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Abstract
Given limited handwriting scripts, humans can easily visual-
ize (or imagine) what the handwritten words/texts would look
like with other arbitrary textual contents. Moreover, a person
also is able to imitate the handwriting styles of provided ref-
erence samples. Humans can do such hallucinations, perhaps
because they can learn to disentangle the calligraphic styles
and textual contents from given handwriting scripts. How-
ever, computers cannot study to do such flexible handwriting
imitation with existing techniques. In this paper, we propose
a novel handwriting imitation generative adversarial network
(HiGAN) to mimic such hallucinations. Specifically, HiGAN
can generate variable-length handwritten words/texts condi-
tioned on arbitrary textual contents, which are unconstrained
to any predefined corpus or out-of-vocabulary words. More-
over, HiGAN can flexibly control the handwriting styles of
synthetic images by disentangling calligraphic styles from the
reference samples. Experiments on handwriting benchmarks
validate our superiority in terms of visual quality and scalabil-
ity when comparing to the state-of-the-art methods for hand-
written word/text synthesis. The code and pre-trained models
can be found at https://github.com/ganji15/HiGAN.

Introduction
Handwriting imitation aims at (1) synthesizing diverse, re-
alistic handwriting images conditioned on arbitrary textual
contents and (2) imitating the calligraphic styles (e.g., the
text skew, slant, roundness, ligature, and stroke-width) of
reference handwriting samples. As shown in Fig. 1, humans
can quickly learn such handwriting imitation with the abil-
ity of hallucination. Explicitly speaking, after learning from
limited handwriting documentations, a person can visualize
(or imagine) what the handwritten words/texts would look
like conditioned on other arbitrary textual contents. Further-
more, providing a reference handwriting sample, a person
can also hallucinate new handwriting images of similar cal-
ligraphic styles but with different textual contents. Humans
can do such hallucinations, perhaps because they can learn to
disentangle the calligraphic styles and textual contents from
provided handwriting samples. If we can teach computers to
mimic this process, they possibly are capable of imitating
realistic handwriting as well as humans.
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Figure 1: Humans can easily learn the handwriting imitation
with the ability of hallucination.

With the invention of variational auto-encoders (VAEs)
(Kingma and Welling 2013) and generative adversarial net-
works (GANs) (Ian Goodfellow 2014), it has witnessed sig-
nificant progress in the field of image synthesis in recent
years. Combining conceptions of VAEs and GANs, com-
puters nowadays can not only synthesize realistic images
but also perform image-to-image translation between differ-
ent visual domains (Zhu et al. 2017; Andrew Brock and Si-
monyan 2019; Yunjey Choi and Choo 2018; Yunjey Choi
2020; Hsin-Ying Lee and Yang 2018). However, a signifi-
cant observation is that VAEs/GANs for handwriting syn-
thesis mainly focus on generating fixed-sized images of iso-
lated digits/characters. On the contrary, very few works have
explored to synthesize handwritten words/texts with GANs.
Particularly, we demonstrate that handwritten word/text syn-
thesis is much more challenging than isolated character gen-
eration, since it faces the following three difficulties:

• Variable-Sized Images. The model must be capable of
synthesizing variable-sized images, since handwriting im-
ages of variable-length texts should have different sizes
(e.g., text images typically are longer than word images).

• Arbitrary Words/Texts. Given the language alphabet,
the model should generate readable handwriting images
conditioned on arbitrary texts that unconstrained to any
predefined corpus or out-of-vocabulary (OOV) words.
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Features ScrabbleGAN GANwriting HiGAN
Fogel (2020) Kang (2020) Ours

Random Styles
√

×
√

Desired Styles ×
√ √

Short Words
√ √ √

Long Texts
√

×
√

Table 1: Feature-by-feature comparison of GANs for hand-
written word/text generation. “Random Styles” denotes
whether models can generate images by randomly sampling
styles from a prior distribution; “Desired Styles” indicates
whether models can imitate handwriting styles of reference
images; and “Short Words” & “Long Texts“ denotes whether
models can synthesize short words or long texts respectively.

• Style Imitation. The model should learn to disentangle
calligraphic styles from variable-sized reference images,
and then imitate the extracted styles for synthetic images.

