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Abstract
The problem of unsupervised domain adaptation in seman-
tic segmentation is a major challenge for numerous com-
puter vision tasks because acquiring pixel-level labels is time-
consuming with expensive human labor. A large gap exists
among data distributions in different domains, which will
cause severe performance loss when a model trained with
synthetic data is generalized to real data. Hence, we propose
a novel domain adaptation approach, called Content Invari-
ant Representation Network, to narrow the domain gap be-
tween the source (S) and target (T ) domains. The previous
works developed a network to directly transfer the knowl-
edge from the S to T . On the contrary, the proposed method
aims to progressively reduce the gap between S and T on
the basis of a Content Invariant Representation (CIR). CIR is
an intermediate domain (I) sharing invariant content with S
and having similar data distribution to T . Then, an Ancillary
Classifier Module (ACM) is designed to focus on pixel-level
details and generate attention-aware results. ACM adaptively
assigns different weights to pixels according to their domain
offsets, thereby reducing local domain gaps. The global do-
main gap between CIR and T is also narrowed by enforcing
local alignments. Last, we perform self-supervised training
in the pseudo-labeled target domain to further fit the distri-
bution of the real data. Comprehensive experiments on two
domain adaptation tasks, that is, GTAV → Cityscapes and
SYNTHIA → Cityscapes, clearly demonstrate the superior-
ity of our method compared with state-of-the-art methods.

Introduction
The past few years have witnessed the rapid development
of deep learning, which made a vital effect on many com-
puter vision tasks, such as semantic segmentation. Semantic
segmentation aims to assign each pixel of a photograph to
a semantic class label to distinguish different things on the
image. That is, semantic segmentation can be understood as
a pixel-level classification task.

For computer-generated images, obtaining their semantic
labels is very simple, but acquiring the labels of real pictures
requires expensive human labor (Luo et al. 2018). More-
over, in some scenarios, such as autonomous cars and indus-
try robots, huge amount of real images with accurate labels
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Figure 1: Connection of CIR with source and target do-
mains. S and T denote source and target domain, respec-
tively. The image from S has the same content with its cor-
responding CIR image. The blue, red, and yellow dots rep-
resent the distribution of T , S, and CIR, respectively. CIR
has a similar distribution to T .

are indispensable for training. In the case that the number
of labeled real images is not enough, utilizing synthetically
generated data is one promising approach that addresses the
above issues (Richter et al. 2016; Ros et al. 2016). Never-
theless, models trained with the synthetic images perform
unsatisfactorily when applied to a realistic domain because
of the existence of cross-domain discrepancy (Shimodaira
2000).

To solve the aforementioned problems, unsupervised do-
main adaptation (UDA) approaches (Saenko et al. 2010)
are proposed to reduce distribution offsets between source
and target domains. Numerous domain adaptation methods
(Hoffman et al. 2016; Sankaranarayanan, Balaji, and Jain
2018; Song et al. 2020; Zhang et al. 2019) are designed to
learn the domain-invariant features of the source and target
domains. Thus, when we have no access to the target do-
main labels, the model learned from the source domain can
be applied to the target domain.

Some prior works (Lee et al. 2019; Chen et al. 2017; Zou
et al. 2018; Chen et al. 2019; Zhao et al. 2019; Murez et al.
2018) tend to directly adapt the information of the source do-
main to the target domain. The distance between these two
feature spaces is often very far, and many categories have
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major differences across different domains. Hence, the adap-
tation results generated by those works are not satisfactory.
To overcome this limitation, we propose a Content Invari-
ant Representation Network (CIRN) to narrow the domain
gap between the source (S) and target (T ) domains. CIRN
constructs a Content Invariant Representation (CIR) by in-
troducing an additional intermediate domain (I) for seman-
tic segmentation. Specifically, CIR has the invariant content
with S but different appearance, while sharing similar data
distribution to T but diverges in image details. Therefore,
CIR could serve as a good intermediator to connect S and
T , as illustrated in Figure 1.

