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Abstract

Collaborative learning has successfully applied knowledge
transfer to guide a pool of small student networks towards
robust local minima. However, previous approaches typically
struggle with drastically aggravated student homogenization
when the number of students rises. In this paper, we pro-
pose Collaborative Group Learning, an efficient framework
that aims to diversify the feature representation and conduct
an effective regularization. Intuitively, similar to the human
group study mechanism, we induce students to learn and ex-
change different parts of course knowledge as collaborative
groups. First, each student is established by randomly rout-
ing on a modular neural network, which facilitates flexible
knowledge communication between students due to random
levels of representation sharing and branching. Second, to re-
sist the student homogenization, students first compose di-
verse feature sets by exploiting the inductive bias from sub-
sets of training data, and then aggregate and distill differ-
ent complementary knowledge by imitating a random sub-
group of students at each time step. Overall, the above mech-
anisms are beneficial for maximizing the student population
to further improve the model generalization without sacrific-
ing computational efficiency. Empirical evaluations on both
image and text tasks indicate that our method significantly
outperforms various state-of-the-art collaborative approaches
whilst enhancing computational efficiency.

Introduction
Deep neural network has achieved impressive performance
in various fields. Combining multiple individual networks,
an ensemble model gains better predictive performance than
a single network. One important reason is that an ensem-
ble model usually aggregates a robust local minimum rather
than a sharp local minimum that a single model may be
stuck in. To alleviate the prohibitive computational cost of
those high-capacity ensemble networks, Knowledge Distil-
lation (KD) method is therefore proposed to achieve more
compact yet accurate models by transferring knowledge (Ba
and Caruana 2014; Romero et al. 2015; Hinton, Vinyals,
and Dean 2015; Han, Mao, and Dally 2016). KD comprises
two pipelined learning stages, a pre-training stage and a
knowledge transfer stage. Recently, attempts on group-based
online knowledge distillation, also known as collaborative
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learning, explore less costly and unified models to eliminate
the necessity of pre-training a large teacher model (Zhang
et al. 2018; Anil et al. 2018), where a group of students si-
multaneously discovers knowledge from the ground-truth la-
bels and distills group-level knowledge (multi-view feature
representation) from each other.

Collaborative learning shares the benefits of finding a
more robust local minimum than a single model learn-
ing while accelerating the model learning efficiency com-
pared with conventional KD. In terms of the implemen-
tation of student networks in collaborative learning, DML
(Zhang et al. 2018) uses a pool of network-based students,
where each student is an individual network and they asyn-
chronously collaborate, whereas CL-ILR (Song and Chai
2018) proposed branch-based collaborative learning that all
the student networks share the bottom layers while divid-
ing into branches in the upper layers. Benefiting from repre-
sentation sharing (an extreme form of hint training (Romero
et al. 2015)), CL-ILR not only is more compact and effi-
cient but also shows better generalization performance. As
observed in (Zhang et al. 2018; Song and Chai 2018; Lan,
Zhu, and Gong 2018; Chen et al. 2020), the model perfor-
mance continually improves along with the increasing num-
ber of students.

However, the students in collaborative learning tend to ho-
mogenize, damage the generalization ability, and degrade to
the original individual network. Although the students are
randomly initialized, they learn from the same entire training
set and are prone to converging to similar feature represen-
tations (Li et al. 2016; Morcos, Raghu, and Bengio 2018).
Moreover, each student distills knowledge from all other stu-
dents, which further aggravates the homogenization problem
due to ignoring the diversity of students’ group-level knowl-
edge (Schwenker 2013; Lan, Zhu, and Gong 2018; Chen
et al. 2020). Another insurmountable obstacle for collabo-
rative learning is that the computational cost boosts greatly
as well when more students join in collaborative learning.

