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Abstract

Despite pre-trained language models such as BERT have
achieved appealing performance in a wide range of natural
language processing tasks, they are computationally expensive
to be deployed in real-time applications. A typical method
is to adopt knowledge distillation to compress these large
pre-trained models (teacher models) to small student mod-
els. However, for a target domain with scarce training data,
the teacher can hardly pass useful knowledge to the student,
which yields performance degradation for the student mod-
els. To tackle this problem, we propose a method to learn to
augment for data-scarce domain BERT knowledge distillation,
by learning a cross-domain manipulation scheme that auto-
matically augments the target with the help of resource-rich
source domains. Specifically, the proposed method generates
samples acquired from a stationary distribution near the target
data and adopts a reinforced selector to automatically refine
the augmentation strategy according to the performance of the
student. Extensive experiments demonstrate that the proposed
method significantly outperforms state-of-the-art baselines
on four different tasks, and for the data-scarce domains, the
compressed student models even perform better than the orig-
inal large teacher model, with much fewer parameters (only
∼13.3%) when only a few labeled examples available.

Introduction
Pre-trained language models such as BERT (Devlin et al.
2019), XLNet (Yang et al. 2019), and RoBERTa (Liu et al.
2019) have demonstrated their extraordinary performance
via fine-tuning on down-streaming natural language process-
ing tasks (Wang et al. 2018; Williams, Nangia, and Bow-
man 2018; Xu et al. 2019). However, the large number of
parameters in these models leads to high storage and compu-
tational costs, which makes them a burden to be deployed in
resource-constrained application scenarios such as real-time
inference on mobile or edge devices. A typical solution is
to adopt knowledge distillation (KD) (Hinton, Vinyals, and
Dean 2015) to reduce their storage and computation cost,
and accelerate the inference time (Sanh et al. 2019; Sun et al.
2019; Jiao et al. 2019; Sun et al. 2020). The basic idea of
knowledge distillation is to compress the large BERT model
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to a small student model while preserving the knowledge
of teacher model. However, for a target domain with scarce
training data, the teacher can hardly pass useful knowledge
to the student, which yields performance degradation for the
student models.

Data augmentation (DA) is a common strategy to deal with
the data scarcity problem, which augments the target data
by generating new data based on the labeled training sets.
Nevertheless, designing an effective DA method for BERT
knowledge distillation has been less explored. Existing aug-
mentation methods for distillation are usually manually de-
signed, such as thesaurus based synonym replacement (Wang
and Yang 2015; Zhang, Zhao, and LeCun 2015), words re-
placement with paradigmatic relations (Kobayashi 2019) or
predictions of large language model (Jiao et al. 2019; Wu
et al. 2019). Pre-defining such augmentation rules is time-
consuming and hardly can find an optimal way to help knowl-
edge distillation. It remains to be a challenging task to design
an effective strategy to automatically augment useful data for
the data-scarce domain.

In the light of this challenge, we propose a method to
learn to augment data (L2A) for data-scarce domain BERT
knowledge distillation that automates the process of data aug-
mentation. Unlike prevailing data augmentation methods that
pre-define heuristic rules, we automatically augment data
and dynamically refine the augmentation strategy based on
the feedback from the student model. The proposed method
also leverages information from resource-rich domain data to
help augment target data. Specifically, we adopt a reinforced
selector to automate cross-domain data manipulation. The
reinforced selector is a reinforcement learning policy network
that controls the generation of cross-domain data based on
the feedback from the student model. The student learns to
mimic the behavior of the teacher with respect to teacher’s
dark knowledge (i.e., prediction logits) and intermediate hints
based on the augmented data. Inspired by the reward aug-
mented maximum likelihood (Norouzi et al. 2016; Ke et al.
2019), our generator is updated on the samples acquired from
a stationary distribution weighted by the reinforced selec-
tor. Such stationary distribution is designed to guarantee that
training samples are surrounding the real data, thus the ex-
ploration space of our generator is indeed restricted, leading
to stable training.