Overall, those characteristics make handwritten text genera-
tion different from conventional image synthesis.

Recently, several efforts have been made to synthe-
size handwritten word/text images with GANs; neverthe-
less, none of them has successfully overcome the afore-
mentioned difficulties all at once. Specifically, the first at-
tempt (Eloi Alonso and Messina 2019) is to generate fixed-
sized handwritten word images conditioned on the learned
embeddings of entire words. Hence, their method can-
not generate either variable-length images or high-quality
handwritten OOV words. One improved work is Scrabble-
GAN (Sharon Fogel and Litman 2020), which can synthe-
size long handwritten texts by concatenating all letter-tokens
together. However, both methods cannot learn to imitate the
calligraphic styles of reference samples. Another improved
work is GANwriting (Lei Kang 2020), which can gener-
ate handwritten words conditioned on calligraphic style fea-
tures. Still, GANwriting cannot generate long handwritten
words/texts (with more than ten letters) due to its flaws in ar-
chitecture design. What is more, GANwriting requires mul-
tiple reference images to extract reliable styles for high-
quality synthesis, thus exhibiting low visual quality in in-
ference if only one reference sample is provided at test time.
Summarizing, the state-of-the-art GANs have not entirely
solved the handwritten word/text synthesis yet.

In this paper, we propose a novel handwriting imita-
tion GAN (HiGAN). The proposed method can generate
variable-length handwritten words/texts conditioned on ar-
bitrary textual contents, which are unconstrained to any pre-
defined corpus or out-of-vocabulary words. Moreover, Hi-
GAN can flexibly control the handwriting styles of synthetic
images, which is achieved by disentangling the calligraphic
styles from reference samples. Specifically, Table 1 shows
the feature-by-feature comparison between HiGAN and the
competing GANs. Our contribution is twofold:
• We propose a novel HiGAN for handwriting imitation,

which can (1) generate variable-sized handwriting images
condition on arbitrary texts and (2) imitate calligraphic
styles that disentangled from the reference samples.

• Experiments on handwriting benchmarks validate our su-
periority in terms of visual quality and scalability com-
pared with the state-of-the-art GANs for handwritten
word/text synthesis.

Related Work
Teaching machines to synthesize realistic handwriting is an
interesting topic. Although it has witnessed many signif-
icant achievements in recent years, handwriting imitation
remains challenging for artificial intelligence. Traditional
handwriting synthesis methods (Tom S. F. Haines and Bros-
tow 2016; Lin and Wan 2007; Achint Oommen Thomas and
Govindaraju 2009) typically involve expensive manual inter-
ventions, which require the strong domain-specific knowl-
edge aimed at clipping isolated characters, rendering back-
grounds and ligatures among strokes.

With the great success of deep learning in machine learn-
ing, artificial neural networks have gradually been intro-
duced to handwriting synthesis. The first relevant work is
that Graves (2013) proposed to synthesize online hand-
writing trajectories with recurrent neural networks (RNNs).
However, such recurrent-based model not only suffers from
the difficulty of learning long-range dependencies, but it also
is time-consuming due to its computation mechanism. More
lethally, it may be challenging to collect massive trajecto-
ries in practical scenarios, since the unique equipment (e.g.,
digital pens) is required to record the sequential points. In
contrast, it is much easier to obtain a mass of handwriting
images in our real lives and the internet. Thus, our primary
objective in this paper is to synthesize handwriting images.

With the advances of generative models, handwritten
character synthesis has been fully explored in recent years.
Specifically, both GANs (Ian Goodfellow 2014) and VAEs
(Kingma and Welling 2013) were proposed to synthesize re-
alistic handwritten digits. Moreover, Mirza et al. (2014) fur-
ther proposed conditional GANs (cGANs) for guiding ma-
chines to generate digits conditioned on class labels. Fur-
thermore, Radford et al. (2013) proposed deep convolutional
GANs (DCGANs) to synthesize more realistic images by re-
designing the structures of GANs with deep convolutional
networks. Despite digits, Chang et al. (2018) also proposed
to utilize CycleGANs (Jun-Yan Zhu 2017) for synthesizing
isolated Chinese characters with thousands of categories.