To overcome these challenges, in this paper, we propose
a collaborative group learning framework that improves and
maintains the diversity of feature representation to conduct
an effective regularization. Intuitively, under the spirit of
knowledge distillation by learning as collaborative groups,
we divide the whole course into multiple segments and
assign students into several non-isolated sub-groups. Each
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student learns one piece of course and grasps the whole
course through efficient knowledge distillation. Specifically,
we first introduce a conceptually novel method, called ran-
dom routing, to build student networks, where each student
is regarded as a group of network modules, and the connec-
tions between network modules are established as randomly
routing a modular neural network. After randomly routing,
we break the limitation of sharing representation only at the
bottom layers and extend its range to any layer. Modules
are shared by different involved students, which facilitates
knowledge sharing and distillation between students. Sec-
ond, to tackle the student homogenization problem aggra-
vating with the increasing number of students, sub-set data
learning is proposed for each student to learn different parts
of the training set. It increases the model diversity by intro-
ducing the inductive bias of the data subset into the student
training. Moreover, to compensate for the knowledge (train-
ing data) loss of individual students while maintaining the
student diversity, we further propose sub-group imitation,
where a sub-group of students is randomly selected and as-
signed to aggregate group-level knowledge in each iteration,
rather than aggregating knowledge from all other students as
in previous approaches. It allows a student to internalize dy-
namic and evolving group-level knowledge while adjusting
the sub-group size for adapting to various computational en-
vironments. In addition to be collaboratively devoted to the
student homogenization problem so as to regularize the fea-
ture learning effectively, the above three mechanisms also
enhance computational efficiency (e.g., reduce the number
of parameters and the number of forward and backward
propagation), which means our framework can maximize the
student population to further improve the model generaliza-
tion under restricted computational resources.

In summary, our contributions are as follows: 1) Collab-
orative group learning strikes a better balance between di-
versifying feature representation and enhancing knowledge
transfer to induce students toward robust local minima. 2)
Random routing builds students by randomly connecting the
module path, which enables random levels of representation
sharing and branching. 3) To overcome the student homog-
enization problem, sub-set data learning first draws on the
inductive bias from the data subset to improve the model di-
versity. Then, sub-group imitation further transfers supple-
mentary knowledge from a random and dynamic sub-group
of students, maintaining the diversity of students. 4) Be-
sides, the proposed three mechanisms are computationally
efficient, allowing more students to join in collaboration and
further boost the model generalization. We conducted de-
tailed analyses to verify the advantages of our framework on
generalization, computational cost, and scalability.

Method
Compared with previous approaches, collaborative group
learning has the superiority in generalization performance
and computational efficiency. In this section, we first elabo-
rate how to build students using random routing, then in-
troduce sub-set data learning and sub-group imitation to
discover and transfer diverse knowledge effectively, and fi-
nally present the training objective.
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Figure 1: An overview of collaborative group learning with
random routing and sub-set data learning.

Random Routing for Student Network
Previous work constructs a pool of students by continually
introducing new networks or branches, which rapidly ex-
pands the model capacity with the increasing number of
students. In our proposed collaborative learning, students
are built from a modular neural network, using random
routing, where students can be built as many as possible
given restricted-capacity networks. More importantly, ran-
dom module sharing and branching also benefit knowledge
interaction between students. The modular neural network
consists of L distinct layers with each layer ` ∈ [1, L]
containing M modules, arranged in parallel, i.e., M` ={
M`

m

}M

m=1
(see Figure 1). Each moduleM`

m is a learnable
sub-network embedded in the modular neural network, con-
sisting of different combinations of layers. It extracts differ-
ent types of features in accordance with various tasks, such
as residual block for vision features and transformer block
for semantic features. For the `th layer, the index of the se-
lected module is uniformly sampled using U(·) over the set
of integers [1,M ]. After L times of selection, we construct
a pathway Pk ∈ RL×M to form a random routing network
for the kth student:

Pk(`,m) =

{
1, if the moduleM`

m is present in the path,
0, otherwise.