Experiments show that our model significantly outper-
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forms the state-of-the-art baselines on different NLP tasks.
The compressed student models even outperform the original
teacher models with much fewer parameters (only ∼13.3%)
when only a few labeled examples available. This may due to
the reason that, with the proposed L2A method, the student
model removes the redundancy and noisy knowledge from
the teacher model and only keeps the useful knowledge for
the specific task. It echos the findings in recent studies (Ten-
ney, Das, and Pavlick 2019; Jawahar et al. 2019) that BERT
learns various knowledge from the large-scale corpus, while
not all of them are useful for a specific downstream task.

In a nutshell, our main contributions are three-fold.
1) Instead of manually designing data augmentation methods

for in-domain data, our model can leverage cross-domain
information and automatically augment data according to
the performance of the student model.

2) The proposed model generates samples from a stationary
distribution with constrained exploration, which signifi-
cantly reduces the search space and makes the training
process stable.

3) Experiments on different tasks show our model consis-
tently outperforms the baselines, including the state-of-the-
art distillation methods, DA methods, and even the teacher
model.

Related Work
Knowledge distillation has proven a promising way to com-
press large models while maintaining accuracy. It transfers
knowledge from a large model or an ensemble of neural
networks (i.e., teacher) to a single lightweight model (i.e.,
student). The study in (Hinton, Vinyals, and Dean 2015) first
proposes to use the soft target distributions of the teacher
model to train the student model. Intermediate representa-
tions from hidden layers of the teacher are also useful for the
student (Romero et al. 2015). DistillBERT (Sanh et al. 2019)
uses the soft label and embedding outputs of the teacher to
train the student. Recent work TinyBERT (Jiao et al. 2019)
and MobileBERT (Sun et al. 2020) further consider self-
attention distributions and hidden states to train the student.
BiLSTMSOFT (Tang et al. 2019) distills fine-tuned BERT
into a LSTM model. However, for a domain with scarce
training data, the teacher can hardly pass useful knowledge
to the student, which yields performance degradation for
the student models. Both TinyBERT (Jiao et al. 2019) and
BiLSTMSOFT (Tang et al. 2019) use data augmentation to
improve the distillation performance. But these handcraft aug-
mentation methods are time-consuming and may not perform
well during training.

Data augmentation is a ubiquitous technique to augment
the target data by generating new data from existing training
data, with the objective of improving the performance of the
downstream tasks. Most of the studies are based on heuris-
tics such as synonym replacement, random insertion, random
swap, and random deletion (Zhang, Zhao, and LeCun 2015;
Wei and Zou 2019). Generation based approaches are also
studied, including variational Auto-Encoder (VAE) (Kingma
and Welling 2014), round-trip translation (Yu et al. 2018),
paraphrasing (Kumar et al. 2019) and data noising (Xie et al.

2017), which try to generate sentences from a continuous
space with desired attributes of sentiment and tense. Re-
cently, pre-trained language models are adopted to synthesize
new labeled data. However, the exploration space is usually
huge and the quality of the sentences generated by these
methods may not be satisfactory. Contextual augmentation
is introduced in (Kobayashi 2019; Wu et al. 2019), where
bi-directional language models or fine-tuned BERT (Devlin
et al. 2019) are used to replace words in the original sentence
with other words based on context information. However,
these methods are designed manually and cannot dynami-
cally adjust the augmentation strategy during the training
stage, which could result in suboptimal performance.

Automated data augmentation has been proposed in (Rat-
ner et al. 2017; Cubuk et al. 2019). However, they are de-
signed for image augmentation, which are not suitable for
text augmentation due to the complexity nature of language.
Recently, adaptive text augmentation has been studied in (Hu
et al. 2019). However, it is not suitable for BERT compres-
sion and can not handle cross-domain data manipulation.
Meanwhile, its data manipulation is designed for text clas-
sification which is not suitable for text-pair tasks such as PI
and NLI studied in this paper. Besides, existing methods on
data augmentation only focus on a particular target domain.
In this study, we treat data augmentation as a learning task
to “generate” new data to help the target domain leveraging
cross-domain information.

