) for these switching models as
follows. The posterior on discrete state st is informed about
the current value of the continuous latent wt through Eq. (7):

q(st;πst) ' pθ(st|wt) ∝ pθ(wt|st)pθ(st),

wt ∼ qφ(wt),

hence, πst is a function of wt, i.e., πst = f(wt; θ).pθ(st).
This is then propagated to the generative model through
Eq. (6):

pθ(st+1|st) = Cat(Φθπst) = Cat (Φθ f(wt; θ).pθ(st)) .

The latter modulates the prior on latent state, p(st+1), with
wt, whereas the rSLDS models explicitly allow the discrete
switches to depend on the continuous latents.

Training DSARF
We compute the Monte-Carlo estimate of the gradient of
ELBO in Eq. (5) with respect to generative, θ, and variational,
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φ, parameters using a re-parameterized sample, (Kingma
and Welling 2014), from the posterior of continuous latents,
{W, z, F}. For the discrete latent, S , we compute the expec-
tations over qφ(sn,t) by summing over the S possible states,
hence no explicit sampling is performed, i.e, for each data
point LW

t would be:

−
S∑
s=1

q(st = s)Eq(wt−`)
[
KL
(
q(wt)‖p

(
wt|wt−`, st = s)

)]
This explicitly regularizes the S nonlinear auto-regressive
priors based on their corresponding weighting. We can analyt-
ically calculate the Kullback-Leibler (KL) divergence terms
of ELBO for both multivariate Gaussian and categorical dis-
tributions, which leads to lower variance gradient estimates
and faster training as compared to e.g., noisy Monte Carlo
estimates often used in literature. To handle missing entries
in the data, we simply drop their corresponding likelihood
terms from Lrec

n in the ELBO (see Eq. (5)).

Implementation Details
We implemented DSARF in PyTorch v1.3 (Paszke et al.
2017) and used the Adam optimizer (Kingma and Ba 2014)
with learning rate of 0.01. We initialized all parameters ran-
domly and adopted a linear KL annealing schedule, (Bowman
et al. 2016), to increase from 0.01 to 1 over the course of
100 epochs. DSARF has O(NK×(T+D)) variational param-
eters and O(S2+S|`|K2) parameters for the temporal gen-
erative model. The time complexity for training the MLPs
is O(NTS|`|K2+KD) per epoch and the space complexity
is O(bTD) where b is the batch size. We learned and tested
all the models on an Intel Core i7 CPU@3.7GHz with 8
GB of RAM. Per-epoch training time varied from 30ms in
smaller datasets to 1.2 s in larger experiments and 500 epochs
sufficed for most experiments.

Long- & Short-Term Prediction
We evaluated the performance of DSARF for both long- and
short-term prediction tasks by adopting a rolling prediction
scheme (Yu, Rao, and Dhillon 2016; Chen et al. 2019). For
long-term prediction, we predict the test set sequentially us-
ing the generative model and spatial factors learned on the
train set. For short-term prediction, we predict the next time
point on the test set using the generative model and spa-
tial factors learned on the train set: X̂t+1 = ŵ>t+1F , where
ŵt+1 ∼ p(ŵt+1|wt+1−`, ŝt+1), and ŝt+1 ∼ p(ŝt+1|st). We
then run inference on Xt+1, the actual observation at t + 1
(if not missing), to obtain wt+1 and st+1, and add them to
the historical data for prediction of the next time point X̂t+2

in the same way. We repeat these steps to make short-term
predictions in a rolling manner across a test set. We keep
the generative model and spatial factors fixed during the en-
tire prediction. We report normalized root-mean-square error
(NRMSE%) for both long- and short-term predictions. The
test set NRMSE% we report for short-term predictions is
related to the expected negative test-set log-likelihood for our
case of Gaussian distributions, hence it is used for evaluating
the predictive generative models.

Experimental Evaluation
We evaluated the performance of DSARF in modeling the
temporal dynamics and discovering the underlying tempo-
ral states by conducting a number of controlled synthetic
experiments, followed by a comprehensive real-world data
assessment covering a wide range of application areas. To
this end, we compared the predictive performance of DSARF
against two established Bayesian switching state-space mod-
els, rSLDS (Nassar et al. 2019) and SLDS (Fox et al. 2009),
three state-of-the-art dynamical matrix factorization meth-
ods, BTMF (Sun and Chen 2019), TRMF (Yu, Rao, and
Dhillon 2016) and its Bayesian extension (B-TRMF), a deep
state-space model, RKN (Becker et al. 2019), and a deep
neural network-based time series forecasting method, LST-
Net (Lai et al. 2018), which employs vector auto-regression,
and allows long-term forecasting, in terms of short- and/or
long-term prediction tasks throughout the experiments.

