
A Trace-restricted Kronecker-factored Approximation to Natural Gradient

Kaixin Gao1∗, Xiaolei Liu1∗, Zhenghai Huang1∗, Min Wang2,
Zidong Wang2, Dachuan Xu3†, Fan Yu2

1 School of Mathematics, Tianjin University, China
2 Central Software Institute, Huawei Technologies Co. Ltd, China

3 Department of Operations Research and Information Engineering, Beijing University of Technology, China
1{gaokaixin, liuxiaolei, huangzhenghai}@tju.edu.cn, 2{wangmin106, wang1, fan.yu}@huawei.com, 3xudc@bjut.edu.cn

Abstract

Second-order optimization methods have the ability to accel-
erate convergence by modifying the gradient through the cur-
vature matrix. There have been many attempts to use second-
order optimization methods for training deep neural network-
s. In this work, inspired by diagonal approximations and fac-
tored approximations such as Kronecker-factored Approxi-
mate Curvature (KFAC), we propose a new approximation to
the Fisher information matrix (FIM) called Trace-restricted
Kronecker-factored Approximate Curvature (TKFAC), which
can hold the certain trace relationship between the exact and
the approximate FIM. In TKFAC, we decompose each block
of the approximate FIM as a Kronecker product of two s-
maller matrices and scaled by a coefficient related to trace.
We theoretically analyze TKFAC’s approximation error and
give an upper bound of it. We also propose a new damping
technique for TKFAC on convolutional neural networks to
maintain the superiority of second-order optimization meth-
ods during training. Experiments show that our method has
better performance compared with several state-of-the-art al-
gorithms on some deep network architectures.

Introduction
Recently, deep learning has made great progress in a host
of application areas, such as computer vision and natural
language processing. However, as the size of deep neural
networks (DNNs) increases rapidly, more and more com-
putational power and time are needed to train these model-
s. Therefore, efficient algorithms are necessary for training
DNNs.

Stochastic Gradient Descent (SGD) (Bottou 1991) and its
extension Stochastic Gradient Descent with momentum (S-
GDM) (Qian 1999) are ubiquitously used for training DNNs,
due to low computational cost and ease of implementa-
tion. However, SGD is a first-order optimization method
and only considers first-order gradient information, which
leads to some deficiencies, including sensitivity to hyper-
parameter settings and relatively-slow convergence. By us-
ing the curvature matrix to correct gradient, second-order
optimization methods have the ability to solve these defi-

∗Equal contribution
†Corresponding author

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ciencies efficiently. The most well-known second-order opti-
mization method may be the Newton’s method. Natural gra-
dient descent (NGD) (Amari 1998), which gives the steep-
est descent direction in the space of distributions, also can
be viewed as a second-order optimization method (Marten-
s 2014). However, second-order optimization methods are
clearly not computationally competitive with first-order al-
ternatives, because they need to invert the large curvature
matrix (the Hessian matrix for Newton’s method and the
Fisher Information Matrix (FIM) for NGD) whose dimen-
sion is the number of model’s parameters. In practice, they
require cubic computation time and quadratic storage for
every update. Obviously, it is impractical to directly apply
second-order optimization methods for training DNNs with
hundreds of millions of parameters. So a series of approxi-
mations have been proposed.

Many methods can be viewed as diagonal approximation
of the curvature matrix (Becker and Lecun 1988; John, Elad,
and Yoram 2011; Tieleman and Hinton 2012; Kingma and
Ba 2014; Yao et al. 2020), and these algorithms are com-
putationally tractable. However, we know that the curvature
matrix of DNNs’ objective function is highly non-diagonal,
and hence, diagonal approximations lose much curvature
matrix information. More complex algorithms are not lim-
ited to diagonal approximations, but instead focus on some
correlations between parameters of neural networks and use
the non-diagonal part of the curvature matrix, such as quasi-
Newton methods (Likas and Stafylopatis 2000; Keskar and
Berahas 2016; Berahas, Jahani, and Takáč 2019; Goldfar-
b, Ren, and Bahamou 2020), Hessian-Free optimization ap-
proach (Martens 2010; Martens and Ilya 2011; Kiros 2013;
Pan, Innanen, and Liao 2017), and Kronecker-factored Ap-
proximate Curvature (KFAC) (Martens and Grosse 2015;
Grosse and Martens 2016; Martens, Ba, and Johnson 2018;
Zhang et al. 2018; George et al. 2018). These methods have
achieved advanced performance on some complicated DNN
models and training tasks.

In this paper, our main focus will be on the NGD. Motivat-
ed by the diagonal approximations, we think that the diag-
onal elements’ information of the curvature matrix plays an
important role, so we pay more attention to the diagonal in-
formation and keep the trace relationship in our approxima-
tion. Inspired by both diagonal and factored approximations,
we present a new approximation to the FIM of DNNs called

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7519



Trace-restricted Kronecker-factored Approximate Curvature
(TKFAC) based on the quadratic form estimator proposed in
(Linton and Tang 2019).

