
On the Convergence of Communication-Efficient Local SGD for
Federated Learning

Hongchang Gao1, An Xu2, Heng Huang2,3

1 Department of Computer and Information Sciences, Temple University, PA, USA
2 Department of Electrical and Computer Engineering, University of Pittsburgh, PA, USA

3 JD Finance America Corporation, Mountain View, CA, USA
hongchang.gao@temple.edu, an.xu@pitt.edu, heng.huang@pitt.edu

Abstract

Federated Learning (FL) has attracted increasing attention
in recent years. A leading training algorithm in FL is local
SGD, which updates the model parameter on each worker
and averages model parameters across different workers only
once in a while. Although it has fewer communication rounds
than the classical parallel SGD, local SGD still has large
communication overhead in each communication round for
large machine learning models, such as deep neural networks.
To address this issue, we propose a new communication-
efficient distributed SGD method, which can significantly
reduce the communication cost by the error-compensated
double compression mechanism. Under the non-convex set-
ting, our theoretical results show that our approach has bet-
ter communication complexity than existing methods and en-
joys the same linear speedup regarding the number of work-
ers as the full-precision local SGD. Moreover, we propose
a communication-efficient distributed SGD with momentum,
which also has better communication complexity than exist-
ing methods and enjoys a linear speedup with respect to the
number of workers. At last, extensive experiments are con-
ducted to verify the performance of our proposed methods.

Introduction
In recent years, Federated Learning (FL) has attracted more
and more attention due to data distributed across user de-
vices that requires privacy and finite communication cost.
Specifically, in a FL system, there exist multiple workers and
a central server. Workers optimize the model with their lo-
cal data, and the central server coordinates the corporation
between different workers. In particular, FL aims at solving
the following distributed optimization problem:

min
x
f(x) =

1

K

K∑
k=1

f (k)(x) , (1)

where x ∈ Rd represents the model parameter, K is the
number of workers, and f (k)(x) = Eξ∼D(k)F (k)(x; ξ) is the
loss function on each worker with D(k) denoting the data
distribution on the k-th worker. In this paper, we focus on
the non-convex problem. In particular, f (k)(x) is assumed
as a smooth non-convex function.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To optimize Eq. (1), a straightforward method is the par-
allel SGD (P-SGD) method where each worker sends the
local stochastic gradient to the central server and gets the
averaged gradient from the central server at each iteration.
This mechanism will lead to large communication overhead
at each iteration, especially when the model is large, such as
deep neural networks. To reduce the communication cost,
the commonly used optimization method in a FL system
is local SGD (Jiang and Agrawal 2018; Yu, Jin, and Yang
2019; Yu, Yang, and Zhu 2019; Wang and Joshi 2018; Had-
dadpour et al. 2019). Specifically, each worker updates the
model parameter for p (where p > 1) iterations locally by
using SGD and then sends the local parameter to the central
server and gets the averaged model parameter from the cen-
tral server. In this way, the number of communication rounds
is reduced from O(T) to O(T/p) (T is the number of iter-
ations). In addition, (Yu, Yang, and Zhu 2019) shows that,
same as P-SGD, local SGD enjoys the same convergence
rate O(1/

√
KT) with a linear speedup regarding the num-

ber of workers for non-convex problems. Therefore, local
SGD is more efficient than the traditional P-SGD method,
and it has been applied to different applications.

Even though local SGD can decrease the communication
overhead by reducing the number of communication rounds,
yet it still has large communication cost in each commu-
nication round for large models. For instance, the ResNet-
152 (He et al. 2016) neural network for ImageNet is with
the size of about 240MB, which is a large burden to the
communication, especially for the FL system with limited
communication capacity. To allievate the communication is-
sue caused by the large model, a common strategy is to
compress the gradient in each communication round, such
as sparsifying gradients (Strom 2015; Lin et al. 2017; Aji
and Heafield 2017) and quantizing gradients (Alistarh et al.
2017; Wen et al. 2017; Bernstein et al. 2018). In particu-
lar, gradient sparsification only sends the significant gradi-
ent elements, while gradient quantization is to quantize the
full-precision gradient to the low-bit one. Both of them can
significantly reduce the communication cost in each round.
In addition, to reduce the large variance caused by gradi-
ent compression, the error compensation technique is usu-
ally used (Seide et al. 2014; Stich, Cordonnier, and Jaggi
2018; Stich and Karimireddy 2019; Tang et al. 2019; Zheng,
Huang, and Kwok 2019). Previous studies (Tang et al. 2019;

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7510

Methods Non-momentum Momentum UG DC EC BC

p = 1
DoubleSqueeze (Tang et al. 2019) O(T) - 7 3 3 3
dist-EF-SGDM (Zheng, Huang, and Kwok 2019) - O(T) 7 3 3 3

p > 1

Full-precision Local SGD (Yu, Jin, and Yang 2019) O(K3/2T 1/2) O(K3/2T 1/2) 3 - - -
FedPAQ (Reisizadeh et al. 2020) O(K3/2T 1/2) - 3 7 7 7

Qsparse-local-SGD (Basu et al. 2019) O(K3/4T 3/4) - 7 7 3 3

Ours O(K3/2T 1/2) O(K3/2T 1/2) 3 3 3 3

Table 1: The number of communication rounds of different methods for non-convex problems. UG denotes unbounded gradient.
DC represents double compression. EC indicates error compensation. BC stands for biased compression. p is the communica-
tion period. T is the number of iterations. K is the number of workers.