Learning to Augment
We present an overview of the proposed Learning to Augment
(L2A) method in Figure 1. Unlike prevailing data augmenta-
tion methods that pre-define heuristic rules for a particular tar-
get domain, we automatically augment data from both source
and target domains, and dynamically refine the augmentation
strategy based on feedback from the student module.

Specifically, our learning framework mainly consists of
four components, i.e., a teacher module, a student module,
a data generator, and a reinforced selector. The data gen-
erator generates data from both source and target domains
for the teacher module to guide the student module. The
reinforced selector refines the augmentation strategy of the
data generator based on the performance of the student mod-
ule. Those modules work interactively to jointly improve the
performance of the student module for a target domain.

Knowledge Distillation
Before we dive into our method, we first introduce the process
of knowledge distillation. The distillation process aims to
transfer the knowledge of a large teacher network to a small
student network. The objective is defined as follows:

LKD =
∑
x∈X

L(fs(x), f t(x)), (1)

where fs and f t represent the features of student and
teacher models respectively. L(·) is a loss function that eval-
uates the difference between the teacher and student mod-
els. Inspired by the success of transformer networks such as
BERT (Sun et al. 2019; Jiao et al. 2019; Wang et al. 2020), our
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Figure 1: Overview of the proposed Learning to Augment (L2A) method. The generator generates augmented data based on both
source and target domain data from a statistic stationary distribution (Ps). The reinforced selector selects useful augmented data
to help the task of knowledge distillation and updates its policy according to the student network performance.

distillation model is based on the BERT network (Vaswani
et al. 2017). We consider three types of distillation strategy:
Latt based on attention information, Lhidden on intermediate
hidden representations, and Ldark on the prediction outputs
or dark knowledge, detailed as follows:

Latt =
1

h

h∑
i=1

MSE (Asi −Ati),

Lhidden = MSE (HsW −Ht),

(2)

where Ai represents the attention matrix corresponding to
the i-th self-attention head of the last BERT layer and h is
the number of attention heads. Hs, Ht denotes the output of
the last layer of student network and teacher network, respec-
tively. W denotes a transformation matrix that transforms the
hidden states of the student network into the same space as
the teacher network’s states.

For dark knowledge based distillation, we penalize the
soft cross-entropy loss between the student network’s logits
against the teacher’s logits as follows:

Ldark = −
∑
i

exp(gti/TKD)∑
j exp(g

t
j/TKD)

log
exp(gsi /TKD)∑
j exp(g

s
j/TKD)

,

(3)
where gs and gt are the logits from the student and teacher
respectively. TKD denotes the temperature value which con-
trols the smoothness of the output distribution. Note that for
the regression problem, the above loss is reformulated as the
mean square error between the student’s and the teacher’s
logits.

We combined the above three types of loss as our final KD
loss, namely: LKD = Latt + Lhidden + Ldark.

The Proposed Method
For a knowledge distillation task, training in a data-scarce
domain may not be sufficient for the teacher model to fully
express its knowledge (Ba and Caruana 2014). Therefore, we

propose to augment the training set to help effective knowl-
edge distillation in data-scarce domains. Specifically, we seek
to train a generative modelGθ(z|x) to generate augment sam-
ples for the student model to better learn from the teacher.
Here, z refers to the generated sample, and x refers to the
original data. Thus the distillation loss is reformulated as
follows:

LKD = Ez∼Gθ(z|x)L(f
s(z), f t(z)). (4)

Suppose we have an explicit metric Rφ(z) to evaluate an
augmented sample z. The generator Gθ can be optimized via
reinforcement learning, formulated as follows:

LRL,θ = −Ez∼Gθ(z|x)[Rφ(z)]− αH(PGθ(z|x)), (5)

where the first term is to maximize the expected rewards and
the second term is to regularize the policy to generate diverse
samples. α is a temperature hyper-parameter to balance these
two terms.