Our approximation is built by two steps. In the first step,
the FIM is approximated to a block-diagonal matrix accord-
ing to the layers of DNNs as KFAC (Martens and Grosse
2015). In the second step, every block matrix is decom-
posed into a constant multiple of the Kronecker product
of two smaller matrices and kept the traces equal based on
the quadratic form estimator proposed in (Linton and Tang
2019). For DNNs, we first consider TKFAC on the fully-
connected layers and give Theorem 1 to compute the fac-
tors. Then, the block matrix of convolutional layers can al-
so be decomposed efficiently under a reasonable assump-
tion by Theorem 3. We also discuss the approximation ef-
fect of TKFAC and give an upper bound of its approxi-
mation error in Theorem 4. Next, we consider the damp-
ing technique and provide a new damping scheme for TK-
FAC on convolutional neural networks (CNNs). Finally, to
evaluate our proposed methods, we consider two variants of
TKFAC compared with SGDM, Adam, and KFAC on the
deep auto-encoder problems using fully-connected neural
networks (FNNs) and the image classification tasks using C-
NNs. Experiments show that TKFAC is an effective method.

Our contributions are summarized as follows:
• Motivated by both diagonal and factored approximations,

a new approximation to the FIM called TKFAC is pro-
posed based on a quadratic form estimator, in which the
information about the sum of diagonal elements between
the exact and the approximate FIM can be maintained.

• The approximation effect of TKFAC is discussed. The vi-
sualization results of approximation errors show that TK-
FAC is indeed an effective approximation to the FIM. Fur-
thermore, an upper bound of TKFAC’s approximation er-
ror is given and proved, which is less than the upper bound
of KFAC’s error in general cases. Experiments on MNIST
show that TKFAC can keep smaller approximation error
than KFAC during training.

• Two damping techniques are adopted for TKFAC, includ-
ing the normal damping used in previous works and the
new automatic tuning damping proposed in this work,
which can avoid the problem that the damping is large
enough to dominate the FIM and transforms the second-
order optimizer into the first-order one in our experiments.

• Two variants of TKFAC, that are TKFAC nor using the
normal damping and TKFAC new using the new damp-
ing, are compared with several state-of-the-art algorithm-
s. TKFAC nor has better optimization performance while
has good generalization ability. TKFAC new converges
faster than baselines and TKFAC nor, and especially it
has better performance on the ResNet network.

Related Work
There have been many attempts to apply NGD or its approx-
imations to train DNNs. The main computational challenge
to use NGD is to store and invert the FIM. Recently, some
works have considered the efficient Kronecker-factored ap-
proximation to the FIM, such as KFAC (Martens and Grosse

2015; Grosse and Martens 2016; Martens, Ba, and Johnson
2018; Martens and Grosse 2015; Zhang et al. 2018; Bae,
Zhang, and Grosse 2018) and Eigenvalue-corrected Kro-
necker Factorization (EKFAC) (George et al. 2018).

KFAC was first proposed in (Martens and Grosse 2015)
for FNNs, which provides a successful approximate natu-
ral gradient optimizer. KFAC starts with a block-diagonal
approximation of the FIM (with blocks corresponding to
entire layers), and then approximates each block as a Kro-
necker product of two much smaller matrices. By the prop-
erty that the inverse of a Kronecker product of two ma-
trices is equal to the Kronecker product of their inverses,
each block can be inverted tractably. Therefore, NGD can
be used to train DNNs efficiently. Then, KFAC is extend-
ed to CNNs (Grosse and Martens 2016), recurrent neural
networks (Martens, Ba, and Johnson 2018) and variational
Bayesian neural networks (Zhang et al. 2018; Bae, Zhang,
and Grosse 2018) and shows significant speedups during
training. George et al. (2018) tracked the diagonal variance
in the Kronecker-factored eigenbasis and proposed EKFAC
based on KFAC. What’s more, KFAC also has been ap-
plied to large-scale distributed computing for DNNs and
shows excellent experimental performance (Ba, Grosse, and
Martens 2017; Osawa et al. 2019; Pauloski et al. 2020).

On the other hand, covariance matrices are of great impor-
tance in many fields and there have been many new method-
ological approaches to covariance estimation in the large di-
mensional case (i.e., the dimension of the covariance matrix
is large compared with the sample size) (Ledoit and Wolf
2004; Fan and Mincheva 2011; Hoff 2016; Linton and Tang
2019). Recently, Linton and Tang (2019) proposed an es-
timator of the Kronecker product model of the covariance
matrix called quadratic form estimator and showed that this
estimator has good properties in theory. In this work, we
draw inspiration from the diagonal and Kronecker-factored
approximations to the FIM and propose TKFAC by means
of this quadratic form estimator.

Background and Notation
In this section, we will introduce the background and give
some notations.

Deep Neural Networks
Given a training dataset Dtrain = (x, y) containing (in-
put, target) examples (x, y). Define f(x, ω) to be the neu-
ral network function related to input x, where ω are the
parameters. Consider the loss function L(y, f(x, ω)) =
− log p(y|f(x, ω)), where p represents the density function
of model’s predictive distribution P . The objective function
which we wish to minimize during training is the expected
loss

h(ω) = E(x,y)∈Dtrain
[− log p(y|f(x, ω))].

For simplicity, throughout the rest of this paper we will
use the following notation for derivatives of the loss w.r.t.
some arbitrary variable V

DV = dL(y, f(x, ω))/dV, gl = Dsl.

7520



Consider a fully-connected layer of a feed-forward DNN.
The computation performed in this layer can be given by

sl = Wlal−1, al = ϕl(sl),

where al−1 ∈ Rml−1 is the input of this layer (the activa-
tion from the previous layer), Wl ∈ Rml×ml−1 (the bias is
ignored for convenience, which does not affect our analy-
sis and conclusion) is the weight matrix, ϕl is the activation
function, l represents the l-th layer and we refer to sl as the
pre-activation in this layer. By the chain rule, the derivatives
of the weights are given by DWl = gla

>
l−1.