Zheng, Huang, and Kwok 2019; Stich, Cordonnier, and
Jaggi 2018) show that P-SGD with error-compensated gra-
dient compression has the same convergence rate as the full-
precision one. Inspired by that, one would like to know: Is it
possible to apply error-compensated gradient compression
to local SGD without jeopardizing the convergence rate?
The recent study (Basu et al. 2019) tried to answer this ques-
tion and proposed Qsparse-local-SGD to compress the gra-
dient of local SGD. However, its result is suboptimal. Firstly,
Qsparse-local-SGD only compresses the gradient sent from
workers to the central server and keeps the full-precision
gradient sent back to the worker. As a result, its communi-
cation overhead is still large. Secondly, the communication
complexity given by Qsparse-local-SGD is suboptimal. It re-
quires O(K3/4T 3/4) communication rounds, while the full-
precision local SGD only needs O(K3/2T 1/2) communica-
tion rounds. Thirdly, Qsparse-local-SGD has a pathological
assumption: The gradient norm is bounded, which cannot be
satisfied in many cases (Khaled, Mishchenko, and Richtárik
2019). What’s more, Qsparse-local-SGD only focuses on the
regular local SGD method. However, momentum local SGD
is more commonly used in practical applications and usually
has better convergence and generalization performance (Yu,
Jin, and Yang 2019). Thus, it is also necessary to reduce the
communication overhead of the momentum local SGD.

In this paper, to apply compressed gradients to local SGD
without jeopardizing the convergence rate and communi-
cation complexity, we propose two novel communication-
efficient local SGD methods. In particular, to reduce the
communication cost in each round, we propose to com-
press all gradients exchanged between the worker and server
by the error-compensated compression mechanism. Under
the non-convex setting, without the bounded gradient as-
sumption in (Basu et al. 2019; Tang et al. 2019; Zheng,
Huang, and Kwok 2019), our theoretical result shows that
our proposed method admits the same convergence rate
O(1/

√
KT) as the full-precision method. Note that it is

more challenging to study the convergence rate without the
bounded gradient assumption. In this paper, we addressed
this issue by carefully bounding the compression error. As
shown in Table 1, our method enjoys the same number of
communication rounds O(K3/2T 1/2) as the full-precision
one, which is better than Qsparse-local-SGD. Moreover, we
propose a new momentum local SGD with compressed gra-

dients, which also enjoys the same convergence rate and
communication complexity as the full-precision method. As
far as we know, these theoretical results regarding the con-
vergence rate and communication complexity are the first
time to be discovered. At last, extensive experimental results
confirmed the effectiveness of our proposed methods. Here,
we summarize our contributions as follows:

• We propose a communication-efficient local SGD and a
communication-efficient momentum local SGD. To the
best of our knowledge, both of them are the first ones
with double compression mechanism for (momentum) lo-
cal SGD.

• We propose a new theoretical analysis strategy for ana-
lyzing the error-compensated double compression method
without the bounded gradient assumption. As far as we
know, this is the first work doing that.

• With our new theoretical analysis strategy, we care-
fully bound the compression error and disclose that
our proposed communication-efficient (momentum) lo-
cal SGD with error-compensated compression mecha-
nism enjoys the same communication complexity with the
full-precision method. This is the first work achieving this
result.

• Extensive experimental results confirm the efficacy of our
proposed two methods.

Related Works
In the distributed machine learning area, to reduce the com-
munication overhead, there are two strategies: reducing the
number of communication rounds and reducing the cost in
each communication round.

Reduce Communication Rounds To reduce the number
of communication rounds, local SGD updates model param-
eters locally for multiple iterations and then conducts the
communication to synchronize the model parameter. Thus,
local SGD can reduce the number of communication rounds
by doing more local computation and less communication.
Under the non-convex setting, the communication complex-
ity is extensively studied in recent works (Jiang and Agrawal
2018; Yu, Jin, and Yang 2019; Yu, Yang, and Zhu 2019;
Wang and Joshi 2018; Haddadpour et al. 2019). For instance,
when different workers have identical data, (Yu, Yang, and
Zhu 2019) theoretically proves that local SGD achieves the

7511

convergence rate O(1/
√
KT) when the number of local up-

dates is in the order of O(K3/4T 3/4). In the recent work
(Yu, Jin, and Yang 2019), the communication complexity is
further improved to O(K3/2T 1/2).