Our adaptation happens in three stages. First, we construct
a CIR to make the adaptation task easier because aligning
data distributions between two distant domains is challeng-
ing. That is, we reduce the domain gap from S to T bridged
by CIR instead of directly solving the domain shift between
S and T . In practice, the ways to construct the CIR could be
numerous. In this work, we adopt a widely-used algorithm
to transfer the style of images from S to T without chang-
ing their original content. Image translation algorithms make
the overall style, lighting, tone, and other stylization factors
of the source domain images look like the target domain im-
ages. However, they still cannot perfectly translate due to the
absence of paired training data. Thus, we define the trans-
lated images as images of CIR. In addition, they form a new
intermediate domain I , which has a smaller distance with T .

Second, we perform domain adaptation from CIR to T
by introducing an ACM and a pixel-level adversarial loss.
When stylized source images often fail to preserve details
completely, these failure cases may lead CIR to have a large
distance with the target distribution. Consequently, after the
global domain adaptation in stage 1, we focus on the local
pixel-level domain shift in stage 2 by assigning each pixel
different weights. In other words, ACM aims to conduct
global domain adaptation by guiding local domain adapta-
tion.

Finally, generating the pseudo labels with the model
trained in stage 2, we can finetune the network using a self-
supervised learning strategy, which narrows the large distri-
bution gap among the target data itself.

The main contributions of this work are summarized as
follows:

• We propose a CIRN to address the problem of UDA-
based semantic segmentation gradually, from global to lo-
cal adaptation. Specifically, we construct a CIR lying be-
tween source and target domains to align the distribution
shift based on an intermediate feature space. CIR shares
invariant content and the same labels with the source do-
main and has similar data distribution to the target do-
main.

• We propose an ACM to help domain adaptation network
focus on pixel-level details, thereby producing additional
convinced results by introducing attention modules. ACM
performs local domain alignment to adapt information
from the intermediate domain to the target domain.

• Experiments conducted on two challenging benchmark
datasets can validate the effectiveness of our proposed

method against existing state-of-the-art approaches.

Related Work
This section focuses on adversarial training, image-level
transferring, and curriculum style based approaches for
UDA, which form the main motivations of our proposed
method.

Adversarial Training Based Approaches
Adversarial training based approaches have been widely
studied since FCNs-Wild (Hoffman et al. 2016). This kind
of methods usually consists of a generator to predict the
segmentation results and a discriminator to minimize the di-
vergences between source and target domains. FCNs-Wild
(Hoffman et al. 2016) is the first to adopt adversarial train-
ing for UDA semantic segmentation and not only aligns the
global domain shift but also performs local alignment. Tsai
et al. found multiple modes of patch-wise output distribution
and thus proposed a method to learn discriminative feature
representations of patches in the source domain (Tsai et al.
2019). ADVENT (Vu et al. 2019) enforced high prediction
certainty (low-entropy) on target predictions by introduc-
ing an entropy adversarial loss to achieve domain adapta-
tion. CLAN (Luo et al. 2019) took advantage of co-training
by utilizing the discrepancy between two classifiers’ outputs
and proposed an adaptive adversarial loss to enforce domain
alignment.

Image-Level Transferring Based Approaches
Image-level transferring based approaches are proposed to
transfer the appearance of source or target images to make
them visually similar. CyCADA (Hoffman et al. 2018) trans-
ferred the style of source images while enforcing cycle-
consistency and leveraging segmentation loss. DCAN (Wu
et al. 2018) explored statistics in each channel of feature
maps by performing channel-wise feature alignment in an
image translator and a segmentation classifier. Choi et al.
raised a self-ensembling data augmentation method by trans-
ferring image style to facilitate domain alignment (Choi,
Kim, and Kim 2019). Song et al. actively transferred the
style from the target to the source domain to reduce the
visual gap between them. They also introduced a percep-
tual loss to ensure image similarity (Song et al. 2020). An-
other related work considered the texture difference between
the two domains and bridged the domain gap by diversify-
ing the texture of synthetic images using two style trans-
fer algorithms (Kim and Byun 2020). However, this method
only considered global adaptation by transferring the style
of source images twice, and bad stylized pixels may result
in worse local adaptation. DISE (Chang et al. 2019) found
an image representation, which comprises domain-invariant
structure and domain-specific texture component and fur-
ther realized image-translation across domains. CPN (Yang
et al. 2020) and FDA (Yang and Soatto 2020) translated
the style of source images through a simple Fourier Trans-
form and its inverse. Dong et al. developed a transfer model
to alternatively determine where and how to explore trans-
ferable domain-invariant knowledge between two domains
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Figure 2: Framework of our CIRN. Our adaptation happens in three stages. First, we map the source domain to the target
domain by transferring style with a CIR introducing. Second, we perform domain adaptation from CIR to the target domain by
ACM and pixel-level adversarial loss. Finally, we can improve the framework with a self-supervised learning strategy.