Model Evaluation using Synthetic Data
Toy Example Inspired by Ghahramani and Hinton (2000),
we generated N = 200 spatio-temporal sequences, each with
T = 200 time points and D = 10 spatial dimensions from
K = 2 shared factors according to a simple nonlinear dy-
namical model in W which switched between two temporal
models as follows:

wt|st=0 = 0.9wt−1 + tanh(0.5wt−2) + 3 sin(wt−3) + ε0t

wt|st=1 = 0.9wt−1 + tanh(0.2wt−2) + sin(wt−3) + ε1t

Xn = [w1, · · · , wt]n F + νn νn ∼ N (0, 0.1 I), F ∼ U(−1, 1)

wherewt ∈ R2, F ∈ R2×10 and εt ∼ N (0, I), and the switch
state st was chosen using priors π1 = π2 = 1/2 and tran-
sition probabilities Φ11 = Φ22 = 0.95; Φ12 = Φ21 = 0.05.
We picked 10 sequences for test, and trained DSARF on
the rest with lag set ` = {1, 2, 3} for 200 epochs. We re-
covered temporal states on the entire dataset with an ac-
curacy of 79.63% ± 3.89 compared to 61.74% ± 9.13 and
52.01%± 11.19 for rSLDS and SLDS respectively. We pre-
dicted the test set in short-term with NRMSE of 13.81%
while rSLDS and SLDS only achieved 78.45% and 98.01%
respectively. rSLDS and SLDS apparently failed in model-
ing the higher order temporal dependencies in this synthetic
data. We have visualized short-term predictions along with
recovered states for three test sequences in Fig. 2a.

Lorenz Attractor We applied DSARF to simulated data
from a canonical nonlinear dynamical system, the Lorenz
attractor, whose nonlinear dynamics are given by:

dw

dt
=

 α(w2 − w1)
w1(β − w1)− w2

w1w2 − γw3


Though nonlinear and chaotic, we see that the Lorenz attrac-
tor roughly traces out ellipses in two opposing planes (see
Fig. 2b top-right). We simulated T = 2000 time points and
left the second half for test. Rather than directly observing
the states, w1:T , we projected them into a D = 10 dimen-
sional space: X = W>F . Fitting DSARF, we found that
the model separates these two planes into two distinct states

7398



(a) Toy example (b) Lorenz attractor (c) Double pendulum

Figure 2: Test set results for synthetic experiments. (a) DSARF with ` = {1, 2, 3} outperforms rSLDS and SLDS in recovering
the actual temporal states as these baselines failed in modeling the higher order temporal dependencies in this synthetic data. (b)
DSARF separates the two planes in lorenz attractor into two distinct states each with rotational dynamics similar to rSLDS, while
SLDS completely failed in this task. (c) DSARF with ` = {1, 2} outperforms baselines in short-term prediction. This is expected
as the motion of pendulums are governed by a set of coupled second-order ordinary differential equations. We observe that for
S = 3 the dynamical trajectory is roughly segmented along the deflection angle of the first pendulum. We have visualized the
true (blue) and predicted (red) latent space for all the experiments. Red shaded regions correspond to prediction uncertainty.

(accuracy of 92.90%), each with rotational dynamics as de-
picted in Fig. 2b bottom-left. SLDS failed in detecting the
true states, while rSLDS performed close in terms of state
estimation (see Fig. 2b). However, DSARF predicted the test
set in short-term with NRMSE of 0.88% compared to 1.14%
and 2.70% for rSLDS and SLDS respectively.

Double Pendulum A double pendulum is another simple
nonlinear physical system that exhibits rich dynamic behavior
with a strong sensitivity to initial conditions. The motion of
a double pendulum is governed by a set of coupled second-
order ordinary differential equations and is chaotic (Levien
and Tan 1993):

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇22 sin(θ1 − θ2) + 2g sin(θ1) = 0

θ̈2 + θ̈1 cos(θ1 − θ2) + θ̇21 sin(θ1 − θ2) + g sin(θ2) = 0,

where θ1 and θ2 are the deflection angles of the pendulums,
and g is the gravitational acceleration. We simulated the sys-
tem for T = 20, 000 time points and recorded the locations
of the two pendulums. We observed these locations through
a linear projection with D = 10 just like the previous ex-
periments. We kept the last 400 time points for test, and fit
DSARF with S = 3 once with lag set ` = {1, 2} and another
time with ` = {1} on the train set. DSARF with ` = {1, 2}
predicted the test set in short-term with NRMSE of 4.38%,
while DSARF with ` = {1} achieved 9.79%, and rSLDS and
SLDS achieved 10.42% and 15.53% respectively. This is ex-
pected as the second derivatives of location (i.e., acceleration)
appear in the Euler-Lagrange differential equation for double
pendulum. We have visualized short-term predictions of the
test set along with inferred states and dynamics in Fig. 2c.
While this system could potentially be segmented to more
states, we observed that for S = 3 the dynamical trajectory
is roughly segmented along the deflection angle of the first
pendulum. Increasing S = 10 would further improve test set
prediction error to 4.16%.