Compress Gradients To reduce the communication cost
in each communication round, a commonly used strategy
is to compress the gradient, such as sparsifying gradients
and quantizing gradients. Although the compression of gra-
dients can reduce the communication cost in each round, it
causes large variance, hampering the convergence. To ad-
dress this issue, (Seide et al. 2014) proposed the error com-
pensation method to reduce the variance of the compressed
gradient, which can stabilize the convergence. After that,
the error compensation technique has been used in differ-
ent methods (Stich, Cordonnier, and Jaggi 2018; Tang et al.
2019; Zheng, Huang, and Kwok 2019). For example, Doub-
leSqueeze (Tang et al. 2019) compresses gradients with er-
ror compensation in both passes of the regular P-SGD, and
dist-EF-SGDM (Zheng, Huang, and Kwok 2019) applies
the same strategy to parallel momentum SGD. However, all
aforementioned methods only focus on the regular (momen-
tum) SGD instead of local SGD. In the recent work (Basu
et al. 2019), Qsparse-local-SGD applies the compressed gra-
dient with error compensation to local SGD. However, it
only conducts compression on the gradient from workers
to the central server. Thus, it still has large communica-
tion overhead caused by the dense gradient from the central
server to workers. Similar with Qsparse-local-SGD, (Rei-
sizadeh et al. 2020; He et al. 2020) also only compresses
the gradient sent from workers to the central server and use
the full gradient from the central server to workers. More-
over, (Reisizadeh et al. 2020; He et al. 2020) require that
the compressor for gradients should be unbiased and do not
utilize the error-compensation mechanism. Thus, these two
methods are supposed to have a worse convergence perfor-
mance than those with the error-compensation mechanism
(Tang et al. 2019; Karimireddy et al. 2019). More compari-
son results can be found in Table 1.

Convergence Analysis of Compressed Local SGD
When analyzing the convergence rate and the communi-
cation complexity, Qsparse-local-SGD (Basu et al. 2019),
as well as the compressed P-SGD method (Tang et al.
2019; Zheng, Huang, and Kwok 2019), assumes the gradi-
ent is bounded so that it is easy to bound the compression
error. However, this assumption is pathological (Khaled,
Mishchenko, and Richtárik 2019), which might not be true
in some cases. (Reisizadeh et al. 2020; He et al. 2020) didn’t
use this assumption. However, these two methods require the
compressor to be unbiased so that they do not need to bound
the compression error, simplifying their theoretical analy-
sis. On the contrary, our method uses the error-compensated
compressor so that the compressed gradient in our method
can be biased. We need to carefully bound the compres-
sion error in both directions without the bounded gradient
assumption, which is much more challenging than all exist-
ing works.

Preliminaries
Throughout this paper, we have the following assumptions
which are commonly used in federated learning (Yu, Jin, and
Yang 2019; Liang et al. 2019).

Assumption 1. Smoothness: All local functions f (k)(·) are
L-smooth, i.e.,

‖∇f (k)(x)−∇f (k)(y)‖ ≤ L‖x− y‖, ∀k, ∀x, ∀y . (2)

Assumption 2. Bounded gradient variance within each
worker: There exists σ > 0 such that

E[‖∇F (k)(x; ξ)−∇f (k)(x)‖2] ≤ σ2, ∀k, ∀x . (3)

These two assumptions are very common in existing lit-
erature. Note that we do not assume the bounded gradi-
ent E[‖∇F (k)(x; ξ)‖2] ≤ G2 for a constant G. In this
paper, as Qsparse-loal-SGD (Basu et al. 2019), different
workers have identical data. We summarize the notations
used in this paper. x(k)t denotes the model parameter of
the k-th worker at the t-th iteration. xt = 1

K

∑K
k=1 x

(k)
t

denotes the averaged model parameter across all work-
ers at the t-th iteration. ∇F (k)(x

(k)
t ; ξ

(k)
t) represents the

stochastic gradient of the k-th worker which is computed
on the local model arameter and data at the t-th itera-
tion. ∇f (k)(x(k)t) = Eξ∼D(k)∇F (k)(x

(k)
t ; ξ

(k)
t) represents

the full gradient of the k-th worker at the t-th iteration.
∇f(xt) = 1

K

∑K
k=1∇f (k)(x

(k)
t) represents the averaged

gradient at the t-th iteration. m(k)
t indicates the momentum

of the k-th worker at the t-th iteration. mt =
1
K

∑K
k=1m

(k)
t

indicates the averaged momentum across all worker at the
t-th iteration. p stands for the communication period. f∗ de-
notes minimum of the loss function.

Communication-Efficient Distributed SGD
with Compressed Gradients

Local SGD with Compressed Gradient
Our proposed local SGD with compressed gradients is pre-
sented in Algorithm 1. The core idea is to compress the gra-
dient sent from workers to the central server and that sent
from the central server to workers with a δ-contraction op-
erator, which is defined as follows:

Definition 1. (Stich, Cordonnier, and Jaggi 2018) A com-
pression operatorQ : Rd → Rd is a δ-contraction operator
if it satisfies the following property

‖x−Q(x)‖2 ≤ (1− δ)‖x‖2 , (4)

where 0 < δ ≤ 1.

A typical example is the top-k sparsification operator
which only selects the k elements with the largest absolute
values from the vector x ∈ Rd.

To alleviate the large variance of compressed gradients,
we compensate the compressed gradient by the residual er-
ror between the full-precision gradient and the compressed
one. Specifically, each worker keeps the local model param-
eter x(k)t and the local residual error e(k)t . When mod(t +

7512

Algorithm 1 Local SGD with Compressed Gradients

Initialization: x(k)0 = x0, e(k)0 = 0, e0 = 0, p ≥ 1, η > 0.
1: for t = 0, · · · , T − 1 do
2: Worker-k:
3: x

(k)
t+1 = x

(k)
t − η∇F (k)(x

(k)
t ; ξ

(k)
t), e(k)t+1 = e

(k)
t

4: if mod(t+ 1, p)=0 then
5: v

(k)
t+1 = x

(k)
t+1−p − x

(k)
t+1 + e

(k)
t

6: e
(k)
t+1 = v

(k)
t+1 −Q(v

(k)
t+1)