(Dong et al. 2020). Yue et al. proposed to randomize the
style of synthetic images with auxiliary datasets and intro-
duced a pyramid consistency to learn domain-invariant rep-
resentations (Yue et al. 2019). DLOW (Gong et al. 2019)
bridged domain gap by generating a continuous sequence
(style transferred images) flowing from one domain to the
other.

Curriculum Style Based Approaches
Our work is also relevant to curriculum style based ap-
proaches (Zhang et al. 2020; Lian et al. 2019; Pan et al.
2020), which deal with easy tasks, such as inferring neces-
sary properties about the target domain first. Zhang et al. ini-
tially gained some high-level properties about the unknown
pixel-level labels for target images and then trained the se-
mantic segmentation network (Zhang et al. 2020). PyCDA
(Lian et al. 2019) constructed a pyramid curriculum, which
contains various properties about the target domain. Those
properties can improve the segmentation network’s general-
ization capability to the target domain. Pan et al. conducted
the inter-domain adaptation of the model first and then sepa-
rated the target domain into an easy and hard split to reduce
the intra-domain gap (Pan et al. 2020).

Content Invariant Representation Network
Overview of the Proposed Model
S denotes the source domain, containing source data XS

with pixel-level labels YS , and T denotes the target domain,
where we only have access to the dataXT . We aim to train a
semantic segmentation network to predict accurate labels for
XT . In this section, we present a network with three stages,
which can progressively bridge the domain gap step by step.
Figure 2 shows the framework of our proposed method. The
first stage is constructing CIR by introducing an interme-
diate domain I . We apply CycleGAN (Zhu et al. 2017) to

map the source domain images to the target distributions in
the image-level. Then in the second stage, the domain gap
between I and T is narrowed by training the adaptive se-
mantic segmentation model. Finally, we can adopt the self-
training strategy with direct supervision to obtain our final
model based on the pseudo labels generated in stage 2.

Constructing Content Invariant Representation
We construct CIR by introducing an intermediate domain I
(Hsu et al. 2020) with applying the image-to-image transla-
tion network CycleGAN (Zhu et al. 2017). Since the major
contribution of our work is to propose a CIRN framework
rather than develop a fixed approach to generate the CIR,
we employ the CycleGAN to validate the effectiveness of
CIR due to its simplicity and generality. In fact, CIR can
still work well if another appropriate approach is employed
to generate the CIR.

The objective is to map the source domain images to
mimic the ones in the target domain, for ground truth la-
bels are only available in the source domain. S and I have
similar content but different appearance, whereas I and T
diverge in image details, but distributions between them re-
semble. Thus, this generated domain serves as an interme-
diary to assist in reducing the adaptation difficulty when a
large domain gap exists between S and T .

The goal of the first stage is to learn mapping functions
between S and T . We have two mappings G : S → T and
F : T → S, two adversarial discriminatorsDS andDT .DS

aims to distinguish between source images xs ∈ XS and
translated images F (xt) (xt ∈ XT ), whereas DT aims to
discriminate between xt and G(xs). We express the adver-
sarial loss as:

LGAN (G,DT , S, T ) = Ext∼XT
[logDT (xt)]

+ Exs∼XS
[log(1−DT (G(xs))]

(1)
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Figure 3: Framework of ACM, comprisingK attention mod-
ules embedded in a classifier.