For a convolutional layer, the pre-activation Sl ∈
Rnl×ol−1 (for convenience, we directly give the operation
expressed in matrix form for convolutional layers) is com-
puted as

Âl−1 = im2col(Al−1) ∈ Rnl−1k
2
l×ol−1 ,

Sl = WlÂl−1 ∈ Rnl×ol−1 ,

where im2col(·) is a function to rearrange image blocks into
columns,Al−1 ∈ Rnl−1×ol−1 is the input of this layer,Wl ∈
Rnl×nl−1k

2
l is the weight matrix, nl−1 and nl are the num-

bers of input and output channels, ol−1 is the number of spa-
tial locations and kl is the kernel size. The the weights’ gra-
dient is computed by DWl = DSl(Âl−1)> ∈ Rnl×nl−1k

2
l .

We will define
ω = [ω1, . . . , ωL]> = [vec(W1)>, . . . , vec(WL)>]>

in the rest of this paper, which is a vector contains all the
parameters of a DNN with L layers and ωl consists all the
parameters of the l-th layer.

Natural Gradient
NGD can be interpreted as a second-order optimization
method (Martens 2014), in which the curvature matrix is the
FIM and given by

F = E[DωDω>] = cov(Dω,Dω),

where the expectation is associated with x sampled from the
training distribution and y sampled according to the predic-
tion distribution P .

The natural gradient is usually defined as F−1∇ωh (A-
mari 1998), which provides the update direction for natural
gradient descent. The parameters are updated by

ω ← ω − αF−1∇ωh,

where α is the learning rate and ∇ωh is the gradient. More
discussion of the natural gradient can refer to (Martens
2014).

Quadratic Form Estimator
Linton and Tang (2019) considered the following Kronecker
product model. For a covariance matrix Θ ∈ Rn×n. Let n =
n1 × n2 × · · · × nr, where nj ∈ Z and nj ≥ 2 for j ∈
{1, . . . , r}. Suppose that

Θ = δ ×Θ1 ⊗Θ2 · · · ⊗Θr, (1)
where 0 < δ < ∞ is a scalar parameter and Θj ∈ Rnj×nj

satisfying tr(Θj) = nj for j ∈ {1, . . . , r}. Based on this
model, the quadratic form estimator with good theoretical
properties is proposed (see for (Linton and Tang 2019)).

Our Method
Consider a DNN with L layers, the FIM can be expressed as

F = E[DωDω>]

=

 E[Dω1Dω>1 ] · · · E[Dω1Dω>L ]
...

. . .
...

E[DωLDω>1 ] · · · E[DωLDω>L ]

 .

Our method is started with a block-diagonal approxima-
tion to the FIM, that is

F = diag(F1, F2, . . . , FL), (2)

where Fl = E[DωlDω>l ] = E[vec(DWl)vec(DWl)
>] ∈

Rml−1ml×ml−1ml for any l ∈ {1, 2, . . . , L}. Although the
FIM can be approximated to L block matrices in Eq. (2), the
dimension of each block matrix Fl is still too large to invert
Fl easily in practice, so further approximation is necessary.

TKFAC for Fully-connected Layers
For a fully-connected layer, the block matrix Fl ∈
Rml−1ml×ml−1ml is computed by

Fl = E[DωlDω>l ] = E[vec(gla
>
l−1)vec(gla

>
l−1)>]

= E[(al−1a
>
l−1)⊗ (glg

>
l )] = E[Λl−1 ⊗ Γl], (3)

where Λl−1 = al−1a
>
l−1 ∈ Rml−1×ml−1 and Γl = glg

>
l ∈

Rml×ml . Then, we give our approximation to Fl by Theo-
rem 1. According to Eq. (3), we use the simplified the model
given by Eq. (1) for fully-connected layers.

Theorem 1. Let Fl = E[Λl−1 ⊗ Γl] ∈ Rml−1ml×ml−1ml

and suppose that Fl can be decomposed as a Kronecker
product scaled by a coefficient δl, i.e.,

Fl = δlΦl ⊗Ψl. (4)

Then, we have

δl =
E[tr(Λl−1)tr(Γl)]

tr(Φl)tr(Ψl)
, (5)

Φl =
tr(Φl)E[tr(Γl)Λl−1]

E[tr(Λl−1)tr(Γl)]
∈ Rml−1×ml−1 , (6)

Ψl =
tr(Ψl)E[tr(Λl−1)Γl]

E[tr(Λl−1)tr(Γl)]
∈ Rml×ml . (7)

Note that in Theorem 1, tr(Φl) and tr(Ψl) are unknown,
but it doesn’t affect the computation because we can assume
that tr(Φl) and tr(Ψl) are arbitrary constants. In practice, we
may assume that tr(Φl) = tr(Ψl) = 1 to reduce computing
costs. In this case, Eq. (5)-Eq. (7) can be simplified as

δl = E[tr(Λl−1)tr(Γl)],

Φl =
E[tr(Γl)Λl−1]

E[tr(Λl−1)tr(Γl)]
, (8)

Ψl =
E[tr(Λl−1)Γl]

E[tr(Λl−1)tr(Γl)]
.

In the rest of this paper, we all use the simplified formulas
as Eq. (8).