7: send Q(v
(k)
t+1) to the server

8: end if
9: Server:

10: et+1 = et
11: if mod(t+ 1, p)=0 then
12: vt+1 = 1

K

∑K
k=1Q(v

(k)
t+1) + et

13: et+1 = vt+1 −Q(vt+1)
14: Broadcast Q(vt+1) to all workers
15: end if
16: Worker-k:
17: if mod(t+ 1, p)=0 then
18: x

(k)
t+1 = x

(k)
t+1−p −Q(vt+1)

19: end if
20: end for

1, p) 6= 0, each worker updates the local model parameter
based on the local data as follows:

x
(k)
t+1 = x

(k)
t − η∇F (k)(x

(k)
t ; ξ

(k)
t) , (5)

where η is the step size. When mod(t + 1, p) = 0, each
worker computes the error-compensated gradient as follows:

v
(k)
t+1 = x

(k)
t+1−p − x

(k)
t+1 + e

(k)
t , (6)

where x(k)t+1−p − x
(k)
t+1 represents the accumulated gradient

in the past p iterations. Then, each worker compresses the
local gradient v(k)t+1 by using the compression operator Q(·),
such as the top-k sparsification operator. Meanwhile, each
worker updates its local residual error as follows:

e
(k)
t+1 = v

(k)
t+1 −Q(v

(k)
t+1) , (7)

where Q(v
(k)
t+1) represents the compressed gradient. After

that, workers send the compressed gradient Q(v
(k)
t+1) to the

server.
As for the server, it receives all compressed gradients

Q(v
(k)
t+1) from workers and computes the global error-

compensated gradient as follows:

vt+1 =
1

K

K∑
k=1

Q(v
(k)
t+1) + et , (8)

where et denotes the global residual error. Note that, et is
not the average of local residual errors. Instead, the server
constructs the global residual error by computing the differ-
ence between the global gradient vt+1 and its compressed
version Q(vt+1) as follows:

et+1 = vt+1 −Q(vt+1) . (9)

After that, the server broadcasts Q(vt+1) to all workers and
they reset the local model parameter as follows:

x
(k)
t+1 = x

(k)
t+1−p −Q(vt+1) . (10)

In summary, all the gradient communicated between
workers and the central server are compressed. Therefore,
the communication cost in each round is pretty small. On
the contrary, the existing works (Basu et al. 2019; He et al.
2020; Reisizadeh et al. 2020) only compress the gradient
from local workers to the central server while keeping the
full-precision gradient from the central server to local work-
ers. Moreover, compared with (Tang et al. 2019) which per-
forms communication at every iteration, our method con-
ducts communication at every p iterations. Thus, our method
has much fewer communication rounds. In the following, we
present the convergence rate and communication complexity
of our proposed Algorithm 1.
Theorem 1. Under Assumption 1 and 2, if we choose η ≤√

1+2(a1+a2+a3)p2−1
(a1+a2+a3)p2L

where a1 = 384(2−δ)(1−δ)
δ4 , a2 =

48(1−δ)
δ2 , and a3 = 16, we have

1

T

T−1∑
t=0

E[‖∇f(xt)‖2] ≤
4(f(x0)− f∗)

ηT
+

2ησ2L

K

+
384pη2σ2L2(2− δ)(1− δ)

δ4
+

48pη2σ2L2(1− δ)
δ2

+ 16pη2σ2L2 .
(11)

From Theorem 1, it can be seen that the last two terms on
the RHS is related to the compression of gradients.
Corollary 1. Under Assumption 1 and 2, by choosing η =√
K√
T

and p ≤ 1
L
T 1/2

K3/2 = O(T
1/2

K3/2), we have

1

T

T−1∑
t=0

E[‖∇f(xt)‖2] ≤
4(f(x0)− f∗) + 18σ2L√

KT

+
1√
KT

(384σ2L(2− δ)(1− δ)
δ4

+
48σ2L(1− δ)

δ2

)
.

(12)
From Corollary 1, we can see that our method has the

convergence rate as O(1√
KT

), indicating a linear speedup
regarding the number of workers K as the full-precision lo-
cal SGD method (Yu, Jin, and Yang 2019). Moreover, it can
be seen that the communication complexity of our method
is O(K3/2T 1/2), which is also same as the full-precision
method. On the contrary, Qsparse-local-SGD (Basu et al.
2019) method has the communication complexity as large as
O(K3/4T 3/4). Hence, our method is more communication-
efficient.

Momentum Local SGD with Compressed Gradient
The momentum technique is widely used for training ma-
chine learning models, especially deep neural networks. Re-
cently, (Yu, Jin, and Yang 2019) proposed the local SGD
with momentum method, which can be used for Federated

7513

Learning. However, this method has large communication
overhead. In addition, existing works (Basu et al. 2019; He
et al. 2020; Reisizadeh et al. 2020) didn’t consider the mo-
mentum method. Thus, it is still unclear whether the momen-
tum local SGD method can use the double compressed gra-
dient with the error-compensated mechanism and preserve
the convergence rate and communication rounds as the full-
precision one. To address this issue, we propose the momen-
tum local SGD with the error-compensated double compres-
sion mechanism, which is summarized in Algorithm 2.