Heretofore, most existing GANs focus on fixed-sized
isolated character synthesis, yet only a few efforts have
been made for handwritten word/text generation. Specifi-
cally, Alonso et al. (2019) first proposed to generate fixed-
sized handwritten word images using GANs while produc-
ing poor visual quality. Furthermore, Fogel et al. (2020) pro-
posed ScrabbleGAN to synthesize variable-length handwrit-
ten texts with randomly sampled styles. However, a signifi-
cant shortcoming is that they cannot imitate the calligraphic
styles of reference images. More recently, Kang et al. (2020)
proposed GANwriting, which can generate short handwrit-
ten words conditioned on provided style images. However,
their method is limited to synthesizing short handwritten
words (with less than ten letters), and thus it cannot gen-
erate long handwritten texts. Moreover, it exhibits low vi-
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Figure 2: The overview of HiGAN. During training, the model learns to (a) disentangle calligraphic styles from real images and
(b) generate fake images that are indistinguishable from real ones. At test time, the model can either (c) imitate the calligraphic
styles that disentangled from reference samples or (d) just randomly sample styles from a prior distribution to generate different
handwriting images. In addition, each module shares its parameters at different training stages of (a) and (b).

sual quality when providing only one reference image at test
time. Summarizing, the state-of-arts GANs are still unable to
synthesize realistic variable-sized handwriting images with
controllable handwriting styles. In contrast, our HiGAN is
capable of generating diverse handwriting words/texts con-
ditioned on arbitrary-length texts and disentangled styles.

Handwriting Imitation GAN
Given a set of handwriting images X and their text labels Y ,
our goal is to train a generatorG that can synthesize diverse,
realistic handwriting images conditioned on the arbitrary-
length text y = [y1, · · · , yL] (with a length of L) and any
style feature s. Notably, the style s can be either (1) sampled
from a prior distribution N (0, 1) or (2) disentangled from a
reference image x ∈ X with a pre-trained style encoder E
(i.e., s = E(x)). Specifically, Fig. 2 illustrates the overview
of HiGAN. Next, we will describe the framework of HiGAN
and its training objectives in the following subsections.

Framework of HiGAN
In this subsection, we will detail the framework of the pro-
posed HiGAN, which consists of the following components:

Generator. Since we require the model to generate hand-
writing images conditioned on arbitrary-length text y, the
generator G must be capable of producing variable-length
images (rather than that with fixed sizes). For handwriting,
one strong assumption is that humans typically finish a text

with writing letters sequentially and individually, while the
corresponding ligatures mostly depend on the adjacent char-
acters. Hence, the generator G is designed to mimic this
handwriting process with the following strategies:

1. Text-Map Generation. Let F = {fc|c ∈ A} be a set of
character filter maps, whereA is the alphabet and fc is the
filter map of character c. Furthermore, each filter map fc
is modulated with a consistent but randomized noise σ to
introduce subtle distortions. As a result, a given text y =
[y1, · · · , yL] can be embedded into multiple filter maps as
F(y, σ) = [fy1⊗σ, · · · , fyL

⊗σ]. Finally, those filter maps
are concatenated horizontally into a wide one, regarded as
a style-invariant text-mapM.

2. Style Rendering. A fully convolutional network is further
utilized to upsample the text-mapM and simultaneously
render calligraphic styles. Specifically, conditional batch
normalization (CBN) (Harm de Vries and Courville 2017)
is employed to inject the style feature s into G, explic-
itly affecting the handwriting styles of synthetic images
(such as the text slant, skew, stroke width, and charac-
ter shape). Since CBN is applied globally over the whole
text-map, all letters are guaranteed to keep the consistent
styles. Moreover, due to the merits of convolutions, the
generator can automatically learn overlaps between adja-
cent letters and draw natural ligatures if necessary.

This eventually leads to the generator G being able to syn-
thesize variable-length handwriting images conditioned on
the arbitrary text y with a controllable style s.
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Discriminator. The discriminator D mainly learns a bi-
nary classification determining whether an image x is a real
image from the training set or a fake image generated by G.

Style Encoder. The style encoder E can disentangle the
handwriting style s from a reference image x but without
explicitly accessing the corresponding writer identity.