7521



TKFAC for Convolutional Layers
For a convolutional layer, the block matrix can be computed
by

Fl = E[vec(DSl(Âl−1)>)vec(DSl(Âl−1)>)>], (9)

where Fl ∈ Rnl−1nlk
2
l×nl−1nlk

2
l . Note that we can’t decom-

pose Eq. (9) directly as fully-connected layers. In order to
extend KFAC to convolutional layers, Grosse and Martens
(2016) adopted some assumptions. Based on these assump-
tions, we propose an assumption for convolutional layers.

Assumption 1. Consider the products of activations Al−1
and pre-activation derivatives DSl, then these products are
uncorrelated at any two different spatial locations.

Under this assumption, we can obtain that Eq. (9) is the
sum of several Kronecker products of two smaller matrices
in Theorem 2. Then, the decomposition of Fl for convolu-
tional layers is given in Theorem 3.

Theorem 2. For the block matrix Fl of a convolutional
layers defined by Eq. (9), let

DSl = [ŭ1, ŭ2, . . . , ŭol−1
] ∈ Rnl×ol−1 ,

(Âl−1)> = [ă1, ă2, . . . , ăol−1
]> ∈ Rol−1×nl−1k

2
l ,

where ŭ is the vector of each column for DSl and ă is the
vector of each column for Al−1. If Assumption 1 holds, we
have

Fl =

ol−1∑
i=1

E[ăiă
>
i ⊗ ŭiŭ>i ]. (10)

Theorem 3. Let Fl ∈ Rnl−1nlk
2
l×nl−1nlk

2
l be the FIM of a

convolutional layer and suppose that Fl can be decomposed
as a Kronecker product scaled by a coefficient δl, i.e.,

Fl = δlΦl ⊗Ψl, (11)

where tr(Φl) = tr(Ψl) = 1. If Assumption 1 holds, we have

δl =

ol−1∑
i=1

E[tr(ăiă
>
i )tr(ŭiŭ

>
i )],

Φl =

ol−1∑
i=1

E[tr(ŭiŭ
>
i )× (ăiă

>
i )]

E[tr(ăiă>i )tr(ŭiŭ>i )]
∈ Rnl−1k

2
l×nl−1k

2
l ,

Ψl =

ol−1∑
i=1

E[tr(ăiă
>
i )× (ŭiŭ

>
i )]

E[tr(ăiă>i )tr(ŭiŭ>i )]
∈ Rnl×nl . (12)

Analysis of Approximation Error
In this subsection, we discuss the approximation error of
TKFAC and give some comparisons. Firstly, we give a vi-
sualization result of TKFAC’s approximation error on M-
NIST in Figure 1. Then, we consider the approximation er-
ror ‖F−FTKFAC‖F in Theorem 4, where F is the exact FIM
defined by Eq. (3), FTKFAC is defined by Eq. (4) and ‖ · ‖F
is the Frobenius norm of a matrix. We give an upper bound
of TKFAC’s approximation error. Finally, we compare the
approximation errors of KFAC and TKFAC in experiment.
For simplicity, we omit the subscript l in this subsection.

Figure 1: A comparison of the exact FIM F and our approx-
imation FTKFAC. We use TKFAC nor to train MNIST on
FNN. The network architecture is 196-20-20-20-20-10. We
show the result of the FIM of the first layer with 20 units,
which is a 400× 400 matrix. On the left is the exact FIM F ,
in the middle is our approximation FTKFAC, and on the right
is the absolute error of these. The white level corresponding
to the size of the absolute values.

Figure 1 shows the visualization results of the exact FIM
F (on the left), TKFAC’s approximation FTKFAC (in the
middle) and the absolute error of these (on the right). In Fig-
ure 1, we can see that FTKFAC is very close to the exact F
and the approximation error is small. Therefore, TKFAC’s
approximation is efficient. Next, we give an upper bound of
TKFAC’s approximation error.

Theorem 4. Suppose that F (i) = a(i)a(i)> ⊗ g(i)g(i)> =
Λ(i) ⊗ Γ(i), i ∈ {1, 2, . . . , N} are the FIMs of differen-
t inputs (here N is the batch-size). Let F be the exact FIM
defined by Eq. (3) and FTKFAC be the approximate FIM in
TKFAC defined by Eq. (4). We have

‖F − FTKFAC‖F ≤
2(N − 1)

N
× max

i<j, i,j∈{1,2,...,N}{√
tr(Λ(i))tr(Λ(j))tr(Γ(i))tr(Γ(j))

}
.

We also consider the KFAC approximation to the FIM,
which is give by FKFAC = E[Λ] ⊗ E[Γ]. Similar to the
discussion of ‖F − FKFAC‖F , we can also obtain an up-
per bound of the the approximation error ‖F − FKFAC‖F
under the same proof process as Theorem 4.

‖F − FKFAC‖F ≤
2(N − 1)

N
× max

i<j, i,j∈{1,2,...,N}{
(tr(Λ(i)) + tr(Λ(j)))(tr(Γ(i)) + tr(Γ(j)))

4

}
.

Note that in general cases except that tr(Λ(i)) = tr(Λ(j))
and tr(Γ(i)) = tr(Γ(j)) for any i, j ∈ {1, 2, . . . , N}, the
upper bound of TKFAC is smaller than KFAC. But this does
not mean that TKFAC’s approximation error is smaller than
KFAC. Such a result may be difficult to obtain in theory, so
we compare the approximation errors of these two methods
in experiment.