Algorithm 2 Momentum Local SGD with Compressed Gra-
dients

Initialization: x(k)0 = x0, e(k)0 = 0, e0 = 0, m(k)
0 = 0,

p ≥ 1, η > 0, µ > 0.
1: for t = 0, · · · , T − 1 do
2: Worker-k:
3: m

(k)
t+1 = µm

(k)
t +∇F (k)(x

(k)
t ; ξ

(k)
t)

4:
5: x

(k)
t+1 = x

(k)
t − ηm

(k)
t+1, e(k)t+1 = e

(k)
t

6: if mod(t+ 1, p)=0 then
7: v

(k)
t+1 = x

(k)
t+1−p − x

(k)
t+1 + e

(k)
t

8: e
(k)
t+1 = v

(k)
t+1 −Q(v

(k)
t+1)

9: send Q(v
(k)
t+1), m

(k)
t+1 to the server

10: end if
11: Server:
12: et+1 = et
13: if mod(t+ 1, p)=0 then
14: vt+1 = 1

K

∑K
k=1Q(v

(k)
t+1) + et

15: mt+1 = 1
K

∑K
k=1m

(k)
t+1

16: et+1 = vt+1 −Q(vt+1)
17: Broadcast Q(vt+1), mt+1 to all workers
18: end if
19: Worker-k:
20: if mod(t+ 1, p)=0 then
21: x

(k)
t+1 = x

(k)
t+1−p −Q(vt+1), m

(k)
t+1 = mt+1

22: end if
23: end for

For each worker, when mod(t + 1, p) 6= 0, it updates the
local model parameter based on its local data as follows:

m
(k)
t+1 = µm

(k)
t +∇F (k)(x

(k)
t ; ξ

(k)
t) , x

(k)
t+1 = x

(k)
t − ηm

(k)
t+1 ,

(13)
where m(k)

t+1 denotes the momentum, 0 < µ < 1 represents
the momentum coefficient, and η > 0 is the step size. When
mod(t+1, p) = 0, instead of compressing the gradient, each
worker compresses the momentum as follows:

v
(k)
t+1 = x

(k)
t+1−p − x

(k)
t+1 + e

(k)
t , e

(k)
t+1 = v

(k)
t+1 −Q(v

(k)
t+1) ,

(14)
where x(k)t+1−p − x

(k)
t+1 represents the accumulated “gradi-

ent”1 in the past p iterations, v(k)t+1 is the error-compensated

1We call it gradient rather than momentum for convenience.

gradient, Q(v
(k)
t+1) denotes the compressed gradient, and

e
(k)
t+1 stands for the local residual error.

For the server, it computes the error-compensated gradient
and compresses it as follows:

vt+1 =
1

K

K∑
k=1

Q(v
(k)
t+1) + et , et+1 = vt+1 −Q(vt+1) .

(15)
After that, the server broadcasts the compressed gradient to
all workers. Then, all workers update the local model pa-
rameter based on the received gradient. In the following, we
present the convergence rate and communication complexity
of our proposed Algorithm 2.
Theorem 2. Under Assumption 1 and 2, if we choose η ≤√
b2+2(a1+a2+a3+a4)p2−b
(a1+a2+a3+a4)p2L

where a1 = 1536(2−δ)(1−δ)
δ4(1−µ)2

(
1 +

1
(1−µ)2

)
, a2 = 192(1−δ)

δ2(1−µ)2

(
1 + 1

(1−µ)2

)
, a3 = 16

(1−µ)2 , a4 =
12

(1−µ)4 , and b = 1
1−µ we have

1

T

T−1∑
t=0

E[‖∇f(xt)‖2] ≤
4(1− µ)(f(x0)− f∗)

ηT

+
2ησ2L

(1− µ)K
+

16pη2σ2L2

(1− µ)2
+

12η2µ2σ2L2

(1− µ)4K

+
1536pη2σ2L2(2− δ)(1− δ)

δ4(1− µ)2
(
1 +

1

(1− µ)2
)

+
192pη2σ2L2(1− δ)

δ2(1− µ)2
(
1 +

1

(1− µ)2
)
.

(16)

Similar with Theorem 1, compared with the full-precision
momentum local SGD (Yu, Jin, and Yang 2019), our conver-
gence result in Theorem 2 has extra terms with respect to δ
which is caused by the compression of gradients.
Corollary 2. Under Assumption 1 and 2, by choosing η =√
K√
T

and p ≤ 1
L
T 1/2

K3/2 = O(T
1/2

K3/2), we have

1

T

T−1∑
t=0

E[‖∇f(xt)‖2] ≤
4(1− µ)(f(x0)− f∗)√

KT

+
2σ2L

(1− µ)
√
KT

+
16σ2L

(1− µ)2
√
KT

+
12µ2σ2L2

(1− µ)4
√
KT

+
1√
KT

1536σ2L(2− δ)(1− δ)
δ4(1− µ)2

(
1 +

1

(1− µ)2
)

+
1√
KT

192σ2L(1− δ)
δ2(1− µ)2

(
1 +

1

(1− µ)2
)
.