(1)
When training the kth student, any mth module in `th layer
with Pk(`,m) = 1 is activated. All established students are
simultaneously trained by two supervised losses that we will
elaborate later. With the help of random routing, one stu-
dent can share the selected module of any other student in
the same layer, which means that compared with previous
alternative work, our method can build more students with
the same number of parameters. Also, more students partic-
ipating in collaboration imply more diverse feature sets in
the student pool. Meanwhile, the fine-grained representation
sharing and branching across multi-layers between students,
as an extreme form of hint training (Romero et al. 2015),
implicitly and flexibly boost knowledge sharing and trans-
fer. Consequently, it naturally imposes efficient regulariza-
tion on the feature learning for each student (Song and Chai
2018; Lan, Zhu, and Gong 2018).

Sub-set Data Learning
In prior collaborative approaches, all students learn from
the same set of training data. The inductive bias contained
in the training data significantly affects the features learn-
ing (Zhang, Wang, and Zhu 2018), facilitates or hinders the
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model training (Such et al. 2020). We consider utilizing the
inductive bias of training data to enrich the diversity of stu-
dents and propose a sub-set data learning. Concretely, given
N samples X = {xi}Ni=1 from C classes with the corre-
sponding labels Y = {yi}Ni=1, where yi ∈ {1, 2, . . . , C},
the entire training set is randomly divided into K subsets
X k =

{
xki

}N/K

i=1
to train the corresponding K students (see

Figure 1). The kth student produces the probability of class
c for sample xki by normalizing the logit,

pck

(
xki

)
=

exp (zck)∑C
j=1 exp

(
zjk
) (2)

where the logit zk is the output of the kth student.
As a multi-class classifier, the general training criterion of

the kth student is to minimize the cross-entropy between the
ground-truth labels and the predicted distributions,

Lk
ce = −

N/K∑
i=1

C∑
c=1

I
(
yki = c

)
log
(
pck

(
xki

))
(3)

where I{·} is the indicator function.

Sub-group Imitation
Conventional collaborative learning usually introduces ex-
tra supplementary information in the form of group-level
knowledge. However, aggregating group-level knowledge
with the naive or the weighted average faces two main draw-
backs: First, the homogenization phenomenon is more likely
to occur due to the similar and redundant group-level knowl-
edge of students; Besides, the computational cost increase
linearly as the number of students continually grows. In or-
der to improve the generalization of each student, we pro-
pose a sub-group imitation (see Figure 2), which randomly
selects a sub-group instead of the whole group of students
for imitating in each iteration. Intuitively, in our collabora-
tive framework, each student follows a dynamic and evolv-
ing “teacher” to gain experiences while learns to denoise the
random perturbation of soft knowledge (prediction align-
ment) and hard knowledge (parameter sharing) that allevi-
ates student homogenization but hinders the stability of stu-
dent learning. In practice, we can adjust the sub-group size
flexibly to balance the performance and training computa-
tional cost. The group-level knowledge for the kth student is
computed as:

Lk
kl =

N/K∑
i=1

C∑
c=1

pct

(
xki ;T

)
log

pct
(
xki ;T

)
pck
(
xki ;T

) ;
pct

(
xki ;T

)
=

exp (zct /T )∑C
j=1 exp

(
zjt /T

) (4)

where T is the temperature, used to soften the predictions,
and zt is defined as:

zt =
1

H

K∑
k=1

Select (zk) (5)

where H is the expected number of imitated students, and
Select(·) is the selection function with an imitating proba-
bility p. Note that we first select which students to imitate
and then calculate the corresponding zk in practice.

�

� �

�

Figure 2: Sub-group imitation. For example, with the imitat-
ing probability p = 0.5, student A may only choose student
B and D to aggregate the group-level knowledge for one it-
eration.

Optimization
We obtain the overall loss function as:

L =

K∑
k=1

(
Lk

ce + φ(t) ∗ Lk
kl

)
, (6)

where φ(t) is a ramp-up coefficient function (Laine and Aila
2017) that maintains an equilibrium of the contribution of
labels and group-level knowledge. The imbalance of con-
tribution will result in either exacerbating the homogeniza-
tion of students or weaken knowledge transfer between stu-
dents. The ramp-up coefficient function can prevent students
from getting prematurely stuck in the homogenization prob-
lem, which causes that students can not learn enough diverse
knowledge to regularize each other effectively.