Writer Identifier. The writer identifier I is utilized to dis-
tinguish which writer a handwriting image x belongs to.
Notably, the identifier I can only classify the handwriting
images of seen writers from the training set, while it can-
not identify the handwriting of unseen writers at test time.
Therefore, the identifier I is only employed at training time,
which aims at guiding the encoder E to cluster embeddings
for the images of similar styles but diversify embeddings for
the images of distinct styles (e.g., the samples from different
writers). Hence, the identifier I is discarded at test time.

Recognizer. Given a handwriting sample x, the recognizer
R is supposed to predict its text labels y correctly. No-
tably, the recognizer R is first trained with the annotated
data {X ,Y}, and then is utilized to guide the generator G
to synthesize readable handwriting with any desired textual
content y. Since the training corpus typically has limited se-
mantic knowledge, the recognizer R cannot generalize to an
open language domain. As a result, it may be difficult for R
to correctly recognize OOV words, while which is not de-
sired for handwriting synthesis. One feasible solution is to
remove the recurrent neural network, thus leaving R with
a fully convolutional structure. This eventually prevents R
from learning an implicit language model constrained on the
training corpus, which may benefit OOV word generation.

Training Objectives
To train HiGAN, it requires a set of handwriting images X ,
their text labels Y and the corresponding writer identities
W . Moreover, a large open corpus C is employed to yield
arbitrary texts for generating fake images at training time,
where Y ⊂ C. As shown in Fig. 2 (a) & (b), we train our
framework with the following objectives:

Adversarial Loss. Given an arbitrary text ỹ ∈ C and a
style feature s that sampled from a prior normal distribution
N (0, 1), the generator G learns to synthesize a fake image
G(ỹ, s) that is indistinguishable (by the discriminator D)
from the real image x ∈ X via the adversarial loss, i.e.,

Ladv1
= Ex[logD(x)] + Eỹ,s[log(1−D(G(ỹ, s)))]. (1)

Furthermore, given the real image x as a reference, the gen-
erator should also synthesize a realistic image conditioned
on the disentangled style E(x) as

Ladv2
= Ex[logD(x)] + Eỹ,x[log(1−D(G(ỹ, E(x))))].

(2)
Therefore, the overall adversarial loss during training is the
sum of the two (i.e., Ladv1

and Ladv2
) as

Ladv = Ladv1
+ Ladv2

. (3)

This adversarial loss can guarantee the generator G to syn-
thesize realistic handwriting images.

Text Recognition Loss. Despite visual verisimilitude, the
generator G should also constrain the synthetic images to
preserve the desired textual contents y. To this end, the rec-
ognizer R first is optimized by minimizing the connection-
ist temporal classification (CTC) (Alex Graves and Gomez
2006) loss for each ground-truth pair {x ∈ X ,y ∈ Y} from
the training set, i.e.,

LD
ctc = Ex,y[−y logR(x)], (4)

when maximizing the adversarial loss. This loss ensures that
the recognizer R can correctly predict text labels of the
given handwriting image x. Therefore, the trainedR can fur-
ther guide G to synthesize the readable handwriting image
G(ỹ, s) that retains the desired textual contents ỹ ∈ C as

LG
ctc = Eỹ,s[−ỹ logR(G(ỹ, s))], (5)

where ỹ is sampled from the open corpus C, and the param-
eters of R keep fixed when minimizing the adversarial loss.

Style Disentangling. The primary objective of HiGAN is
learning to exactly disentangle calligraphic styles from the
reference handwriting images. To this end, we first employ
the latent style reconstruction loss to HiGAN as

Lsty = Eỹ,s[||s− E(G(ỹ, s))||1], (6)
i.e., Lsty enforces the model to reconstruct the style s of
any synthetic image G(ỹ, s) with the help of the encoder
E, thus guaranteeing that the style s can explicitly affect
handwriting styles of synthetic images.