LGAN (F,DS , T, S) = Exs∼XS
[logDS(xs)]

+ Ext∼XT
[log(1−DS(F (xt))]

(2)

We impose a cycle-consistency constraint (Hoffman et al.
2018; Zhu et al. 2017) to prevent the learned mappings G
and F from contradicting with each other to encourage the
preservation of the content of the source images. The cycle
consistency loss is:

Lcyc(G,F, S, T ) = Exs∼XS
[‖F (G(xs))− xs‖1]

+ Ext∼XT
[‖F (G(xt))− xt‖1]

(3)

where ‖·‖1 denotes L1 norm.
In addition, we explicitly encourage high semantic consis-

tency before and after image translation to ensure the accu-
racy of the semantic labels when trained in the second stage.
Thus, we pretrain a source segmentation model and fix its
weights to compute the semantic consistency loss to stimu-
late an image to be classified in the same way after transla-
tion as it was before translation according to this classifier
(Hoffman et al. 2018; Li, Yuan, and Vasconcelos 2019). We
express the objective as:

Lsem(G,S) = −
H×W∑
i=1

C∑
c=1

yH×W×C
s logPH×W×C

S (4)

where H , W , and C represent the height, width and number
of categories, respectively. ys ∈ YS is the label of the source
domain and Ps is the predicted probability of G(xs).

With the above loss terms, the overall loss function of
stage 1 can be written as:

Lstage1(G,F, S, T,DS , DT ) = LGAN (G,DT , S, T )

+ LGAN (F,DS , T, S)

+ Lcyc(G,F, S, T )

+ Lsem(G,S)

(5)

Then, the intermediate domain I is constructed, XI consists
of G(xs) (xs ∈ XS), and YI consists of ys (ys ∈ YS).

Adaptive Semantic Segmentation
The second stage aims to address the domain shift between
I and T . Our network is composed of a feature extractor F ,
a discriminator D, a classifier C and an ACM. For an inter-
mediate domain image xi ∈ XI with its ground-truth label
yi ∈ YI . F transforms xi to high-level semantic features.
Then, C and ACM generate a prediction PI , with which
we can compute supervised cross-entropy loss. In the same
time, PI is fed to D to generate an adversarial loss. For a
target image xt, its prediction map is also generated by C
and ACM. Different from the intermediate data process, we
additionally compute their distance out of p1 and p2 (Luo
et al. 2019), represented as R(p1, p2), where p1 denotes the
output of C, p2 denotes the output of ACM, and R(·) de-
notes cosine distance between them. Then, we perform an
element-wise multiplication with R(p1, p2) and the output
adversarial loss of D. Also, in order to make the classifier in
ACM and C have different parameters, we impose a weight
discrepancy loss following the work(Luo et al. 2019).

In stage 1, the global domain gap becomes smaller, so
we have to focus more on local pixel-level divergence. Dif-
ferent regions in the images usually correspond to different
levels of domain shift. Thus, those noteworthy regions de-
serve additional attention. Following the works (Chen et al.
2016; Wang et al. 2017; Xu et al. 2019), we introduce the at-
tention module into ACM to learn attention-aware features.
The framework of ACM is shown in Figure 3, comprising
K attention modules embedding in a classifier, where the
output of ACM is the sum of K modules. ACM will focus
on the pixels with a large domain gap to help C supplement
details because C focuses on feature-level information. The
attention map ranges from [0, 1], thereby playing the role
of controlling features for input. If some pixels in attention
maps have large values, then these pixels are of a vital level
of domain gap. Under this circumstance, the network will be
pushed to accelerate the alignment process of those pixels.

Our second stage has two loss functions, namely, segmen-
tation loss and pixel-level adversarial loss. The segmenta-
tion loss is:

Lseg(XI) = −
H×W∑
i=1

C∑
c=1

yH×W×C
i logPH×W×C

I (6)

where PI denotes the predicted probability map generated
by the sum of the outputs of ACM and C. Following the
work (Luo et al. 2019), in order to ensure the classifier in
ACM and C to have as different views as possible and in the
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mIoU
Source Only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

UIDA 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3
CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

ADVENT 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
DISE 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
CRST 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

WeekSegDA 91.6 47.4 84.0 30.4 28.3 31.4 37.4 35.4 83.9 38.3 83.9 61.2 28.2 83.7 28.8 41.3 8.8 24.7 46.4 48.2
Ours 91.5 48.7 85.2 33.1 26.0 32.3 33.8 34.6 85.1 43.6 86.9 62.2 28.5 84.6 37.9 47.6 0.0 35.0 36.0 49.1