φ(t) =

{
1, if t not in [Js, Je],
exp

(
−5 ∗ (1− λ)2

)
, otherwise. (7)

where t is the index of training epoch, and λ is a scalar that
increases linearly from zero to one during the ramp-up range
[Js, Je]. Once a pool of students are collected from the pro-
posed modular neural network, and the training set is ran-
domly divided, we conduct the sub-group imitation through-
out the whole training process. All students are trained si-
multaneously at each iteration until convergence. In infer-
ence, we can randomly select one student or choose the best
student by a hold-out set to predict the class of input data.

Experiments
Datasets and Architectures
We present our results on six public available datasets of
three classification tasks covering image classification, topic
classification, and sentiment analysis. To validate the effec-
tiveness of the proposed collaborative group learning frame-
work in depth, we conduct the evaluation tasks in various
tasks ranging from image field to more challenging text clas-
sifications, especially the fine-grained sentiment analysis
tasks. Table 1 summarizes the statistics of all datasets. For
the image-related tasks, we adopt augmentation and normal-
ization procedure following (He et al. 2016). For the text-
related tasks, following (Conneau et al. 2017), we do not
conduct any preprocessing except lower-casing. Four net-
work architectures are used in our experiments for different
tasks, ResNet-18 and ResNet-34 (He et al. 2016) for CIFAR-
10 and CIFAR-100, Transformer (Vaswani et al. 2017) for
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Dataset # Train # Holdout # Test # Classes Classification Task
CIFAR-10 (Krizhevsky 2009) 45k 5k 10k 10 Image classification
CIFAR-100 (Krizhevsky 2009) 45k 5k 10k 100 Image classification
IMDB Review (Maas et al. 2011) 23k 2k 25k 2 Sentiment analysis
Yelp Review Full (Zhang, Zhao, and LeCun 2015) 630k 20k 50k 5 Sentiment analysis
Yahoo! Answers (Zhang, Zhao, and LeCun 2015) 1 350k 50k 60k 10 Topic classification
Amazon Review Full (Zhang, Zhao, and LeCun 2015) 2 900k 100k 650k 5 Sentiment analysis

Table 1: Statistics of six classification datasets used in our experiments.

Datasets Baseline DML CL-ILR ONE OKDDip CGL
ResNet-18

CIFAR-10 93.97 ± 0.09 94.18 ± 0.09 94.11 ± 0.12 94.19 ± 0.06 94.29 ± 0.04 94.61 ± 0.06

CIFAR-100 74.68 ± 0.13 76.13 ± 0.10 76.61 ± 0.03 76.17 ± 0.12 76.69 ± 0.04 78.01 ± 0.07

ResNet-34
CIFAR-100 76.06 ± 0.11 76.73 ± 0.12 77.09 ± 0.12 76.96 ± 0.10 77.39 ± 0.09 78.31 ± 0.10

Table 2: Top-1 accuracy (%) on the image datasets.

IMDB Review, and VDCNN-9 (Conneau et al. 2017) for the
rest of datasets.

Comparison Approaches
We compare Collaborative Group Learning (CGL) to sev-
eral recently proposed collaborative approaches, including
network-based DML (Zhang et al. 2018), branch-based CL-
ILR (Song and Chai 2018), ONE (Lan, Zhu, and Gong
2018), and OKDDip (Chen et al. 2020). We also report a
“Baseline” model that trains only one student on ground-
truth labels. For branch-based approaches, all students share
the first several blocks of layers and separate from the last
block to form a multi-branch structure as (Lan, Zhu, and
Gong 2018). The students in all the comparison models are
set to the same amount and architecture for different tasks,
i.e., 3 students for image datasets and 5 students for text
datasets. The number of parameters increases as more stu-
dents join in, whereas in our method, given 9 layers of mod-
ules and 2 modules in each layer, with random routing, theo-
retically we can build 2 to 512 different students without ex-
tra computational cost. In our experiment, we set 8 students
for collaborative group learning. The imitating probability
is set to 0.25 for image tasks and 0.5 for text tasks. The stu-
dent that obtains the best score on the holdout set is used for
evaluation. In OKDDip (Chen et al. 2020), the group leader
student is chosen for prediction.