(17)
From Corollary 2, it can be seen that our method still

enjoys the linear speedup regarding the number of work-
ers as the full-precision momentum local SGD method (Yu,
Jin, and Yang 2019). As for the communication complex-
ity O(K3/2T 1/2), it is also the same as the full-precision
method (Yu, Jin, and Yang 2019). Therefore, compared with
the full-precision method, our method has the same con-
vergence rate and communication complexity but has much

7514

smaller communication cost in each round due to the gradi-
ent compression. Note that, in our theoretical analysis, we
follow the i.i.d. setting of Qsparse-local-sgd to improve the
communication complexity. But under some assumptions re-
garding the non i.i.d. distribution, such as the bounded gra-
dient heterogeneity assumption, it is not difficult to handle
the heterogeneous gradient and then we can apply our proof
technique to the non i.i.d. case smoothly.

Communication period Local SGD (%) Alg1 (%)

1 92.68 92.76
4 92.65 92.62
8 92.47 92.58

16 92.86 92.42

Table 2: Top-1 Test Accuracy of ResNet-56 on CIFAR-10.

Communication period Local SGDM (%) Alg2 (%)

1 76.04 75.88
4 75.81 76.12
8 76.01 76.06

16 76.01 75.94

Table 3: Top-1 Test Accuracy of ResNet-50 on ImageNet.

Experiments
Experimental Settings
All experiments are implemented in PyTorch (Paszke et al.
2019) and run on a cluster with NVIDIA Tesla P40 GPUs,
where nodes are interconnected by a network with 40 Gbps
bandwidth. We run each distributed training experiment us-
ing 8 workers (GPUs). The compression method used in
our experiments is the top-10% sparsification operator. Two
benchmark datasets are used in our experiments. The details
are described as follows.

CIFAR-10: We test ResNet-56 (He et al. 2016) with
all the above mentioned algorithms on CIFAR-10 dataset
(Krizhevsky, Hinton et al. 2009). Common data augmenta-
tion techniques such as random cropping, random flipping
and standardization are performed. The base learning rate is
0.1, the weight decay is 5 × 10−4 and the total batch size
is 128. For local SGD, the model is trained for 150 epoch
in total, with a learning rate decay of 0.1 at epoch 100. For
momentum local SGD, the model is trained for 200 epoch in
total, with a learning rate decay of 0.1 at epoch 100 and 150.

ImageNet: We test ResNet-50 (He et al. 2016) on Ima-
geNet dataset (Russakovsky et al. 2015) 2. Similar data aug-
mentation techniques are performed. The model is trained
for 90 epoch in total, with a learning rate decay of 0.1 at
epoch 30 and 60. The base learning rate is 0.1, the weight
decay is 1× 10−4 and the total batch size is 256.

Results of Methods without Momentum
To verify the performance of our proposed method in Al-
gorithm 1 (Alg1), we compare our method with the full-

2Since ResNet-50 on ImageNet is trained with momentum SGD
in (He et al. 2016), here we only use Algorithm 2 for ImageNet.

precision local SGD method, DoubleSqueeze (Tang et al.
2019), and Qsparse-local-SGD (Basu et al. 2019). Note that
we didn’t compare our method with (He et al. 2020; Rei-
sizadeh et al. 2020) since existing works (Tang et al. 2019;
Karimireddy et al. 2019) have shown that this kind of meth-
ods without the error-compensation mechanism has worse
convergence and generalization performance. Figure 1(a)
and 1(b) show the training loss and testing accuracy re-
garding the number of epochs under different communica-
tion periods p on CIFAR-10 dataset. Table 2 reports the fi-
nal testing accuracy of ResNet-56 on CIFAR10. From them,
we have the following observations. First, comparing with
the full-precision method, our method with compressed gra-
dients has similar convergence performance: converging to
almost the same value and achieving almost the same ac-
curacy. Hence, although our method uses the compressed
gradient, yet the convergence performance does not degen-
erate. Second, when the communication period p is 1, local-
p1 becomes the traditional parallel SGD (P-SGD) method,
and our method is equivalent to DoubleSqueeze (Tang et al.
2019) method. Comparing with these two state-of-the-art
methods, when increasing p, our method converges to al-
most the same value and achieves almost the same accuracy
as P-SGD and DoubleSqueeze. Furthermore, we also plot
the training loss and testing accuracy regarding the com-
munication cost in Figure 1(c) and 1(d). It can be seen that
our method with compressed gradients has much less com-
munication cost and achieves almost the same performance
comparing with the full-precision methods. Based on these
observations, we can conclude that our method does not
jeopardize the final model performance even though it com-
presses the gradient and reduces the number of communica-
tion rounds.

Moreover, to further verify the performance of our pro-
posed method, we compare it with Qsparse-local-SGD (QL-
SGD) which only conducts compression on the gradient sent
from workers to the server. Note that, to make a fair compar-
ison, we employ the same compression operator: top-10%
sparsification. From Figure 2, it can be seen that our method
has similar convergence performance with QL-SGD, but has
much less communication cost since our method conducts
compression on the gradient sent from workers to the server
and the averaged gradient sent from the server to workers.
Therefore, our method is more communication-efficient than
QL-SGD.

Results of Methods with Momentum
In this experiment, we compare our proposed Algorithm 2
(Alg2) with the full-precision momentum local SGD (lo-
cal SGDM) (Yu, Jin, and Yang 2019) and dist-EF-SGDM
(Zheng, Huang, and Kwok 2019). Note that we didn’t com-
pare it with Qsparse-local-SGD (Basu et al. 2019) because
this method only studied the regular gradient rather than the
momentum case. Throughout this experiment, the momen-
tum coefficient µ is set to 0.9.