In Figure 2, we show the comparison of ‖F − FKFAC‖F
and ‖F − FTKFAC‖F on MNIST, and we give the curve
of the sum of each layer’s error with iterations. It can be
seen that ‖F − FTKFAC‖F is smaller than ‖F − FKFAC‖F ,
which indicates that our approximation may be more exact
than KFAC in this case.

7522



a
p

p
ro

x
im

a
ti

o
n

 e
rr

o
r 

o
f 

th
e 

F
IM

iteration

 KFAC

 TKFAC

Figure 2: The curve of the sum of each layer’s approximation
error with iterations for KFAC and TKFAC. The model is
same as described in Figure 1.

Using TKFAC for Training
To use TKFAC for training DNNs, some tricks should be
employed. In this section, we mainly introduce the normal
damping technique, a new damping technique for TKFAC
on CNNs and the exponential moving averages. We also give
the pseudocode of TKFAC in Algorithm 1.

The Normal Damping Technique
Karakida, Akaho, and Amari (2019) showed that most
eigenvalues of the FIM of DNNs are close to zero, while
only a small number of eigenvalues take on large values.
This leads to most eigenvalues of the inverse FIM to be ex-
tremely huge or even infinite, which causes computational
difficulty and inaccuracy. To make TKFAC stable, we add
λI to the FIM, and we will take the fully-connected layer
as an example to illustrate our damping method in the fol-
lowing. For the fully-connected layer, we add λIml−1ml

∈
Rml−1ml×ml−1ml into Fl =∈ Rml−1ml×ml−1ml , i.e.,

Fl + λIml−1ml
= δlΦl ⊗Ψl + λIml−1

⊗ Iml
. (13)

In order to invert Fl + λIml−1ml
easily in computation

using the properties of the Kronecker product, we approxi-
mate it by the following formula, which has been proposed
in (Martens and Grosse 2015).

Φ̂l =
√
δlΦl +

√
λIml−1

, Ψ̂l =
√
δlΨl +

√
λIml

, (14)

where δl,Φl and Ψl are defined by Eq. (8) (Eq. (12) for con-
volutional layers).

A New Damping Technique for CNNs
In experiments, we find that this damping technique has
some limitations for convolutional layers. In Figure 3, we
compare two ratios, which are the damping divided by the
mean of the diagonal elements of

√
δlΦl and

√
δlΨl for

some layers of ResNet20 when training CIFAR-10 using
TKFAC. As shown in Figure 3 (a) and Figure 3 (b), we find
that the damping of the convolutional layers will soon be
much larger than the mean of its diagonal elements, which
means that the damping may play a major role rather than
the FIM shortly after the start of training. But this problem
doesn’t exist in the fully-connected layer as shown by the
purple curves. This may limit to use the information of the

 conv-1

 conv-2

 conv-3

 conv-4

 FC

0 20k 40k 60k 80k

0

100

200

300

400

d
a

m
p

in
g

 /
 a

v
er

a
g

e 
tr

a
ce

iteration

(a)

 conv-1

 conv-2

 conv-3

 conv-4

 FC

0 20k 40k 60k 80k

0

10

20

30

40

50

d
a

m
p

in
g

 /
 a

v
er

a
g

e 
tr

a
ce

iteration

(b)

 conv-1

 conv-2

 conv-3

 conv-4

 FC

0 10k 20k 30k 40k
10-8

10-3

102

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

(c)

Figure 3: Some comparison results. We choose four dif-
ferent convolutional layers and the fully-connected layer
from ResNet20 network when training CIFAR-10 using TK-
FAC. We record data every 100 iterations. In (a), we show
the changes of

√
λ/(tr(

√
δlΦl)/(nl−1k

2)). In (b), we show
the changes of

√
λ/(tr(

√
δlΨl)/nl). In (c), we show the

changes of traces without restricting δl.

FIM adequately. So we adopt the following damping tech-
nique for convolutional layers, which has good performance
in our experiments. That is

δ̃l = max{ν, δl},

Φ̃l =

√
δ̃lΦl +

δ̃l
nl−1k2l

Inl−1k2
l×nl−1k2

l
, (15)

Ψ̃l =

√
δ̃lΨl +

δ̃l
nl
Inl×nl

,

where δl,Φl and Ψl are defined by Eq. (7) and ν is a reason-
ably large positive scalar.

Algorithm 1 TKFAC nor

Require: learning rate α, damping parameter λ, momen-
tum parameter τ , exponential moving average parameter
ε, FIM and its inverse update intervals TFIM and TINV

t← 0, m← 0, Initialize {Φ̂l}Ll=1 and {Ψ̂l}Ll=1
while convergence is not reached do

Select a new mini-batch
for all l ∈ {1, 2, . . . , L} do

if t ≡ 0 (mod TFIM) then
Update the factors Φ̂l and Ψ̂l using Eq. (17) and
Eq. (18)

end if
if t ≡ 0 (mod TINV) then

Compute the inverses of Φ̂l and Ψ̂l

end if
Compute∇ωl

h using backpropagation
Compute the approximated natural gradient (Φ̂−1l ⊗
Ψ̂−1l )∇ωl

h

ζ ← −α(Φ̂−1l ⊗ Ψ̂−1l )∇ωl
h

m← τm+ ζ (Update momentum)
ωl ← ωl +m(Update parameters)

end for
t← t+ 1

end while
return ω

7523



The reason why we restrict δl is that δl may become very
small and can’t promise that Φl and Ψl don’t have very s-
mall eigenvalues. In Figure 3 (c), we choose the traces of the
fully-connected layer and four different convolutional layers
from ResNet20 when training CIFAR-10 using TKFAC with
this damping technique but without restricting δl. We can see
that the values of δl are very different, and some values are
very small or even become close to zero. So the training be-
comes unstable and a constraint on δl is necessary. What’s
more, we also notice that in Figure 3 (c), δl of convolutional
layers and the fully-connected layer vary widely. In fact, the
role of ν is to expand the elements of the FIM for convolu-
tional layers by some times. However, this expansion does
not work on the fully-connected layer, because the trace of
the fully-connected layer is greater than ν. In order to keep
pace with convolutional layers, we also expanded the FIM
of the fully-connected layer by a factor of β, where