Experiment Settings
For ResNet-18 and ResNet-34, we use Adam (Kingma and
Ba 2015) for optimization with a mini-batch of size 64. The
initial learning rate is 0.001, divided by 2 at 60, 120, and
160 of the total 200 training epochs. For VDCNN-9, we
adopted the same experimental settings as (Conneau et al.
2017; Zhang, Zhao, and LeCun 2015). Training is performed
with Adam, using a mini-batch of size 64, a learning rate
of 0.001 for the total 20 training epochs. We use Sentence-
Piece1 (BPE) to tokenize IMDB Review and set vocabulary
size, embedding dimension, and maximum sequence length

1https://github.com/google/sentencepiece

to 16000, 512, and 512. For Transformer, the size of blocks
and heads is 3 and 4 separately. We set the size of the hidden
state and feed-forward layer to 128 and 512. Training is per-
formed with Adam, using a mini-batch of size 64, a learning
rate of 0.0001 for the total 30 training epochs. We run each
method 3 times and report “mean (std)”.

Comparison on Image Classification
Table 2 summarises the Top-1 accuracy (%) of CIFAR-
10 and CIFAR-100 obtained by ResNet-18 and ResNet-34
with the existing state-of-the-art and our methods. We ob-
serve that our method significantly outperforms all other
methods with substantial accuracy gains, which shows that
with the same computational cost, our collaborative frame-
work is more effective than previous methods on improv-
ing model generalization. The branch-based methods, espe-
cially OKDDip, yield more generalizable models compared
to the network-based method (DML). This suggests param-
eter sharing benefits the transfer of diverse and complemen-
tary knowledge between students as observations in (Song
and Chai 2018; Lan, Zhu, and Gong 2018). We also found
that all collaborative frameworks achieve more performance
improvement in the smaller architecture according to the re-
sults of ResNet-18 and ResNet-34 on CIFAR-100.

Comparison on Text Classification
Table 3 reports the Top-1 accuracy (%) of all text datasets
based on VDCNN-9 and Transformer. It can be seen that
our method also achieves better performance than all prior
methods as above, indicating that our method can be gener-
ically applied to more challenging text classification tasks.
The prior methods obtain slightly better performance than
“Baseline” on all datasets except for Yahoo! Answers (Topic
classification), which means that the difficulty of clearly
discriminate fine-grained sentiment labels hinders students
from discovering diverse feature sets and transferring sup-
plementary knowledge from the others. The superiority of
our method on both image and text datasets demonstrates
the generalization and robustness of the proposed collabora-
tive framework.

7434



Datasets Baseline DML CL-ILR ONE OKDDip CGL
VDCNN-9

Yelp Review Full 62.15 ± 0.15 62.53 ± 0.10 62.66 ± 0.08 62.74 ± 0.05 62.75 ± 0.18 63.32 ± 0.04

Yahoo! Answers 69.02 ± 0.07 69.79 ± 0.11 70.09 ± 0.07 70.08 ± 0.09 70.10 ± 0.09 70.35 ± 0.05

Amazon Review Full 60.25 ± 0.11 60.54 ± 0.10 60.59 ± 0.07 60.49 ± 0.03 60.63 ± 0.04 61.03 ± 0.05

Transformer
IMDB Review 82.30 ± 0.10 82.45 ± 0.05 83.10 ± 0.07 82.66 ± 0.08 82.74 ± 0.12 83.81 ± 0.10

Table 3: Top-1 accuracy (%) on the text datasets.

Condition w/o RR w/o SDL w/o SGI
Accuracy (%) 75.75 77.48 77.23

Table 4: Results of the ablation study.

Ramp-up Range (%) 0 20 40 80
Accuracy (%) 77.79 78.01 77.22 77.10

Table 5: Impact of the Ramp-up coefficient.