In Figure 3(a) and 3(b), we report the convergence per-
formance regarding the number of epochs on ImageNet. In
Figure 3(c) and 3(d), we show the convergence result with
respect to the communication cost. In addition, the testing

7515

0 20 40 60 80 100 120 140
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tr
ai

ni
ng

 lo
ss

Local-p1
Local-p4
Local-p8
Local-p16
Alg1-p1
Alg1-p4
Alg1-p8
Alg1-p16

(a) Loss v.s. epochs

0 20 40 60 80 100 120 140
epoch

80
82
84
86
88
90
92

te
st

in
g

ac
c@

1
(%

)

Local-p1
Local-p4
Local-p8
Local-p16
Alg1-p1
Alg1-p4
Alg1-p8
Alg1-p16

(b) Acc v.s. epochs

109 1010 1011 1012 1013
communication cost (bit)

0.0

0.1

0.2

0.3

0.4

0.5

tr
ai

ni
ng

 lo
ss

Local-p1
Local-p4
Local-p8
Local-p16
Alg1-p1
Alg1-p4
Alg1-p8
Alg1-p16

(c) Loss v.s. bits

109 1010 1011 1012 1013
communication cost (bit)

80
82
84
86
88
90
92

te
st

in
g

ac
c@

1
(%

) Local-p1
Local-p4
Local-p8
Local-p16
Alg1-p1
Alg1-p4
Alg1-p8
Alg1-p16

(d) Acc v.s. bits

Figure 1: ResNet56@CIFAR10 with Alg1: The training loss and testing accuracy regarding epochs and communication cost.
Alg1-p1 is equivalent to DoubleSqueeze.

0 20 40 60 80 100 120 140
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tr
ai

ni
ng

 lo
ss

Alg1-p4
Alg1-p8
Alg1-p16
QL-SGD-p4
QL-SGD-p8
QL-SGD-p16

(a) Loss v.s. epochs

0 20 40 60 80 100 120 140
epoch

80
82
84
86
88
90
92

te
st

in
g

ac
c@

1
(%

)

Alg1-p4
Alg1-p8
Alg1-p16
QL-SGD-p4
QL-SGD-p8
QL-SGD-p16

(b) Acc v.s. epochs

109 1010 1011 1012
communication cost (bit)

0.0

0.1

0.2

0.3

0.4

0.5

tr
ai

ni
ng

 lo
ss

Alg1-p4
Alg1-p8
Alg1-p16
QL-SGD-p4
QL-SGD-p8
QL-SGD-p16

(c) Loss v.s. bits

109 1010 1011 1012
communication cost (bit)

80
82
84
86
88
90
92

te
st

in
g

ac
c@

1
(%

) Alg1-p4
Alg1-p8
Alg1-p16
QL-SGD-p4
QL-SGD-p8
QL-SGD-p16

(d) Acc v.s. bits

Figure 2: ResNet56@CIFAR10: The training loss and testing accuracy of Alg1 and QL-SGD.

0 10 20 30 40 50 60 70 80 90
epoch

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

tr
ai

ni
ng

 lo
ss

Local-p1
Local-p4
Local-p8
Local-p16
Alg2-p1
Alg2-p4
Alg2-p8
Alg2-p16

(a) Loss v.s. epochs

0 10 20 30 40 50 60 70 80 90
epoch

40
45
50
55
60
65
70
75

te
st

in
g

ac
c@

1
(%

)

Local-p1
Local-p4
Local-p8
Local-p16
Alg2-p1
Alg2-p4
Alg2-p8
Alg2-p16

(b) Acc v.s. epochs

1010 1011 1012 1013 1014 1015 1016
communication cost (bit)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

tr
ai

ni
ng

 lo
ss

Local-p1
Local-p4
Local-p8
Local-p16
Alg2-p1
Alg2-p4
Alg2-p8
Alg2-p16

(c) Loss v.s. bits

1010 1011 1012 1013 1014 1015 1016
communication cost (bit)

40
45
50
55
60
65
70
75

te
st

in
g

ac
c@

1
(%

) Local-p1
Local-p4
Local-p8
Local-p16
Alg2-p1
Alg2-p4
Alg2-p8
Alg2-p16

(d) Acc v.s. bits

Figure 3: ResNet50@ImageNet with Alg2: The training loss and testing accuracy regarding epochs and communication cost.
Here, local denotes local SGDM. Alg2-p1 is equivalent to dist-EF-SGDM.

accuracy of the learned model is reported in Table 3. Simi-
lar to Algorithm 1, from Figure 3(a) and 3(b), we can also
find that the model optimized by our method has similar
convergence behavior with that learned by the full-precision
method. In terms of the final testing accuracy in Table 3,
our method and the full-precision local SGD achieve similar
performance. It shows that compressed gradient communi-
cation is not only beneficial for accelerating the convergence
regarding training epochs, but also do not jeopardize the fi-
nal model performance.

From Figure 3(c) and 3(d), it can be seen that increasing
the communication period naturally reduces the communi-
cation cost. Compared with local SGD using the same com-
munication period, our method needs much less communi-
cation cost, which is most beneficial for the communication
constrained federated learning scenario where the uplink and
downlink bandwidth between the central server and user de-
vices may be very limited. Compared with dist-EF-SGDM,

our method also has much less communication cost but al-
most the same accuracy, which further confirms our method
is efficient in communication and correct in computation.