Furthermore, we also optimize the writer identifier I by
minimizing the cross-entropy loss for each ground-truth pair
{x,w} of the training set (where w ∈ W is the correspond-
ing writer identity of x), i.e.,

LD
id = Ex,w[−w log I(x)], (7)

when maximizing the adversarial loss. This ensures that I
can distinguish which writer the image x belongs to. To fur-
ther learn the disentangled style feature s̃ = E(x) from
a reference image x, we enforce that the synthetic image
G(ỹ, E(x)) to have a remarkably similar style compared
with the reference image x. This is achieved by minimizing

LG
id = Ex,w,ỹ[−w log I(G(ỹ, E(x)))], (8)

where I keeps fixing its parameters when minimizing the ad-
versarial loss. This LG

id essentially constrains the encoder E
to produce close style embeddings for the images of similar
styles, while diversifying the style embeddings for that of
distinct styles (e.g., the handwriting images from different
writers). Notably, the encoder E can disentangle the style
form any reference image x without the need of accessing
the corresponding writer identity w. Therefore, such an en-
coder E can potentially extract calligraphic styles from the
handwriting images of unseen writers at test time.

Lastly, we further explicitly regularize the encoded latent
space to match the prior random distribution as

Lkl = Ex[DKL(E(x)||N (0, 1))], (9)
where DKL denotes the KL-divergence (Zhu et al. 2017).
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Full Objective. Our full objective functions can be sum-
marized as follows. When maximizing the adversarial loss,
the discriminatorD, recognizerR, and writer identifier I are
optimized respectively as

LD = −Ladv, LR = LD
ctc, LI = LD

id. (10)

When minimizing the adversarial loss, the generator G and
style encoder E are jointly optimized as

LG,E = Ladv + λctcLG
ctc + λidLG

id + λstyLsty + λklLkl,
(11)

where λ controls the importance of different losses. Lastly,
all modules are trained from scratch in an end-to-end way.

Experiments
Implementation Details. Inspired by Fogel (2020), all
hyper-parameters λ are dynamically adjusted via the rule of
gradient balance during training. The model is optimized us-
ing Adam (Diederik and Ba 2015) with a learning rate of
0.0001 and (β1, β2) = (0.5, 0.999). Experiments are con-
ducted on a Dell workstation with an Intel(R) Xeon(R) CPU
E5-2630 v4@2.20GHz, 32 GB RAM, and NVIDIA Quadro
P5000 GPU 16GB. The batch size is set to 16 for all experi-
ments, and all models are trained over 100K iterations.

Baselines. We use GANwriting (Lei Kang 2020) and
ScrabbleGAN (Sharon Fogel and Litman 2020) as our
baselines, all of which can learn to generate handwritten
words/texts. Briefly, GANwriting can synthesize short hand-
written words conditioned on referenced styles, and Scrab-
bleGAN can synthesize long sentences with random styles.
Differently, our HiGAN can synthesize handwriting im-
ages conditioned on arbitrary-length texts and disentangled
styles. More details of the competing GANs can refer to Ta-
ble 1. Lastly, all baselines are trained using the official im-
plementations provided by the authors.

Datasets. To evaluate our HiGAN, we use the following
two handwriting benchmarks:
• IAM (Marti and Bunke 2002) dataset consists of 9862

text lines with around 63K English words, written by 500
different writers. The dataset provides the official splits
with mutually exclusive authors. In our settings, only the
training & validate sets are used for training GANs.

• CVL (Florian Kleber and Sablatnig. 2013) dataset con-
sists of seven handwritten documents (one German and
six English texts) with about 83K words, written by 310
writers. The dataset is officially divided into the training
set (with 27 writers) and test set (with 283 writers).

In our experiments, IAM is mainly used for training Hi-
GAN, while CVL is only for handwriting recognition tasks.

Evaluation Metrics. For image synthesis, we use Fréchet
Inception Distance (FID) (Martin Heusel and Hochreiter
2017) to evaluate the quality and diversity of synthetic im-
ages, where FID measures the distance between the gen-
erated distribution and real one through features extracted

"handwriting" "imitation" "generative" "adversarial" "network"

Figure 3: Latent-guided synthesis. Random styles of syn-
thetic images are sampled from a prior normal distribution.

"those"
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"have"

"night"

"about"

Text St
yl
e

Figure 4: Reference-guided synthesis. Different styles of
synthetic images are disentangled from reference samples.

via Inception-v3 network (Christian Szegedy and Wojna
2016). For handwriting recognition, we use the character
error rate (CER) and word error rate (WER) (Graves et al.
2008) to evaluate the handwriting recognition performance.