Ablation Study and Analysis
In this section, we further investigate the effectiveness and
robustness of our method, including random routing, sub-
set data learning, and sub-group imitation. We also provide
detailed analyses to demonstrate how and why our method
works. We conduct ablation comparisons with the branch-
based approaches, as they have the advantages of better per-
formance and lower computational cost. The score reported
below is all obtained by running each model 3 times and
providing “mean”. Unless otherwise stated, the following re-
sults are based on CIFAR-100 with ResNet-18.

Ablation Study In Table 4, we report the Top-1 accuracy
(%) of models “w/o random routing (RR)” (i.e., built by in-
dividual networks), “w/o sub-set data learning (SDL)” (i.e.,
using the same entire training data), and “w/o sub-group im-
itation (SGI)” (i.e., imitating all other students). According
to the results, we can see that 1) without the parameter shar-
ing generated by random routing, students, only based on the
assigned sub-set data and the logits-based imitation, do not
obtain sufficient information for the feature learning, which
demonstrates that random routing indeed brings a highly ef-
fective knowledge transfer. 2) without sub-set data learning
or sub-group imitation, the student homogenization will ag-
gravate and the model may converge to a worse sub-optimal.
These phenomena verify that the reason that CGL works
well is the effective balance of conducting knowledge trans-
fer and maintaining the model diversity.

To analyze the impact of the ramp-up coefficient, we set
the ramp-up interval to 0%, 20%, 40% and 80% of the train-
ing epochs. The results of Table 5 indicate the ramp-up co-
efficient can alleviate the homogenization problem but too
long ramp-up ranges weaken knowledge transfer.

Impact of Student Population It is well known that the
increasing number of students benefits the model perfor-
mance (Lan, Zhu, and Gong 2018; Chen et al. 2020). Fig-

Dataset (Architecture) Condition Diversity

CIFAR-100 (ResNet-18)
(w/.) 0.535
(w/o.) 0.178

Yelp Review Full (VDCNN-9)
(w/.) 0.185
(w/o.) 0.131

IMDB Review (Transformer)
(w/.) 0.056
(w/o.) 0.039

Table 6: Effect of sub-set data learning.

ure 3(a) shows the Top-1 accuracy (%) of all comparative
methods with respect to the number of students. Our method
consistently achieves the best accuracy in varying numbers
of students, which demonstrates its superiority. We also ob-
serve that the curves of all methods rise first and then de-
cline, which implies that excessive students also damage the
model performance. We conjecture that excessive students
may not be sufficiently trained due to weakening knowledge
discovery of each student (for our methods) or exacerbat-
ing the similarity and redundancy of group-level knowledge
(for comparative methods). In such a scenario, our method is
undergoing under-fitting, whereas comparative methods are
usually struggling with over-fitting (too many students ho-
mogenizing). Such an under-fitting problem can be simply
adjusted by allowing sub-set data overlapping or increasing
imitation probability. The performance of CI-ILR, ONE de-
clines much earlier than OKDDip and CGL, which indicates
that the latter effectively handles more diverse students.

However, more students significantly increase the number
of model parameters and the computational cost of train-
ing (i.e., computational efficiency), which limits the de-
ployment of collaborative learning. Our method can allevi-
ate these problems by random routing and sub-group imita-
tion. In terms of model parameters, as shown in Figure 3(b),
our method remains a constant number of model parame-
ters as more students join in, whereas the parameter number
in comparison models explodes. Moreover, our method also
maintains constant computational cost (the number of for-
ward and backward propagation) by variable imitation prob-
ability. As for the training time, similar to codistillation (a
variant of DML) (Anil et al. 2018), our method can be eas-
ily implemented in parallel. Therefore it still consumes the
constant training time as the number of students increases.
Please refer to the appendix for a more detailed discussion.

Model Diversity Analysis We improve the model diver-
sity in collaborative learning from two aspects: sub-set data
learning diversifies the training sets of students to learn di-
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Figure 3: Impact of student population. The parameter num-
ber of comparative methods explodes as more students are
involved, while our method maintains a constant computa-
tional cost.