The task can be viewed as a sequence generation task, in
which at each step the generator acts over a huge discrete ac-
tion space 1 in the language model that makes the exploration
of policy quite inefficient. In order to alleviate the exposure
bias problem and model collapse in text generation, we de-
fine an exponential payoff distribution to connect RL loss
with RAML loss inspired by Reward Augmented Maximum
Likelihood (RAML) (Norouzi et al. 2016; Ke et al. 2019).
The loss is rewritten as:

LRAML,θ = KL(Qφ(z))||PGθ (z|x)) + constant

∝ −Ez∼Qφ(z)[logPGθ (z|x)],
(6)

where the second expression omits constant terms. Here
the exponential payoff distribution Qφ(z) captures the rel-
ative reward of the generated sample compared with all
the possible perturbed samples. Hence we define Qφ(z) =

1Vocabulary size is usually large
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1
Z exp(Rφ(z)/α), where α is the same as in Eq. 5, which
controls the degree of regularization. Z denotes the accumu-
lation over all possible samples.

As (Norouzi et al. 2016) shows, the global minimum
of LRL,θ, i.e. the optimal regularized expected reward, is
achieved when the model distribution matches the exponen-
tiated payoff distribution, i.e.PGθ (z|x) = Qφ(z). Thus we
first sample proportionally to its exponentiated scaled reward.
Since directly sampling from the exponential payoff distribu-
tion Qφ(z) is intractable, we define a stationary distribution
Ps(z) and then introduce importance sampling to separate
sampling process. We then refine the loss as follows.

L = −Ez∼Qφ(z)[logPGθ (z|x)]

= −
∫
z

logPGθ (z|x)Qφ(z)dz

= −
∫
z

logPGθ (z|x)
Qφ(z)

Ps(z)
Ps(z)dz

= −Ez∼Ps(z)[Wφ(z) logPGθ (z|x)],

(7)

where Wφ(z) =
Qφ(z)
Ps(z)

∝ Rφ(z). To optimize this loss func-
tion, we first construct the fixed distribution Ps(z) to get
samples, then devise the proper reward function Rφ(z) to
train the augmentation model in a stable and effective way.

LL2A,θ = −Ez∼Ps(z)[Wφ(z) logPGθ (z|x)]
∝ −Ez∼Ps(z)[Rφ(z) logPGθ (z|x)]

(8)

Intuitively this reward function Rφ(z) should encour-
age the generator to generate samples with large sampling
probability Ps(z) and also be helpful for knowledge dis-
tillation. Hence Rφ(z) is defined by two terms: Rφ(z) =
logPs(z) + πφ(z), where the former address the sampling
probability and the latter is controlled by the reinforced selec-
tor to guarantee the generated samples is helpful for knowl-
edge distillation. To examine its helpfulness for distillation,
we adopt a reinforced selector to learn a selection network
πϕ(z) ∈ [0, 1] for each augmented z. Thus, the learning task
is reformulated as follows:

LL2A,θ ∝ −Ez∼Ps(z)[Rφ(z) logPGθ (z|x)] (9)

= −Ez∼Ps(z)[(logPs(z) + πϕ(z)) logPGθ (z|x)].

The search space Ps(z) and πϕ(z) in the reward function
Rφ(z) are detailed in the following sections.

Constrained Search Space The stationary distribution
Ps(z) is designed to guarantee that training samples are sur-
rounding the real data, thus the exploration space of our
generator is indeed restricted, resulting in more stable train-
ing. Based on this intuition, we sample from Ps(z) where
Ps(z) = Ex[Ps(z|x)] by stratified sampling for data aug-
mentation, where we first select a particular distance d, then
sample the position p for substitution, and fill a word w into
the position. So Ps(z|x) can be derived as:

Ps(z|x) = P (d, o, w|x) = P (d|x)P (o|d, x)P (w|o, d, x).
(10)

We first sample an edit distance d by P (d|x), then se-
lect position o for substitution based on the sampled edit
distance by P (o|d, x). Then we determine the probability
of word substitution by P (w|o, d, x). Let |V | be the size
of vocabulary and c(e,m) denote the number of sentences
at an edit distance e from a sentence of length m, i.e.,
c(e,m) =

(
m
e

)
· (|V |− 1)e. Follow (Norouzi et al. 2016), we

reweight the counts and normalize the result:

P (d|x) = exp{−d/α}c(d,m)∑m
e=0 exp{−e/α}c(e,m)

, (11)

where α here is defined the same as the temperature hyper-
parameter in Eq. 5, which controls the degree of regulariza-
tion and restricts the search space surrounding the original
sentence. A larger α brings more samples with long edit
distances. We test the effect of α in the experiment section.