Experimental Results
Latent-Guided Synthesis. Our HiGAN model is capable
of generating arbitrary-length handwritten words with di-
verse calligraphic styles. For latent-guided synthesis, differ-
ent styles of synthetic images are randomly sampled from
a prior normal distribution (refer to Fig. 2(d)). Specifically,
Fig. 3 shows some selected synthetic images of different
words with various styles, where each row presents hand-
writing with the same style and each column with the same
text. It is worth noting that HiGAN can render cursive liga-
tures between adjacent characters if necessary.

Reference-Guided Synthesis. HiGAN can disentangle
calligraphic styles from reference images, and it further im-
itates generating images of similar styles with other textual
contents. Fig. 4 illustrates some selected synthetic samples
under reference-guided synthesis. It can be observed that Hi-
GAN successfully imitates calligraphic styles that similar to
the reference samples (e.g., the word slant & skew, stroke
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Figure 5: Long handwritten text generation. For the provided
textual information, we omit all space letters and join all
words together to form a long text string.
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Figure 6: Style interpolation between two different styles.

width, and character shape), while mostly matches the pro-
vided textual contents. This result demonstrates that the pro-
posed HiGAN is capable of imitating the calligraphic styles
that disentangled from reference handwriting images.

Long Text Synthesis. Although our model is only trained
with short words, HiGAN can still synthesize arbitrary-
length long texts (as shown in Fig. 5). This merit is credited
to the superior architecture design of generator. Specifically,
a long text is first transformed into multiple character filter-
maps and then concatenated into a variable-length text-map.
With the fully convolutional structure, the style-invariant
text-map then is upsampled into the target image condi-
tioned on the given style, under which the character over-
laps & cursive ligatures are automatically learned with con-
volutions. Notably, HiGAN even can synthesize long texts
of similar styles that disentangled from only short words.

Style Interpolation. To further investigate the latent style
space of HiGAN, we perform the linear interpolation be-
tween two random styles (as shown in Fig. 6). It can be
observed that the handwriting image continuously changes
its calligraphic style conditioned on the interpolation val-
ues, while strictly preserving its original textual contexts.
This result demonstrates that our model can generalize in
the style space rather than memorizing some trivial visual
information.

"happy" "aappy" "abppy" "abcpy" "abcdy" "abcde"

Figure 7: Handwritten text editing. From “happy” to
“abcde”, the word changes one letter each time, while
strictly preserving its original calligraphic style.

Style HiGAN(Ours) ScrabbleGAN GANWriting

Figure 8: Qualitative comparison of different GANs for syn-
thesizing short handwritten words. In addition, the words for
each style are: “three”, “ynamany”, and “aisitli”, where the
last two are not valid English words.

Text Editing. In contrast to style interpolation, we per-
form the text editing between two words (as shown in
Fig. 6), where the interpolation is done in text space. As ob-
served, when the word continuously changes its text letter-
by-letter into another word, it strictly preserves its original
calligraphic style. Moreover, our model not only renders nat-
ural ligatures among adjacent characters after replacing the
specific letter, but it also successfully generates OOV words
with high visual quality (e.g., “abcde” is not a valid English
word). This result demonstrates that HiGAN can generalize
in text space rather than memorizing training words/texts.

Compared with the State-of-Art GANs. To demonstrate
the superiority of HiGAN, we first make a qualitative com-
parison of the competing GANs for synthesizing short hand-
written words (in Fig. 8) and long texts (in Fig. 9), respec-
tively. As shown in Fig. 8 & 9, each GAN produces mul-
tiple outputs with various styles but fixed textual contents.
However, we notice that ScrabbleGAN cannot imitate the
calligraphic styles of reference samples, since it lacks an en-
coder to disentangle styles from handwriting images. More-
over, GANwriting suffers from low visual quality when the
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Style "most scientists like computers"Method

HiGAN 

(Ours)

Scrabble
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writing

Figure 9: Qualitative comparison of different GANs for syn-
thesizing long handwritten texts. For given texts, we omit all
spaces and then concatenate all words into a long text string.