Figure 4: Effect of imitating probability.

verse feature sets; sub-group imitation randomly selects var-
ious sub-groups of imitated students from which students
aggregate and distill different complementary knowledge.
Table 6 reports the diversity of students w. and w/o. sub-
set data learning based on a comprehensive set of architec-
tures and datasets. The diversity is calculated by averaging
L2 distance between the probability distribution of each pair
of students. To isolate the effect of sub-set data learning, we
revoke sub-group imitation in this analysis. The results in
Table 6 verify sub-set data learning indeed boosts the diver-
sity of students on various architectures and datasets.

We further vary the imitating probability p to analyze its
effect on diversity and accuracy. The imitating probability
p is selected from [0.125, 1.0] and applied to ResNet-18 on
CIFAR-100. From Figure 4, we discover that the diversity
shows a downward trend, and the accuracy first ascends and
then slowly declines. This phenomenon demonstrates that
when each student aggregates knowledge from too many
students, the model performance declines as they may ho-
mogenize to each other; however, when it mimics very few
students, it is unable to distill a sufficient amount of knowl-
edge. Our method achieves a better balance between diver-
sity and performance with limited computational resources
by choosing a proper imitating probability.

CIFAR-10
Architecure 1 2 3 4 5 6 7 8
Score 94.55 94.50 94.46 94.48 94.45 94.53 94.63 94.45
Rank 2 4 6 5 7 3 1 7

CIFAR-100
Architecure 1 (1) 2 3 4 5 (6) 6 7 8 (7)
Score 77.94 77.82 77.93 77.87 77.97 77.81 77.88 78.15
Rank 3 7 4 6 2 8 5 1

Table 7: Transfer of parameter sharing structure. Architec-
ture: ResNet-18. “(#)” is corresponding to the index of ar-
chitectures on CIFAR-10.

Impact of Parameter Sharing Besides considering the
logits of the output layer, parameter sharing is also an im-
plicit and efficient way to boost knowledge transfer by
aligning the intermediate features between selected stu-
dents (Song and Chai 2018; Lan, Zhu, and Gong 2018).
Network-based collaborative learning does not support pa-
rameter sharing, while branch-based one shares parameters
only at the bottom layers. Benefited from random routing,
our method naturally allows flexible knowledge communi-
cation based on fine-grained and random levels of parameter
sharing structure. We first investigate the effect of parame-
ter sharing ratio on model performance. We fix the number
of students and the imitating probability, and then vary the
parameter sharing ratio by adjusting the number of modules
per layer or manually setting shared layers. From Figure 5,
we discover that for collaborative learning, sharing too many
layers will cause students to homogenize, and sharing too
few layers weaken knowledge transfer, which implies pre-
vious parameter sharing structure is not flexible enough to
maintain a trade-off between diversity and generalization of
students due to dense and consecutive multi-layer parameter
sharing.

Similar to neural architecture search (Zoph and Le 2017),
our collaborative framework is capable of finding an effi-
cient and generalizable parameter sharing structure. Con-
cretely, one can collect a set of parameter sharing structures
by random routing, and then select the best structure that
can be applied directly to a new dataset. We validate this
assumption by randomly generating eight parameter shar-
ing structures on CIFAR-10 based on ResNet-18, and then
choosing the best three structure with another five randomly
formed structure to train and test on CIFAR-100. The results
in Table 7 show that the top 3 structures in CIFAR-10 also
obtain the top 3 performances in CIFAR-100, which veri-
fies the generalization of naturally formed parameter sharing
structure. Compared to manually designed parameter shar-
ing structure, our method is obviously more efficient.