Conclusions

In this paper, we propose two new communication-efficient
distributed SGD methods for Federated Learning. Specifi-
cally, to reduce the communication cost of local SGD, we
compress the gradient exchanged between the worker and
server with the error-compensated compression operator.
Our theoretical results show that our proposed methods en-
joy the same iteration complexity and communication com-
plexity as the full-precision method. Extensive experimental
results have verified that our methods have similar conver-
gence performance as the full-precision method but require
much less communication budget.

7516

Acknowledgements
This work was partially supported by NSF IIS 1845666,
1852606, 1838627, 1837956, 1956002, 2040588.

References
Aji, A. F.; and Heafield, K. 2017. Sparse communi-
cation for distributed gradient descent. arXiv preprint
arXiv:1704.05021 .

Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic,
M. 2017. QSGD: Communication-efficient SGD via gradi-
ent quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, 1709–1720.

Basu, D.; Data, D.; Karakus, C.; and Diggavi, S. 2019.
Qsparse-local-SGD: Distributed SGD with Quantization,
Sparsification and Local Computations. In Advances in Neu-
ral Information Processing Systems, 14668–14679.

Bernstein, J.; Wang, Y.-X.; Azizzadenesheli, K.; and Anand-
kumar, A. 2018. signSGD: Compressed optimisation for
non-convex problems. arXiv preprint arXiv:1802.04434 .

Haddadpour, F.; Kamani, M. M.; Mahdavi, M.; and
Cadambe, V. 2019. Local SGD with periodic averaging:
Tighter analysis and adaptive synchronization. In Advances
in Neural Information Processing Systems, 11080–11092.

He, C.; Li, S.; So, J.; Zhang, M.; Wang, H.; Wang, X.;
Vepakomma, P.; Singh, A.; Qiu, H.; Shen, L.; et al. 2020.
Fedml: A research library and benchmark for federated ma-
chine learning. arXiv preprint arXiv:2007.13518 .

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Jiang, P.; and Agrawal, G. 2018. A linear speedup analysis
of distributed deep learning with sparse and quantized com-
munication. In Advances in Neural Information Processing
Systems, 2525–2536.

Karimireddy, S. P.; Rebjock, Q.; Stich, S. U.; and Jaggi, M.
2019. Error feedback fixes signsgd and other gradient com-
pression schemes. arXiv preprint arXiv:1901.09847 .

Khaled, A.; Mishchenko, K.; and Richtárik, P. 2019. First
analysis of local gd on heterogeneous data. arXiv preprint
arXiv:1909.04715 .

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer.

Liang, X.; Shen, S.; Liu, J.; Pan, Z.; Chen, E.; and Cheng,
Y. 2019. Variance Reduced Local SGD with Lower Com-
munication Complexity. arXiv preprint arXiv:1912.12844
.

Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, W. J.
2017. Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887 .

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, 8024–8035.

Reisizadeh, A.; Mokhtari, A.; Hassani, H.; Jadbabaie, A.;
and Pedarsani, R. 2020. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In International Conference on Artificial In-
telligence and Statistics, 2021–2031.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV) 115(3): 211–252. doi:10.1007/s11263-
015-0816-y.

Seide, F.; Fu, H.; Droppo, J.; Li, G.; and Yu, D. 2014. 1-
bit stochastic gradient descent and its application to data-
parallel distributed training of speech dnns. In Fifteenth An-
nual Conference of the International Speech Communica-
tion Association.

Stich, S. U.; Cordonnier, J.-B.; and Jaggi, M. 2018. Sparsi-
fied SGD with memory. In Advances in Neural Information
Processing Systems, 4447–4458.

Stich, S. U.; and Karimireddy, S. P. 2019. The error-
feedback framework: Better rates for SGD with delayed
gradients and compressed communication. arXiv preprint
arXiv:1909.05350 .

Strom, N. 2015. Scalable distributed DNN training using
commodity GPU cloud computing. In Sixteenth Annual
Conference of the International Speech Communication As-
sociation.

Tang, H.; Lian, X.; Zhang, T.; and Liu, J. 2019. Doub-
lesqueeze: Parallel stochastic gradient descent with double-
pass error-compensated compression. arXiv preprint
arXiv:1905.05957 .

Wang, J.; and Joshi, G. 2018. Cooperative SGD: A unified
framework for the design and analysis of communication-
efficient SGD algorithms. arXiv preprint arXiv:1808.07576
.

Wen, W.; Xu, C.; Yan, F.; Wu, C.; Wang, Y.; Chen, Y.; and
Li, H. 2017. Terngrad: Ternary gradients to reduce commu-
nication in distributed deep learning. In Advances in neural
information processing systems, 1509–1519.

Yu, H.; Jin, R.; and Yang, S. 2019. On the linear
speedup analysis of communication efficient momentum sgd
for distributed non-convex optimization. arXiv preprint
arXiv:1905.03817 .

Yu, H.; Yang, S.; and Zhu, S. 2019. Parallel restarted SGD
with faster convergence and less communication: Demysti-
fying why model averaging works for deep learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 5693–5700.

7517

Zheng, S.; Huang, Z.; and Kwok, J. 2019. Communication-
efficient distributed blockwise momentum SGD with error-
feedback. In Advances in Neural Information Processing
Systems, 11450–11460.

7518