Method
Score Size (MB)

FID Gen. Enc. Disc.
GANwriting 120.07 97.6 76.5 78.7Kang (2020)
ScrabbleGAN 23.78 81.8 × 138.7Fogel (2020)
HiGAN-L.(Ours) 19.80 38.6 20.5 35.2HiGAN-R.(Ours) 17.28

Table 2: Quantitative comparison of GANs in terms of vi-
sual quality and model size. In addition, “HiGAN-L.” and
“HiGAN-R.” denote the latent-guided and reference-guided
synthesises of HiGAN respectively. Lower values are better.

style feature is encoded from only one reference image (as
shown in Fig. 8). This is because GANwriting requires mul-
tiple reference images to extract a reliable style feature for
each synthetic sample during training. Thus, the visual qual-
ity of synthetic image will degrade if only one style image
is provided at test time. What is worse, GANwriting even
cannot generate long handwritten texts (i.e., it can only gen-
erate words with less than ten letters) as shown in Fig. 9. On
the contrary, HiGAN can not only generate diverse hand-
writing images of arbitrary-length texts but also imitate the
calligraphic styles of reference images.

Lastly, we make a quantitative comparison of different
GANs in Table 2. Note, FID scores of the competing GANs
are borrowed from the original papers, and their evaluation
strategies may be slightly different. We observe that HiGAN
outperforms the competing GANs in terms of visual quality
and model size. Overall, experiments demonstrate the supe-
riority of HiGAN for handwritten word/text synthesis.

Training Data CVL (%) CVLoov (%)
GAN IAM CVL WER CER WER CER
×

√
× 40.92 21.91 46.23 23.69√ √
× 40.73 20.87 45.36 22.10

× ×
√

32.69 14.71 41.72 20.25
×

√ √
29.41 13.13 37.63 17.16√ √ √
28.91 12.54 37.06 16.67

Table 3: Recognition results on CVL dataset. Notably, the
first three rows show the results of domain adaption, and the
last row shows that of semi-supervised training. In addition,
the highlighted row is the upper bound of the domain adap-
tion from IAM to CVL. It is also worth noting that HiGAN
is only trained on the IAM dataset. Lower values are better.

Improving Recognition with GAN. We further demon-
strate that HiGAN can improve the handwriting recogni-
tion performance of domain adaption in a semi-supervised
manner. To validate this, we compare the recognition per-
formance with or without HiGAN for training set augmen-
tation (as shown in Table 3). In our experimental settings:
(1) HiGAN is only trained on IAM and then utilized to
synthesize fake handwriting images from an open lexicon;
(2) for the CVL dataset, only English scripts are used for
training; (3) despite English words from CVL, we also in-
clude the German words (only which share the English al-
phabet) as out-of-vocabulary words at test time, thus re-
sulting in two CVL test sets (i.e., CVL and CVLoov); (4)
during training, HiGAN is used for training set augmenta-
tion, and CRNN (Baoguang Shi and Yao 2016) is for hand-
writing recognition. As shown in Table 3, we observe that
HiGAN can boost the recognition performance of domain
adaption from IAM to CVL, and this improvement is more
apparent for out-of-vocabulary words in CVLoov. For the
semi-supervised training, we can further slightly improve
the recognition accuracy on CVL by using HiGAN to syn-
thesize extra words from an open lexicon. Overall, exper-
imental results demonstrate that a strong generative model
can potentially benefit the handwriting recognition.

Conclusion
In this paper, we have proposed a novel HiGAN for hand-
writing imitation. Our model can generate diverse and re-
alistic handwriting images conditioned on arbitrary textual
contents, which are unconstrained to any predefined corpus
and OOV words. Moreover, HiGAN can disentangle styles
from reference samples and flexibly control the handwriting
styles of synthetic images. Furthermore, we also find that
HiGAN can potentially benefit handwriting recognition by
augmenting training set with extra synthetic data. Both qual-
itative and quantitative comparisons validate our superior-
ity over the competing GANs in terms of visual quality and
scalability. However, the human handwriting style is very ar-
bitrary and thus HiGAN indeed exists a limit to synthesize
meaningful handwriting images. In future work, we plan to
further improve the diversity and visual quality of HiGAN.
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