Model Generalization Analysis We demonstrate why our
collaborative group learning obtains better generalization
than comparison methods. Recently, a collection of work
(Chaudhari et al. 2017; Keskar et al. 2017) has proved that
comparing a wider local minimum with a narrow one, the
former is more beneficial for the model resisting small per-
turbations that dramatically damage the model accuracy. In-
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Figure 5: Impact of parameter sharing ratio. We can sparse
parameter sharing by increasing the number of modules per
layer or densify parameter sharing by manually setting more
shared layers in which all students choose the same module.
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Figure 6: Model generalization analysis.

spired by this insight, we manually inject perturbations into
the models to measure the width of local minima reached
by all methods. Specially, we first generate different mag-
nitudes of perturbations drawn from independent Gaussian
distribution with variable standard deviation σ, and then add
them to the model parameters. In Figure 6, we plot the accu-
racy drop under different perturbation magnitudes. We can
see that the accuracy of comparison methods declines much
faster when the perturbation magnitude becomes larger. In
contrast, our method is more stable, reflecting that collabo-
rative group learning imposes effective regularization on the
feature learning and guides the model towards a wider local
minimum.

Related Work
Knowledge Distillation To deploy high-performance neu-
ral networks on mobile devices and embedded sys-
tems, Knowledge Distillation (KD) (Bucila, Caruana, and
Niculescu-Mizil 2006; Ba and Caruana 2014; Hinton,
Vinyals, and Dean 2015; Romero et al. 2015) has been pro-
posed to transfer fine-grained and hierarchical knowledge
from a pre-trained large model (teacher) to a small model
(student) by aligning the predictions or intermediate features
of teacher and student. The student not only obtains simi-
lar performance as the teacher but also is easily deployed

to the limited computation environment. Recently, several
works (Zagoruyko and Komodakis 2017; Yim et al. 2017;
Srinivas and Fleuret 2018; Ahn et al. 2019) try to design
new forms of teacher-learned knowledge or feature match-
ing loss to facilitate knowledge transfer. KD suffers from
pre-training a large teacher, which consumes more compu-
tational resources and training time; whereas we resort to
collaborative learning and distill knowledge from a random
sub-group of peer students.

Collaborative Learning Collaborative learning (Zhang
et al. 2018; Song and Chai 2018; Lan, Zhu, and Gong 2018;
Chen et al. 2020) is more lightweight than KD in terms of
learning stages. It facilitates each student to find a robust lo-
cal minimum to achieve better generalization performance
(Chaudhari et al. 2017; Keskar et al. 2017) in comparison to
KD. Currently, there are two mainstream implementations of
student networks. One is network-based (Zhang et al. 2018),
where students are independent networks, and the parame-
ter capacity increases linearly with the number of students;
the other is branch-based (CL-ILR (Song and Chai 2018)
and ONE (Lan, Zhu, and Gong 2018)), where the bottom
layers of students are shared. In our framework, we enable
more flexible representation sharing with random routing
mechanism (Fernando et al. 2017; Rajasegaran et al. 2019),
where layers at any level can be shared by different involved
students. More importantly, students can be constructed as
many as possible under restricted computational resources,
whereas previous collaborative learning approach is more
resource-intensive.

In terms of knowledge distillation in collaborative learn-
ing, OKDDip (Chen et al. 2020) aggregates knowledge of
all the students through weighted average. In contrast, we
alleviate the student homogenization and enhance the model
generalization ability by distilling knowledge from a random
and dynamic sub-group of students, and each student learns
different parts of the training data.

Conclusion
In this work, we present a novel knowledge distillation-
based learning paradigm, collaborative group learning,
which obtains better generalization performance and con-
sumes lower computational cost than prior collaborative ap-
proaches. Specifically, adopting random routing to build stu-
dents not only is more parameter-efficient but also enables
flexible knowledge communication between students. Be-
sides, building more students promises more diverse knowl-
edge at the beginning of training. To alleviate the student ho-
mogenization problem during training, sub-set data learning
is introduced to diversify the feature sets of students, and
sub-group imitation further boosts the diversity of group-
level knowledge as well as enhances computational effi-
ciency. Overall, our framework generates dynamic and di-
verse multi-view representations for the same input that ef-
fectively regularize the feature learning. Extensive experi-
ments validate the effectiveness and robustness of our frame-
work, and detailed analysis further proves that maintaining
a balance between diversifying feature sets and internalizing
group knowledge is essential for collaborative learning.
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