Then we randomly choose d distinct positions in a sentence
to be replaced by new words, the probability of choosing the
position o can be calculated as P (o|d, x) = d/m.

Besides using α to restrict the search space surrounding
the original sentence, we also adopt a constrained sampling
strategy to constrain the exploration of new samples. Inspired
by the success of BERT (Devlin et al. 2019) for NLP tasks,
we leverage the rich contextual and semantic information
within BERT to generate semantically coherent variants of
the ground truths. Specifically, for p(w|o, d, x), we adopt
BERT based generator by masking a position o with a special
token [mask] and using BERT to predict the corresponding
word on the position to generate a new sentence. We used a
softmax-temperature:

P (w|o, d, x) = exp(PBERT(w)/T )∑
j exp(PBERT(wj)/T )

, (12)

where PBERT(w) denotes the probability of generating word
w based on the BERT model. T controls the exploration de-
gree, where a higher value for T produces a softer probability
distribution over candidate words. By controlling α and T ,
we restrict the exploration space of the generator to a set of
grounded samples close to the ground truths. We discuss their
effect in the experiment section.

Note that Ps(z) can be drawn from both the source domain
and target domain. Since the source domain is rather large,
we set the sample size to 1 for source domain and 20 for target
domain in the experiments, i.e. we use the full source data and
generate 20 samples for each instance in target domain. The
effect of different sample size are shown in the experiment
section. Next, we use a data augmentation policy to sample
from the candidates to generate the final augmented data.

Reinforced Selector We adopt the reinforced selector to
provide an assessment for each augmented data. We seek to
update the selection network automatically using the feed-
back from the student model results. Formally, we define the
state of our model as the outputs of the teacher and student
model and the action as a binary decision (0 or 1) on each
input sample. Furthermore, to speed up training, we treat an
epoch as an episode and each batch as a step to act on. We
define the reward at time step t based on the evaluation metric
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Algorithm 1: Learning to Augment for Data-Scarce
Domain BERT Compression

Require : training set D, validation data Dv
1 Initialize the KD module and reinforced selector;
2 Construct the distribution Ps using Eq. 10;
3 Sample from Ps and get training data D′;
4 for each batch xb in D′ do
5 Obtain teacher model output f t(xb), student

model output fs(xb) and get state sb;
6 Augment data using Eq. 9 and obtain action ab;
7 Update the student model using Eq. 1;
8 Obtain the reward rb using Eq. 13;
9 Store (sb, ab, rb) in episode history H;

10 end
11 for each turple (sb, ab, rb) in the history H do
12 Obtain the accumulated reward using Eq. 14;
13 Update policy πϕ using Eq. 15.
14 end

which measures difference in performance before and after
the student model updates:

rt = L(yi, f
s(xi))− L′(yi, fs(xi)), (13)

where L(yi, fs(xi)) denotes the evaluation results of the
updated model, and L′(yi, fs(xi)) denotes previous the eval-
uation results. For classification tasks, L is set to the accuracy
of the target domain validation data. For regression tasks,
L is set to the correlation coefficient between the predicted
score and the ground truth score. In contrast to conventional
reinforcement learning, our model is updated in batches in
order to improve the model training efficiency. For each batch
in an episode, the accumulated reward is defined as:

r(τ) =
T−t∑
k=0

γkrt+k, (14)

where γ is a discount factor. τ denotes the sequence of actions
through time T .

Our selector executing actions according to policy πϕ,
which aims to maximize the expected discounted sum of
rewards of over trajectory τ :

ϕ∗ = argmax
ϕ

Eτ∼πϕ(τ)r(τ). (15)

Training
In all, we present the training algorithm in Algorithm 1.
Unlike manually designed data augmentation methods for
in-domain data, our model can learn cross-domain manip-
ulations and automatically augment data according to the
feedback of the student model. Besides, the proposed method
generates samples from a stationary distribution with con-
strained exploration space which significantly reduces the
search space and makes the training process stable.