Dataset (missing%) Resolution NT×D Ttest

Birmingham2 (14.89) q30min for 77d 1386×30 126 (7d)
Guangzhou3 (1.29) q10min for 61d 8784×214 720 (5d)
Hangzhou4 q10min for 25d 2700×80 540 (5d)
Seattle5 q5min for 28d 8064×323 1440 (5d)
PST6 qmt for 33yr 396×(30×84) 60 (5yr)
Flu7 (9.53) qwk for 13yr 658×29 84 (2yr)
Dengue8 (4.89) qwk for 13yr 658×10 84 (2yr)
Bat (32.55) in 2015 q33msec 3303×(34×3) 700
Precipitation9 (50.65) qd for 5yr 1462×239 305 (1yr)
Apnea in 1994; 2000 q500msec 2000×1 1000
q: every, d: days, yr: years, mt: months, wk: weeks.
The last Ttest time points are held out for test.

Table 1: Description of real-world datasets.

Model Evaluation using Real-World Data
We give a brief description of each real-world data as well
as the train/test splits we used for our evaluation in Table 1.
In the following paragraphs, we describe our quantitative
comparison results summarized in Table 2 and Table 3.

Short-term prediction results For the sleep Apnea
dataset, we observed that DSARF is able to segment the
respiration signal for both train and test sets into instances of
apnea (small variability in chest volume, followed by bursts)

2https://data.birmingham.gov.uk/dataset/birmingham-parking
3https://doi.org/10.5281/zenodo.1205229
4https://tianchi.aliyun.com/competition/entrance/231708/
5https://github.com/zhiyongc/Seattle-Loop-Data
6http://iridl.ldeo.columbia.edu/
7https://www.google.org/flutrends/about/
8https://www.google.org/flutrends/about/
9https://www.ncdc.noaa.gov/
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Figure 3: (a)-(g): Long-term predictions of test sets for real data. (h), (i): Short-term predictions of test sets for Precipitation and
Bat flight datasets. Red shaded regions correspond to prediction uncertainty. One spatial dimension per dataset is visualized. (j):
DSARF segments the respiration signal for both train and test sets into instances of apnea, outperforming SLDS and rSLDS.

Dataset
Model DSARF rSLDS SLDS BTMF B-TRMF TRMF RKN LSTNet

w/ switch w/o switch w/ switch w/o switch w/ switch w/o switch

Birmingham (K=10) 5.70 5.76∗ 14.23 14.69 8.69 14.52 15.27 15.84 17.13 11.92 9.32
Guangzhou (K=30) 10.21 10.20 10.10∗ 10.11 10.86 10.16 10.30 10.75 10.83 10.33 9.17
Hangzhou (K=10) 17.31 15.55 16.57 17.27 17.20 17.27 16.67 18.26 17.86 16.39∗ 16.40
Seattle (K=30) 7.60 7.52 7.54 7.52 8.44 7.53 7.69 8.10 8.30 7.61 7.73
PST (K=50) 1.96 2.12 1.80 1.75 1.94 1.74∗ 3.35 23.95 2.81 2.25 2.16
Flu (K=10) 16.51∗ 16.77 18.98 18.41 19.50 18.25 22.59 19.01 15.54 24.03 17.78
Dengue (K=5) 35.29 34.67∗ 43.78 41.48 40.92 39.91 37.23 33.91 35.92 37.02 36.39
Bat (K=5) 7.74 8.08∗ 9.91 10.11 11.13 10.19 8.89 8.16 9.02 18.59 16.55
Precipitation (K=20) 67.41 69.52 67.70∗ 67.70 68.62 68.44 70.48 96.07 98.01 78.80 74.35
Apnea 23.86 – 27.35 – 28.06 – 31.47 30.10 30.08 27.13∗ 27.23
The two best results are highlighted in bold fonts without and with asterisk, respectively.

