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Abstract

Many problems in machine learning and game theory can
be formulated as saddle-point problems, for which various
first-order methods have been developed and proven efficient
in practice. Under the general convex-concave assumption,
most first-order methods only guarantee an ergodic conver-
gence rate, that is, the uniform averages of the iterates con-
verge at a O(1/T ) rate in terms of the saddle-point resid-
ual. However, numerically, the iterates themselves can often
converge much faster than the uniform averages. This obser-
vation motivates increasing averaging schemes that put more
weight on later iterates, in contrast to the usual uniform av-
eraging. We show that such increasing averaging schemes,
applied to various first-order methods, are able to preserve
theO(1/T ) convergence rate with no additional assumptions
or computational overhead. Extensive numerical experiments
on zero-sum game solving, market equilibrium computation
and image denoising demonstrate the effectiveness of the pro-
posed schemes. In particular, the increasing averages consis-
tently outperform the uniform averages in all test problems
by orders of magnitude. When solving matrix and extensive-
form games, increasing averages consistently outperform the
last iterates as well. For matrix games, a first-order method
equipped with increasing averaging outperforms the highly
competitive CFR+ algorithm.

Introduction
Consider saddle point problems (SPP) of the form

min
x∈X

max
y∈Y
L(x, y) (1)

where L is a general convex-concave function and X, Y are
Euclidean spaces. For any (x, y) ∈ X×Y, denote its saddle-
point residual (SPR) as

εsad(x, y) = max
y′∈Y
L(x, y′)− min

x′∈X
L(x′, y).

Many problems in machine learning (Juditsky, Nemirovski
et al. 2011; Chambolle and Pock 2016), image process-
ing (Chambolle and Pock 2011, 2016) and game theory
(Koller, Megiddo, and Von Stengel 1996; Kroer et al.
2018) can be formulated as (1). Many primal-dual first-
order methods (FOMs) are suitable for these problems
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and have been proven efficient in practice. For exam-
ple, Chambolle and Pock (2011) gives an algorithm for
solving saddle-point problems involving bilinear and sep-
arable, nonsmooth terms and demonstrate its effective-
ness in image denoising. Kroer, Farina, and Sandholm
(2018) uses the Excessive Gap Technique (EGT) (Nesterov
2005), with a specific distance-generating function, to solve
saddle-point formulation of zero-sum extensive-form games
(EFG). Given the general convex-concave structure with-
out strong convexity and smoothness assumptions, these al-
gorithms only guarantee ergodic convergence rate, that is,
εsad

(
1
T

∑T
t=1 x

t, 1
T

∑T
t=1 y

t
)

= O(1/T ). Meanwhile, nu-

merically, (xt, yt) (the “last iterates”) often converge much
more rapidly (see, e.g., (Chambolle and Pock 2016, §7.2.2)).
This observation motivates new averaging schemes that put
more weight on later iterates rather than uniformly across all
of them. Let (xt, yt), t = 1, 2, . . . denote the iterates gener-
ated by a first-order method (more specifically, the iterates
used in forming the convergent uniform averages; for certain
algorithms, they are not necessarily denoted as (xt, yt); see,
e.g., Theorem 2). Letwt be positive, nondecreasing weights.
We consider averages of the form

x̄T =
1

ST

T∑
t=1

wtx
t, ȳT =

1

ST

T∑
t=1

wty
t, (2)

where ST =
∑T
t=1 wt. For example, wt = 1, t, t2, and

t3 give uniform, linear, quadratic and cubic averages, re-
spectively. We refer to such choices of positive, nondecreas-
ing wt as increasing iterate averaging schemes (IIAS) and
x̄T , ȳT as increasing averages. In fact, in solving extensive-
form games, the highly successful CFR+ algorithm uses a
form of linear averaging (Tammelin et al. 2015). Similar av-
eraging techniques have also been used in other scenarios,
such as algorithms for solving large-scale sequential games
that achieve superhuman performance in poker (Bowling
et al. 2015; Moravčı́k et al. 2017; Brown and Sandholm
2018), and efficient large-scale GAN training (Yazici et al.
2018). On the theory side, (Golowich et al. 2020) shows
that, for unconstrained smooth saddle-point problems, the
last iterates of Extragradient, a primal-dual FOM, converges
slower than the averages in a strict sense. Through a uni-
fied analysis, (Davis and Yin 2016) shows O(1/

√
T ) er-

gordic and last-iterate convergence rates of general splitting
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schemes, which apply to the special case of the general stan-
dard form (4) with f = 0. In the context of (stochastic) con-
vex minimization, theoretical guarantees and practical effec-
tiveness of similar increasing averaging schemes have been
studied (Lacoste-Julien, Schmidt, and Bach 2012; Shamir
and Zhang 2013; Nesterov 2018). To the best of our knowl-
edge, in solving saddle-point problems, no theoretical justi-
fication has been given for the practical speedup from last
iterates as compared to uniform averages, as well as the po-
tentially harder problem of explaining the speedup from in-
creasing iterate averaging.