Experiments
We conduct experiments on four NLP tasks to examine the
efficiency and effectiveness of the proposed method.

Datasets
Natural Language Inference (NLI). This is a task to
examine whether a hypothesis can be inferred from a
premise (Bowman et al. 2015). We use MultiNLI (Williams,
Nangia, and Bowman 2018) as the source domain and Sc-
iTail (Khot, Sabharwal, and Clark 2018) as the target. The
former is a large crowd-sourced benchmark corpus from a
wider range of text genres, while the latter is a recently re-
leased challenging textual entailment dataset collected from
the science domain.
Paraphrase Identification (PI). This is a task to examine
the relationship, i.e., a paraphrase or not, between two input
text sequences. We treat the Quora question pairs 2 as the
source domain and a paraphrase dataset made available in
CIKM AnalytiCup 2018 3 as the target. The former is a large
scale dataset that covers a variety of topics, while the latter
consists of question pairs in the E-commerce domain. We
follow the study in (Qu et al. 2019) for data preprocessing.
Text classification. We treat SST-2 (Socher et al. 2013) as
source domain and RT (Pang and Lee 2005) as target. SST-
2 (Socher et al. 2013) consists of sentences extracted from
movie reviews with human annotations of their sentiments.
RT (Pang and Lee 2005) is a movie review sentiment dataset
contains a collection of short review excerpts.
Review helpfulness prediction. This task is to examine the
helpfulness score of a given review. Due to the high volume
of reviews in E-commerce sites, its an important task that
draws increasing attention. We use the Electronics domain in
the Amazon review dataset (McAuley and Leskovec 2013) as
source data and the Watches domain as the target. We follow
the study (Chen et al. 2018) for data preprocessing.

To mimic data-scarce domains, we subsample a small train-
ing set from the target domain for NLI and text classification
tasks by randomly picking 40 instances for each class, and
take 1% of the original data as our training data for review
helpfulness prediction task. Since the target domain in the PI
task is relatively small, we keep it unchanged.

Baselines
We compare the proposed method with several state-
of-the-art BERT compression methods including
BiLSTMSOFT (Tang et al. 2019), DistilBERT (Sanh
et al. 2019), BERT-PKD (Sun et al. 2019), TinyBERT (Jiao
et al. 2019) and MINLILM (Wang et al. 2020) 4. Note that
TinyBERT and BiLSTMSOFT also conduct data augmentation
for training. We also compare with two state-of-the-art DA
methods, namely Easy Data Augmentation (EDA) (Wei and
Zou 2019) and Conditional BERT (CBERT) (Wu et al. 2019)
while using the same KD model as in our model to make
fair comparisons. EDA is a simple but effective rule-based
data augmentation framework for the text, which includes
synonym replacement, random insertion, random swap,

2www.kaggle.com/c/quora-question-pairs
3https://tianchi.aliyun.com/competition/introduction.htm?

raceId=231661
4We use the uncased version from https://github.com/microsoft/

unilm/tree/master/minilm. The number of layers=12, hidden
size=384 and head number=12
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Method Model NLI PI Text Classification Regression Task
Size ACC F1 ACC F1 ACC F1 P. S.

Student-FT 14.5M 0.7380 0.6928 0.8844 0.7435 0.7188 0.7309 0.3878 0.3225
BiLSTMSOFT 10.1M 0.5890 0.5006 0.8622 0.7009 0.4839 0.6522 - -
DistilBERT 52.2M 0.6891 0.5648 0.8991 0.7775 0.6776 0.6966 0.4048 0.3343
BERT4-PKD 52.2M 0.5809 0.5819 0.9041 0.7956 0.6173 0.5189 0.4466 0.3778
BERT6-PKD 67M 0.6980 0.6201 0.9060 0.8040 0.6370 0.6311 0.4482 0.3923
MINILM 33M 0.7512 0.6314 0.9024 0.7858 0.7020 0.7022 0.4441 0.4132
TinyBERT 14.5M 0.7319 0.6143 0.8787 0.7274 0.7235 0.7392 0.2653 0.2139
EDA 14.5M 0.7465 0.6375 0.9030 0.7920 0.7254 0.7428 0.4554 0.3887
CBERT 0.7469 0.6820 0.8925 0.7654 0.7366 0.7020 0.4680 0.3891
L2A 14.5M 0.7827 0.7152 0.9195 0.8275 0.7798 0.7614 0.4852 0.4204