Table 2: Comparison of short-term prediction error (NRMSE%) on the test sets of real data.

with an accuracy of 86% on the test set compared to 71% for
SLDS, while rSLDS completely fails on this task as depicted
in Fig. 3j. In addition, DSARF predicts the test set in short-
term with NRMSE of 23.86% outperforming all the other
baselines (see Table 2. RKN with 27.13% is the second best).
For the other datasets, as summarized in the short-term sec-
tion of Table 2, DSARF outperforms in short-term prediction
of test sets in Birmangham, Hangzhou, Seattle, Bat flight and
precipitation datasets, while closely following the state-of-
the-art in Google flu and Dengue datasets (where TRMF and
B-TRMF perform the best respectively). LSTNet and rSLDS
perform better in Guangzhou and PST datasets respectively,
while rSLDS follows DSARF closely in Seattle and Precipi-
tation datasets. We reported the results with (w/) and without
(w/o) the switching feature for DSARF, rSLDS and SLDS to
explore the impact of these switching latents. We observed
that the predictions for Birmingham, Bat, PST, Precipitation
and Google flu datasets improved when the switching feature
was employed in DSARF. We used lag set ` = {1, 2} for

DSARF on all short-term prediction experiments (set accord-
ingly for BTMF, TRMF, B-TRMF, and LSTNet). Sample
short-term predictions of test set for precipitation and bat
flight data are depicted in Fig. 3h, i respectively.

Long-term prediction results We excluded the Bat flight,
Precipitation, and Apnea datasets from long-term prediction
task as these datasets hardly show periodic behaviours and/or
are chaotic, e.g., in precipitation data (Buizza 2002). On
the other hand, we see some extent of long-term recurrence,
e.g., in traffic data and seasonal diseases spread, over calendar
dates (days, weeks, seasons, etc.). For this reason, we used the
lag set ` = {1, 2, 3, T0, T0+1, T0+2, 7T0, 7T0+1, 7T0+2}
for traffic datasets as in Sun and Chen (2019) (where T0 is
the time points per day), ` = {1, 2, 52, 52 + 1, 2 × 52, 2 ×
52 + 1} weeks for Google flu and Dengue datasets and ` =
{1, 2, 12, 12 + 1, 6 × 12, 6 × 12 + 1} months for the PST
dataset. We also excluded SLDS, rSLDS and RKN from this
comparison as these baselines do not allow for long historical
conditioning, hence are intractable for long-term prediction
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Dataset
Model DSARF BTMF B-TRMF TRMF LSTNet

Birmingham (K=10) 15.05 18.02 28.71 22.65 23.38
Guangzhou (K=30) 13.01 12.83 16.03 14.75 15.76
Hangzhou (K=10) 15.64 18.33 20.92 17.85 16.68
Seattle (K=30) 14.14 14.33 22.51 16.79 16.30
PST (K=50) 2.53 7.43 6.91 3.49 3.17
Flu (K=10) 34.96 94.31 51.12 40.87 42.11
Dengue (K=5) 52.83 63.85 61.04 57.34 60.46
The best result is highlighted in bold fonts.

Table 3: Comparison of long-term prediction error
(NRMSE%) on the test sets of real data.

and diverge very fast. As summarized in the long-term section
of Table 3, DSARF outperforms in long-term prediction of
the test sets in Birmingham, Hangzhou, Seattle, PST, Google
flu and Dengue datasets, while closely follows BTMF on the
Guangzhou dataset. We have visualized sample long-term
predictions of test set (one spatial dimension per dataset)
along with prediction uncertainty and ground-truth values
in Fig. 3a-g. Note that part of the error is sourced from the
sparse factorization.

Spatial generative model DSARF resulted in spatial fac-
tors with higher test-set log-likelihood in all of our real-data
experiments when compared to a widely used matrix Nor-
mal prior, with −1.02 nats versus −1.37 nats (on average),
respectively.

Conclusion
We introduced deep switching auto-regressive factorization
(DSARF) in a Bayesian framework. Our method extends
switching linear dynamical system models and Bayesian
dynamical matrix factorization methods by employing a
non-linear vector auto-regressive latent model switched by a
Markovian chain of discrete latents to capture higher-order
multimodal latent dependencies. This expands prediction
horizon and improves long- and short-term forecasting as
demonstrated by our extensive synthetic and real data experi-
ments. DSARF proves scalable to high-dimensional data due
to the incorporation of factorization framework, is tractable
on missing data, provides uncertainty measures for estima-
tions, and lends itself to an efficient inference algorithm.

Ethics Statement
The model we proposed in this work is a step toward better un-
derstanding of high dimensional time series data that appear
in a variety of real-world settings. Analysing and more impor-
tantly forecasting these times series naturally embrace a very
broad range of applications from healthcare management, dis-
ease spread prediction and infection diagnosis to traffic con-
trol and weather and financial forecasting, which are where
we see the potential for a broader impact. Although, these
time series data often show long- and short-term recurring
patterns, they occasionally exhibit sophisticated behaviours
or are chaotic. Subsequently, we need appropriate tools and

legitimate assumptions for analysing them. While we under-
stand that, as George Box wrote in Box (1979), “all models
are wrong but some are useful,” we hope that in a wide range
of applications with proper assumptions and prior knowl-
edge, our DSARF model be useful in providing a means to
analyzing high dimensional spatio-temporal data.
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