β = max
l∈{1,...,L}

[δ̃l/δl]. (16)

Algorithm
We also use exponential moving averages as previous works,
which take the new estimate to be the old one weighted by ε,
plus the estimate computed on the new mini-batch weighted
by 1− ε. That is

Φ̂
(t+1)
l ← εΦ̂

(t)
l + (1− ε)Φ̂(t+1)

l , (17)

Ψ̂
(t+1)
l ← εΨ̂

(t)
l + (1− ε)Ψ̂(t+1)

l , (18)

where Φ̂l and Ψ̂l are computed by Eq. (14) (It’s similar to
Φ̃l and Ψ̃l if we use the new damping technique) and t is the
iteration. Finally, the parameters are updated

ω
(t+1)
l ← ω

(t)
l − α((Φ̂

(t)
l )−1 ⊗ (Ψ̂

(t)
l )−1)∇ωl

h(t).

In this paper, we define two variants of TKFAC: TK-
FAC nor and TKFAC new (only for CNNs), in which the
normal damping technique and the new damping technique
are used, respectively. Algorithm 1 gives a high level pseu-
docode of TKFAC nor. TKFAC new is similar to Algorithm
1 except the differences as follows: a) We adopt the damping
technique defined by Eq. (15) rather than Eq. (14), and the
damping does not need to be tuned as a hyperparameter dur-
ing training. b) We use a parameter ν to restrict traces given
in Eq. (15), and expand the FIM of the fully-connected layer
by a factor of β defined by Eq. (16).

Experiments
In this section, we evaluate TKFAC’s performance on the
auto-encoder and image classification tasks. Our experi-
ments mainly consist of two parts. In the first part, we fo-
cus on the effectiveness of our approximation, so we mainly
consider the optimization performance of our method based
on some previous tricks (TKFAC nor) compared with oth-
er optimization methods. In the second part, we pay more
attention to the effect of our new damping method and TK-
FAC’s generalized performance, so we compare TKFAC nor
and TKFAC new with other methods on CNNs.

re
co

n
st

ru
ct

io
n

 e
rr

o
r

epoch

 SGDM

 Adam

 KFAC

 TKFAC_nor

(a) Reconstruction error

r
e
c
o

n
st

r
u

c
ti

o
n

 e
r
r
o

r

wall-clock time (s)

 SGDM

 Adam

 KFAC

 TKFAC_nor

(b) Wall-clock time

Figure 4: The curves of reconstruction error on MNIST.

tr
a

in
in

g
 l

o
ss

epoch

 SGDM

 Adam

 KFAC

 TKFAC_nor

(a) Training loss

tr
a

in
in

g
 l

o
ss

wall-clock time (s)

 SGDM

 Adam

 KFAC

 TKFAC_nor

(b) Wall-clock time

Figure 5: The curves of training loss for CIFAR-10 on VG-
G16.

Setup
Throughout this paper, we use three different datasets, M-
NIST (Lecun and Bottou 1998), CIFAR-10 and CIFAR-100
(Krizhevsky, Hinton et al. 2009). We adopt a standard data
augmentation scheme including random crop and horizontal
flip for CIFAR-10 and CIFAR-100. For MNIST, we use an 8-
layer FNN. For CIFAR-10 and CIFAR-100, we use VGG16
(Simonyan and Zisserman 2014) and ResNet20 (He et al.
2016). We choose SGDM, Adam (Kingma and Ba 2014) and
KFAC (Martens and Grosse 2015) as baselines and we use
batch normalization for all methods. Other related methods
are also considered, but they tend to have similar or worse
performance than these baselines.

All experiments are run on a single RTX 2080Ti GPU us-
ing TensorFlow. We mainly follow the experimental setup
without weight decay in (Zhang et al. 2019). The hyper-
parameters including the initial learning rate α, the damp-
ing parameter λ and the parameter ν are tuned using a grid
search with values α ∈ {1e-4, 3e-4, . . . , 1, 3}, λ ∈ {1e-8,
1e-6, 1e-4, 3e-4, 1e-3, . . . , 1e-1, 3e-1} and ν ∈ {1e-4, 1e-3,
. . . , 10}. The moving average parameter ε and the momen-
tum are set to 0.95 and 0.9, respectively. The update intervals
are set to TFIM = TINV = 100. All experiments are run 200
epochs and repeated five times with a batch size of 500 for
MNIST and 128 for CIFAR-10/100. The results are given as
mean ± standard deviation.