Table 1: Evaluation results on NLI, PI, text classification, and regression tasks. “-” means the method is not suitable for this task.
P. and S. denotes Pearson and Spearman correlation, respectively.

and random deletion. CBERT uses a language model that
generates new variants semantically close to the original
ones. To keep comparisons fair, the number of generated
augmented sentences per original sentence is same for all
comparing DA methods.

Implementation Details
We use the BERTBASE (Devlin et al. 2019) as the teacher
model. For teacher model, the number of layers is 12, hid-
den size is set to 768, feed-forward/filter size is 3072 and
head number is 12. We initialize our student model with
BERTTiny

5. For the student model, the number of layers
is 4, hidden size is 312, feedforward/filter size is 1200 and
head number is 12. All models are implemented with Py-
Torch (Paszke et al. 2019) and Python 3.6. We set the maxi-
mum sequence length to 128. We tune the temperature α from
{0.6,0.7,0.8,0.9,1.0} and choose α = 0.6 for the best perfor-
mance. We tune T from {1,2,4,8} and choose T = 1 for the
best performance. The sample size is 20 for target domain and
1 for source domain. The batch size is chosen from {8,16,32}
and the learning rate is tuned from {2e-5, 3e-5, 5e-5}. For
the reinforced selector, We use Adam optimizer (Kingma and
Ba 2015) with the setting β1 = 0.9, β2 = 0.998. The size
of the hidden layer of the policy network is 128. The learn-
ing rate is set to 3e-5. Note that, fine-tuned models are also
compared, where the teacher and student models that are fine-
tuned with the target domain data, denoted as Teacher-FT
and Student-FT respectively.

Evaluation Results
As shown in Table 1, we have several observations.

1) L2A significantly improves over the base student model
by 6% on average and consistently outperforms baselines in
all tasks. This indicates that the proposed learning framework
can effectively improve the performances of small student
models for all these downstream tasks.

2) L2A outperforms the state-of-the-art BERT knowledge
distillation methods, which indicates the L2A can effectively

5https://github.com/huawei-noah/Pretrained-Language-
Model/tree/master/TinyBERT (2nd version)

improve knowledge distillation performance by generating
useful augmented instances.

3) Our method also outperforms existing heuristic DA
methods which shows that heuristic rules do not fit the task or
datasets well. In contrast, learning-based augmentation has
the advantage of automatically generating useful samples to
improve model training.

Comparison with the Teacher and Student Model
We further compare different variants of our method with the
teacher model in Table 2. We can observe that:

1) L2A outperforms both L2Aw/o src and L2Aw/o tgt in
all tasks, showing that data augmentation based on either
source domain or target domain information can help to im-
prove model performance.

2) Clearly, there is a large performance gap between the
teacher model Teacher-FT and student model Student-FT due
to the big reduction in model size. The fact that both L2A and
L2Aw/o src manage to bridge the gap between student and
teacher model shows the proposed methods can effectively
improve knowledge distillation performance by generating
useful augmented instances.

3) Compared with the teacher BERTBASE, the compressed
L2A model is 7.5x smaller (with only ∼ 13.3% parame-
ters), while maintaining comparable performance. L2A even
outperforms the teacher model by 2% on NLI and text clas-
sification tasks. This shows for data-scarce domain, proper
data augmentation can significantly improve the student per-
formance and even achieve comparable or better performance
than the teacher.

Recall that BERT learns various knowledge from the large-
scale corpus, while only certain parts of the learned knowl-
edge are needed for a specific task (Tenney, Das, and Pavlick
2019; Jawahar et al. 2019). In the proposed L2A method, the
student can help to only learn the needed knowledge from the
large BERT teacher model and build a compact yet effective
model to improve the downstream task performance.