Table 1: Results of domain adaptation task GTAV→ Cityscapes over 19 classes.

same time make as similar predictions as possible, we com-
pute the cosine distance between the outputs/parameters of
ACM and C to focus on the pixels suffering from major do-
main shift. Benefiting from that, when the cosine distance
R(p1, p2) between ACM and C is large, large weights will
be assigned as to encourage segmentation model to fool dis-
criminator D. In addition, the computation of distance cor-
responds to our ACM. The pixel-level adversarial loss is:

Ladv(XI , XT ) = −E[logPI ]−
E[(λcosR(p1, p2) + ε) log(1− PT )]

(7)

In Equation 7, we add a small number ε to stabilize the train-
ing process. Then, the overall loss function of stage 2 can be
formulated as:

Lstage2(XI , XT ) = Lseg(XI) + λadvLadv(XI , XT ) (8)

Self-Training with Pseudo Labels
In the third stage, we generate pseudo labels for target do-
main images with the model trained in stage 2. Then we
calculate the supervised segmentation loss to finetune our
adaptive semantic segmentation model:

Lstage3(XT ) = −
H×W∑
i=1

C∑
c=1

ŷH×W×C
t logPH×W×C

T (9)

where ŷt represents the pseudo label and PT represents the
predicted map for target image.

Experiments
Datasets
Following the experimental setup of previous works (Tsai
et al. 2019; Chang et al. 2019), we conduct extensive exper-
iments on two adaptation tasks, that is, GTAV (Richter et al.
2016) to Cityscapes (Cordts et al. 2016) and SYNTHIA (Ros
et al. 2016) to Cityscapes.

GTAV is a dataset, which contains 24,966 synthetic urban
scene images with a resolution of 1, 914× 1, 052. For train-
ing, we consider 19 common categories semantic labels to
be compatible with the Cityscapes dataset.

SYNTHIA: SYNTHIA-RAND-CITYSCAPES is an-
other photorealistic synthetic image dataset, which consists
of 9,400 images with a resolution of 1, 280 × 760. We vali-
date on 16 common classes with the Cityscapes dataset, and
the evaluation of 13 classes is also reported.

Cityscapes is a real-world collected dataset which pro-
vides 5,000 densely annotated images with 2, 048 × 1, 024
resolution. We use 2,975 training images for training and
500 validation images for testing.

Implementation Details
We implement the proposed framework using the PyTorch
toolbox on a single Tesla V100 GPU with 16 GB memory.
For stage 1, we adopt CycleGAN (Zhu et al. 2017) as our
image-to-image translation network. The model is trained
using Adam (Kingma and Ba 2014) optimizer with the ini-
tial learning rate of 2 × 10−4 and β1 = 0.5, β2 = 0.999.
Batch-size is set to 1 for all stages. For stage 2, we adopt the
DeepLab-v2 (Chen et al. 2018) framework with the ResNet-
101 (He et al. 2016) architecture pretrained on ImageNet
(Deng et al. 2009) as our segmentation backbone network.
C and the classifier in ACM are copies of the last classifi-
cation module of the backbone network. For D, we adopt a
similar structure with CLAN (Luo et al. 2019), which con-
sists of 5 convolution layers with kernel 4× 4 with channel
numbers {64, 128, 256, 512, 1} and stride of 2. Each con-
volution layer is followed by a Leaky-ReLU activation pa-
rameterized by 0.2 except the last layer. During training, we
use SGD (Bottou 2010) as the optimizer for segmentation
network with a momentum of 0.9 and initial learning rate
of 2.5 × 10−4, while utilizing Adam to optimize D with
β1 = 0.9, β2 = 0.99 and initializing the learning rate to
1×10−4. We set optimizers a weight decay of 5×10−4 with
a poly learning rate decay policy. We train the network for
100,000 iterations. We resize Cityscapes, GTAV, SYNTHIA
to 1, 024× 512, 1, 280× 720, and 1, 280× 760 respectively.
We also set K, λadv , λcos and ε to 2, 0.001, 40, and 0.4. For
stage 3, the same learning rate and optimizer with stage 2
are used to finetune our network.