Part I
In this part, the main concern is to verify the validity of our
approximation and compare different optimization methods,
so TKFAC new is not considered. Following previous work
(Martens and Grosse 2015; Grosse and Martens 2016; Gold-

7524



te
st

in
g

 a
cc

u
ra

cy

epoch

 SGDM

 Adam

 KFAC

 TKFAC_nor

 TKFAC_new

(a) VGG16-accuracy

te
st

in
g

 a
cc

u
ra

cy

epoch

 SGDM

 Adam

 KFAC

 TKFAC_nor

 TKFAC_new

(b) ResNet20-accuracy

te
st

in
g

 a
cc

u
ra

cy

wall-clock time (s)

 SGDM

 Adam

 KFAC

 TKFAC_nor

 TKFAC_new

(c) VGG16-time

te
st

in
g

 a
cc

u
ra

a
cy

wall-clock time (s)

 SGDM

 Adam

 KFAC

 TKFAC_nor

 TKFAC_new

(d) ResNet20-time

Figure 6: The curves of testing accuracy for CIFAR-100 on
VGG16 and ResNet20.

farb, Ren, and Bahamou 2020), we mainly give the results of
the training set. The learning rate is kept constant as George
et al. (2018).

We first consider an 8-layer auto-encoder task on M-
NIST, which is a standard task used to benchmark optimiza-
tion methods (Hinton and Salakhutdinov 2006; Martens and
Grosse 2015; George et al. 2018; Goldfarb, Ren, and Ba-
hamou 2020). Following these previous works, we report
the reconstruction error on the training set and the results
are shown in Figure 4. Figure 4(a) shows the curve of er-
ror with epochs throughout training. We can see that TK-
FAC nor minimizes the error faster per epoch than other
baselines and achieves lowest error after 200 epochs. As
shown in Figure 4(b), TKFAC nor has similar computation
time (slightly more) to KFAC and it still minimizes the error
faster than other baselines in terms of time.

Next, we evaluate TKFAC on CNNs. The dataset and
model used here are CIFAR-10 and VGG16, respective-
ly. Figure 5(a) shows that TKFAC nor’s training loss has a
faster decline rate in the first few epochs. And all methods
reach similar loss after 200 epochs except Adam. In terms
of time, TKFAC nor still has some advantages over SGDM
as given in 5(b).

Part II
In this part, we pay more attention to evaluating TKFAC’s
generalized performance. We compare TKFAC nor, TK-
FAC new with SGDM, Adam, and KFAC on CIFAR-10
and CIFAR-100. The CNNs used here are VGG16 and
ResNet20. A learning rate schedule is also used. The ini-
tial learning rate is multiplied by 0.1 every 40 epochs for
KFAC/TKFAC nor/TKFAC new and every 60 epochs for S-
GDM/Adam. Experimental results are given as follows.

Figure 6 shows the curves of the testing accuracy of
CIFAR-100 on VGG16 and ResNet20 in terms of epochs
and time. We can see that all the second-order optimizers
(KFAC, TKFAC nor and TKFAC new) converge faster than

Dataset CIFAR-10 CIFAR-100

VGG16

SGDM 91.77± 0.25 67.63± 0.42
Adam 92.57± 0.31 69.74± 0.19
KFAC 92.70± 0.39 70.84± 0.27

TKFAC nor 93.33± 0.20 71.06±0.45
TKFAC new 93.42±0.11 70.91± 0.34

ResNet20

SGDM 92.78± 0.39 73.55± 0.08
Adam 93.57± 0.22 73.79± 0.21
KFAC 93.69± 0.16 74.18± 0.27

TKFAC nor 93.76± 0.19 74.43± 0.41
TKFAC new 94.66± 0.12 77.01± 0.34

Table 1: Testing accuracy of CIFAR-10 and CIFAR-100.

SGDM and Adam. The convergence rate of TKFAC nor is
slightly faster than KFAC on VGG16, but there is little d-
ifference in ResNet20. It is obvious that TKFAC new has a
faster convergence rate than KFAC, especially on ResNet20.
The final testing accuracies of these methods are given in
Table 1. TKFAC nor can achieve higher average accuracy
than SGDM, Adam and KFAC in all cases. Especially, TK-
FAC new greatly improves the final accuracy on ResNet20
(for example, improve 2.83% than KFAC) with significantly
faster convergence rate.

Experimental results show that TKFAC nor outperforms
than other baselines in most cases. TKFAC new can accel-
erate the convergence and improve the testing accuracy on
ResNet20, which shows the effectiveness of our new damp-
ing technique, although it does not improve much on VG-
G16. Of course, due to the limitation of computational re-
source, the performance of TKFAC in large-scale problem-
s needs to be further verified. We also want to emphasize
that the new damping scheme is our preliminary attemp-
t and it may be limited by the network structure. For oth-
er second-order optimization methods, we think that their
damping may have the same problem as TKFAC, that is the
damping will be large enough to dominate the curvature and
turns them into first-order optimizers. So appropriate damp-
ing schemes or other techniques should be used to avoid this
problem, and our approach may provide a direction.

Conclusion and Future Work
In this work, we presented a new method called TKFAC. The
important property of our method is to keep the traces equal.
We considered the approximation error and gave some anal-
yses. We also discussed the damping technique, and adopted
a new damping technique for TKFAC on CNNs. In experi-
ments, we showed that TKFAC have better performance than
SGDM, Adam and KFAC in most cases.

Of course, we think TKFAC can also be extended to oth-
er DNNs. We also want to explore TKFAC’s performance
on more datasets and more diversified network architectures.
TKFAC will also be applied on MindSpore1, which is a new
deep learning computing framework. These problems are
left for future work.

1https://www.mindspore.cn/

7525



References
Amari, S.-I. 1998. Natural gradient works efficiently in
learning. Neural Computation 10(2): 251–276.