Ablation Study
Effects of data size. We compare over varied numbers of
trained samples: 20, 40, 60, 80 for each class to examine
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Method Model NLI PI Text Classification Regression Task
Size ACC F1 ACC F1 ACC F1 P. S.

Teacher-FT 109M 0.7639 0.6935 0.9225 0.8359 0.7573 0.7604 0.4874 0.4264
Student-FT 14.5M 0.7380 0.6928 0.8844 0.7435 0.7188 0.7309 0.3878 0.3225
L2Aw/o tgt

14.5M
0.7714 0.7025 0.8549 0.6730 0.7610 0.7442 0.4715 0.4119

L2Aw/o src 0.7615 0.6955 0.9144 0.8165 0.7526 0.7523 0.4757 0.3992
L2A 0.7827 0.7152 0.9195 0.8275 0.7798 0.7614 0.4852 0.4204

Table 2: Comparisons with the teacher and student fine-tuning on all datasets. P. and S. mean Pearson and Spearman correlation
respectively. The bold and underlined numbers represent the best and 2nd best results respectively.

Figure 2: Ablation study on different target domain data sizes.

Figure 3: Ablation study on different temperature values.

model performance w.r.t. different domain data size. As in
Figure 2, L2A consistently improves the performance of the
knowledge distill model and even outperform large teacher
model by leveraging information from resource-rich source
domain. And the improvement is more obvious when the
amount of data is smaller. This shows L2A can effectively
help BERT knowledge distillation for data-scarce domains.
Effect of different source domains. We further proceed to
examine the impact of similarity between the source and
target domains. We take “Home”, “Electronics” as source
data respectively and take “Watches” as target data. To keep
fair comparisons, we both choose 5000 instances for source
data to help the same data-scarce target. We find that using
“Electronics” instead of “Home” as source domain achieves
better results by 0.5% which shows transferring between
similar domains leads to better performance.
Effect of different sample size. We also conduct experi-
ments to show how the number of generated augmented
sentences per original sentence affects performance. We find

LKD w/o Latt w/o Lhidden w/o Ldark
ACC 0.7798 0.7563 0.7629 0.7647
F1 0.7614 0.7506 0.7608 0.7433

Table 3: Ablation study on different distillation objectives.

that augmenting target domain data yields large performance
boosts. By augmenting more source domain data has slightly
better performance. We suspect that, if the source domain is
relatively large, more source domain data does help the target
but may not be very significant.
Effect of different student models. We use the first 4 lay-
ers of the teacher model as student initialization and find
that L2A is also effective, as it improves 10% in terms of
ACC over the base student model on the text classification
task. This shows the L2A method is generally helpful for the
student model with different initialization setups.
Effects of distillation objective. To investigate the effects of
distillation objectives, we compare the L2A method with its
variants: the L2A without the attention layer (w/o Latt), the
intermediate hidden layer (w/oLhidden), and dark knowledge
distillation (w/o Ldark). As in Table 3, we find that all the
distillation objectives are useful, and the model achieves the
best performance by combining all the objectives.
Parameter sensitivity analysis. The temperature α in Eq. 11
and T in Eq. 12 both control the search space surrounding
the real data as analyzed in the method section. To investigate
their impact on the performance of our model, we test with
different temperature values on the text classification task.
As shown in Figure 3, we find it is better to set T as a small
value, which shows constrained search space is beneficial.
Meanwhile, we also find that as the temperature α becomes
larger, the quality of augmented data gets worse. This is
because a large temperature encourages to generate more
samples that are distant from the original data distribution,
resulting in performance degradation.

Conclusion
We proposed a learning to augment method for BERT knowl-
edge distillation to augment a data-scarce target domain with
resource-rich source domains. We automatically augment the
target data and dynamically refine the augmentation strategy
based on the feedback from the student model. Extensive
experiments demonstrate that the method significantly out-
performs the competing baselines on various NLP tasks.
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