Comparison with State-of-the-Art Methods
In this section, we compare our method with several state-
of-the-art methods with the same backbone network, the re-
sults of the comparison methods we cited here are reported
in their original papers. The results of our proposed model
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SYNTHIA→ Cityscapes
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mIoU mIoU*
Source Only 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

CrCDA 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 42.9 50.0
LTIR 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
UIDA 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

MaxSquare 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.4 48.2
AdaptPatch 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

LSE 82.9 43.1 78.1 9.3 0.6 28.2 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 42.6 49.4
Ours 85.8 40.4 80.4 4.7 1.8 30.8 16.4 18.6 80.7 80.4 55.2 26.3 83.9 43.8 18.6 34.3 43.9 51.1

Table 2: Results of domain adaptation task SYNTHIA→ Cityscapes. mIoU is calculated over 16 classes, and mIoU* denotes
the mean IoU of 13 classes, excluding the classes with *.

we presented in this paper were the best in many times ex-
periments.

GTAV to Cityscapes. Table 1 shows the results of
the domain adaptation task GTAV → Cityscapes over 19
classes. Our method outperforms the source-only segmen-
tation method by +12.5% in mIoU. Moreover, our method
can achieve significantly better results than that of the com-
pared state-of-the-art works UIDA (Pan et al. 2020), CLAN
(Luo et al. 2019), ADVENT (Vu et al. 2019), DISE (Chang
et al. 2019), CRST (Zou et al. 2019), and WeekSegDA (Paul
et al. 2020). In particular, our method is good at predicting
background objects that occupy a large area, such as “road”,
“building”, “terrain”, and “sky”.

SYNTHIA to Cityscapes. We also conduct extensive ex-
periments on the challenging SYNTHIA dataset. Table 2
presents experimental results, and our method obtains ap-
proximately 10.4% higher in 16 classes and 12.5% higher in
13 classes than non-adapted baseline in terms of mIoU. Sim-
ilarly, CIRN achieves the best performance when compared
with CrCDA (Huang et al. 2020), LTIR (Kim and Byun
2020), UIDA (Pan et al. 2020), MaxSquare (Chen, Xue, and
Cai 2019), AdaptPatch (Tsai et al. 2019), and LSE (Subhani
and Ali 2020).

K 0 1 2 3 4
GTAV 44.5 45.0 46.1 45.1 44.6

SYNTHIA 39.9 41.1 41.5 41.7 40.8

Table 3: Comparisons about different K in terms of mIoU
on stage 2 for domain adaptation tasks.

Parameter Analysis and Ablation Study
In this section, we aim to study the proper values for hy-
perparameter K, λcos and ε. Following the work (Luo et al.
2019), for λcos, and ε, we utilize the loss of D to indicate
convergence performance. That is to say, if the loss of D
converges approximately 0.5, D has the same probability to
distinguish two domains, then a stable adversarial training is
achieved. First, we set K to 3 and test our model using λcos
= 10, with varying ε over a range {0.1, 0.2, 0.4, 0.6, 0.8, 1}.
In this experiment, D suffers from poor convergence when
we set ε to relatively small or big values, for example, 0.1,

0.2, 0.8, or 1. As a result, we then test our model using ε =
0.4 with varying λcos over a range {1, 10, 20, 40, 80}. The
experimental results show that the convergence performance
of D is not very sensitive to λcos because the loss converges
to proper values despite the value of λcos. Thus, we choose
λcos = 40 and ε = 0.4, for this combination achieves the best
performance in terms of mIoU. Then, using λcos = 40 and
ε = 0.4, we conduct a study to choose the proper value for
hyperparameterK. As shown in Table 3, under different set-
tings, when K = 2, the adaptation result is the best for
GTAV, and when K = 3, the adaptation result is the best
for SYNTHIA. Considering that the performance on SYN-
THINA is slightly worse when K = 2 than K = 3, we
finally set K = 2. Notebly, when K = 0, ACM will de-
generate to a normal classifier. Moreover, this finding can
prove that the introducing of ACM boosts the performance
of domain adaptation.

SO CIR ASS ST mIoU

GTAV

X 36.6
X 42.7

X 43.6
X X 46.1

X X 44.2
X X X 49.1

SYNTHIA

X 33.5
X 39.7

X 39.5
X X 41.5

X X 40.8
X X X 43.9

Table 4: Ablation study of our proposed framework in terms
of mIoU.