Ba, J.; Grosse, R.; and Martens, J. 2017. Distributed second-
order optimization using Kronecker-factored approxima-
tions. In International Conference on Learning Represen-
tations.

Bae, J.; Zhang, G.; and Grosse, R. 2018. Eigenvalue correct-
ed noisy natural gradient. In Workshop of Bayesian Deep
Learning, Advances in Neural Information Processing Sys-
tems.

Becker, S.; and Lecun, Y. 1988. Improving the convergence
of back-propagation learning with second-order methods.
In Proceedings of the 1988 Connectionist Models Summer
School.

Berahas, A. S.; Jahani, M.; and Takáč, M. 2019. Quasi-
Newton methods for deep learning: Forget the past, just sam-
ple. arXiv preprint arXiv:1901.09997 .

Bottou, L. 1991. Stochastic gradient learning in neural net-
works. In Proceedings of Neuro-Nmes 91.

Fan, J.; and Mincheva, L. M. 2011. High-dimensional co-
variance matrix estimation in approximate factor models.
Annals of Statistics 39(6): 3320–3356.

George, T.; Laurent, C.; Bouthillier, X.; Ballas, N.; and Vin-
cent, P. 2018. Fast approximate natural gradient descent in
a Kronecker factored eigenbasis. In Advances in Neural In-
formation Processing Systems, 9550–9560.

Goldfarb, D.; Ren, Y.; and Bahamou, A. 2020. Practical
quasi-Newton methods for training deep neural networks.
arXiv preprint arXiv: 2006.08877v1 .

Grosse, R.; and Martens, J. 2016. A Kronecker-factored ap-
proximate Fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning, 573–582.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, 770–778.

Hinton, G. E.; and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. Science
313(5786): 504–507.

Hoff, P. D. 2016. Equivariant and scale-free Tucker decom-
position models. Bayesian Analysis 11(3).

John, D.; Elad, H.; and Yoram, S. 2011. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
Journal of Machine Learning Research 12(Jul): 2121–2159.

Karakida, R.; Akaho, S.; and Amari, S.-I. 2019. Pathological
spectra of the Fisher information metric and its variants in
deep neural networks. arXiv preprint arXiv:1910.05992 .

Keskar, N. S.; and Berahas, A. S. 2016. ADAQN: An adap-
tive quasi-Newton algorithm for training RNNs. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, 1–16.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations.
Kiros, R. 2013. Training neural networks with stochastic
Hessian-free optimization. In International Conference on
Learning Representations.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images .
Lecun, Y.; and Bottou, L. 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE
86(11): 2278–2324.
Ledoit, O.; and Wolf, M. 2004. A well-conditioned estima-
tor for large-dimensional covariance matrices. Journal of
Multivariate Analysis 88(2): 365–411.
Likas, A.; and Stafylopatis, A. 2000. Training the random
neural network using quasi-Newton methods. European
Journal of Operational Research 126(2): 331–339.
Linton, O. B.; and Tang, H. 2019. Estimation of the Kro-
necker covariance model by partial means and quadratic for-
m. arXiv preprint arXiv:1906.08908 .
Martens, J. 2010. Deep learning via Hessian-free optimiza-
tion. In International Conference on Machine Learning,
735–742.
Martens, J. 2014. New insights and perspectives on the nat-
ural gradient method. arXiv preprint arXiv:1412.1193v1 .
Martens, J.; Ba, J.; and Johnson, M. 2018. Kronecker-
factored curvature approximations for recurrent neural net-
works. In International Conference on Learning Represen-
tations.
Martens, J.; and Grosse, R. 2015. Optimizing neural
networks with Kronecker-factored approximate curvature.
In International Conference on Machine Learning, 2408–
2417.
Martens, J.; and Ilya, S. 2011. Deep learning via Hessian-
free optimization. In International Conference on Machine
Learning, 1033–1040.
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Yokota, R.; and
Matsuoka, S. 2019. Large-scale distributed second-order
optimization using Kronecker-factored approximate curva-
ture for deep convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 12359–12367.
Pan, W.; Innanen, K. A.; and Liao, W. 2017. Accelerating
Hessian-free Gauss-Newton full-waveform inversion via L-
BFGS preconditioned conjugate-gradient algorithm. Geo-
physics 82(2): R49–R64.
Pauloski, J. G.; Zhang, Z.; Huang, L.; Xu, W.; and Foster,
I. T. 2020. Convolutional neural network training with dis-
tributed K-FAC. arXiv preprint arXiv:2007.00784v1 .
Qian, N. 1999. On the momentum term in gradient descent
learning algorithms. Neural Networks 12(1): 145–151.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .

7526



Tieleman, T.; and Hinton, G. 2012. Lecture 6.5-RMSProp:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning
4(2): 26–31.
Yao, Z.; Gholami, A.; Shen, S.; Keutzer, K.; and Ma-
honey, M. W. 2020. AdaHessian: An adaptive second or-
der optimizer for machine learning. arXiv preprint arX-
iv:2006.00719v1 .
Zhang, G.; Sun, S.; Duvenaud, D.; and Grosse, R. 2018.
Noisy natural gradient as variational inference. In Interna-
tional Conference on Machine Learning, 5847–5856.
Zhang, G.; Wang, C.; Xu, B.; and Grosse, R. 2019. Three
mechanisms of weight decay regularization. In International
Conference on Learning Representations.

7527