We report the segmentation results of every stage in Ta-
ble 4 to show the effectiveness of our entire framework. SO
means results trained with source only, ASS means our stage
2 adaptive semantic segmentation network, ST means stage
3 self-training. The domain gap is bridged progressively in
our whole adaptation process, and each stage improves the
overall performance. Also, results without CIR are much
worse than results with CIR introducing, which can support
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(a) Target Image (b) Without Adaptation (c) Adapted (CIRN) (d) Ground Truth

Figure 4: Qualitative semantic segmentation results on GTAV→ Cityscapes.

our claim that CIR serves as a good intermediate domain.
In Figure 4, we show qualitative results after CIRN while

comparing our method against ”Without Adaptation” and
Ground Truth. The segmentation predictions made by our
method are very similar to the ground truth labels.

Conclusion
In this study, we propose a novel framework, called CIRN,
to bridge the domain gap among different domains. CIRN
constructs CIR by introducing an intermediate domain to
make the entire task easier. Instead of directly applying do-
main adaptation from source to target, we reduce the domain
gap from source domain to target domain bridged by CIR.
CIR shares the same content and label-distribution with the
source domain and has similar data distribution to the target
domain. Hence, CIR can serve as a good transitional domain
to connect two distant domains. Through CIR, CIRN further
focuses on pixel-level divergences to boost the performance
of domain adaptation. From global to local alignment and
image to pixel level, CIRN achieves good performances in
reducing cross-domain discrepancy. Extensive experimental
results on two challenging datasets validate the superiority
of CIRN over several state-of-the-art methods.
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2019. ADVENT: Adversarial Entropy Minimization for Do-
main Adaptation in Semantic Segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2517–2526.

Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.;
Wang, X.; and Tang, X. 2017. Residual Attention Net-
work for Image Classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 6450–6458.

Wu, Z.; Han, X.; Lin, Y. L.; Uzunbas, M. G.; Goldstein, T.;
Lim, S. N.; and Davis, L. S. 2018. DCAN: Dual Channel-
Wise Alignment Networks for Unsupervised Scene Adapta-
tion. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 535–552.

Xu, Y.; Du, B.; Zhang, L.; Zhang, Q.; Wang, G.; and Zhang,
L. 2019. Self-Ensembling Attention Networks: Addressing
Domain Shift for Semantic Segmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
5581–5588.

Yang, Y.; Lao, D.; Sundaramoorthi, G.; and Soatto, S. 2020.
Phase Consistent Ecological Domain Adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 9011–9020.

Yang, Y.; and Soatto, S. 2020. FDA: Fourier Domain Adap-
tation for Semantic Segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 4085–4095.
Yue, X.; Zhang, Y.; Zhao, S.; Sangiovanni-Vincentelli, A.;
Keutzer, K.; and Gong, B. 2019. Domain Randomization
and Pyramid Consistency: Simulation-to-Real Generaliza-
tion Without Accessing Target Domain Data. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV), 2100–2110.
Zhang, Q.; Zhang, J.; Liu, W.; and Tao, D. 2019. Category
Anchor-Guided Unsupervised Domain Adaptation for Se-
mantic Segmentation. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), 435–445.
Zhang, Y.; David, P.; Foroosh, H.; and Gong, B. 2020. A
Curriculum Domain Adaptation Approach to the Semantic
Segmentation of Urban Scenes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 42(8): 1823–1841.
Zhao, S.; Fu, H.; Gong, M.; and Tao, D. 2019. Geometry-
Aware Symmetric Domain Adaptation for Monocular Depth
Estimation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 9788–9798.
Zhu, J. Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2242–2251.
Zou, Y.; Yu, Z.; Kumar, B. V.; and Wang, J. 2018. Unsu-
pervised Domain Adaptation for Semantic Segmentation via
Class-Balanced Self-Training. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 297–313.
Zou, Y.; Yu, Z.; Liu, X.; Kumar, B. V.; and Wang, J. 2019.
Confidence Regularized Self-Training. In Proceedings of
the IEEE International Conference on Computer Vision
(ICCV), 5982–5991.

7536