In this work, we show that for a wide class of FOMs,
IIAS produces averages that converges at a rate O(1/T )
in terms of SPR. Algorithms compatible with IIAS include
the (vanilla) primal-dual algorithm (PDA) (Chambolle and
Pock 2011), its relaxed version (RPDA), inertial version
(IPDA) (Chambolle and Pock 2016), and linesearch ver-
sion (PDAL) (Malitsky and Pock 2018), as well as Mir-
ror Descent (MD) (Nemirovski and Yudin 1983; Beck and
Teboulle 2003; Ben-Tal and Nemirovski 2019) and Mir-
ror Prox (MP) (Nemirovski 2004; Ben-Tal and Nemirovski
2019). For most of the algorithms, in order to preserve the
convergence of (x̄T , ȳT ), it suffices to choose wt = tq for
some weight exponent q ≥ 0, completely independent of the
problem instance and the algorithm. For algorithms with in-
ertial terms or linesearch subroutine, in order to ensure the
theoretical convergence rate, wt needs to satisfy additional
inequalities, which makes wt depend on previous iterations.
Still, simple formulas suffice (e.g., Theorem 3 and 4). Fi-
nally, we emphasize that for all first-order methods consid-
ered here, IIAS does not alter the execution of the original
algorithm. In other words, the performance boost is achieved
without any extra computation or memory - we simply re-
place the uniform averages by increasingly weighted ones.
Meanwhile, the averaging weights wt, the sum of weights∑T
t=1 wt and the averages (x̄T , ȳT ) can all be updated in-

crementally along the way.
Summary of contributions. First, we provide easily im-

plementable IIAS for a variety of FOMs and establish their
respective convergence properties. The high-level idea of
the analysis can be summarized as follows. For each of the
first-order methods, in the proof of the O(1/T ) rate of con-
vergence, we identify the critical inequality being summed
across all time steps to derive the final rate. We then take
a weighted sum instead where the weights are the increas-
ing averaging weights wt. Then, through telescoping the
summation, we bound the right hand side by O (wT /ST ),
which is O(1/T ) (with an extra constant (q + 1) compared
to the original ones under uniform averaging) as long as wt
grows polynomially, that is, wt > 0, nondecreasing, and
wt+1

wt
≤ (t+1)q

tq for all t, for some q ≥ 0. Second, we per-
form extensive numerical experiments on various first-order
methods and saddle-point point problems to demonstrate the
consistent, strong performance gain of IIAS. Test problems
include matrix games of different sizes and generative dis-
tributions, extensive-form games, Fisher market equilibrium
computation and the TV-`1 image denoising model. As the
results demonstrate, increasing averages consistently outper-

form uniform averages in all experiments by orders of mag-
nitude. When solving matrix and extensive-form games, in-
creasing averages consistently outperform the last iterates
as well. For matrix games, PDA and RPDA equipped with
IIAS also outperforms the highly competitive CFR+ algo-
rithm. For EFGs, RPDA under static, theoretically safe hy-
perparameters equipped with quadratic averaging outper-
forms EGT with unsafe, sophisticated, adaptive stepsizing.

Organization. We first present IIAS for the primal-dual
algorithm (PDA) of (Chambolle and Pock 2016) and its
analysis in detail. Then, we propose and analyze IIAS, with
additional constraints on the weights, for relaxed, inertial
and linesearch variants of PDA. Next, we discuss IIAS
for Mirror Prox and Mirror Descent algorithms. Then, we
present and discuss numerical experiment results.

Proofs of technical results and additional experiments can
be found in an extended manuscript of this paper available
at https://arxiv.org/abs/1903.10646.

The Primal-Dual Algorithm
Setup and notation. We follow the setup in (Chambolle
and Pock 2016). Let X and Y be real Euclidean spaces
with norms ‖ · ‖X and ‖ · ‖Y, respectively. Denote the dual
space of X as X∗. Its corresponding dual norm, for any
x∗ ∈ X∗, is defined as ‖x∗‖X,∗ = sup‖x‖=1〈x∗, x〉. De-
fine Y∗ and ‖y∗‖Y,∗ similarly. The subscripts on the norms
are dropped when there is no ambiguity. Let K : X → Y∗
be a bounded linear operator. and K∗ : Y → X∗ be its
adjoint operator. The (operator) norm of K is defined as
‖K‖ = sup‖x‖≤1, ‖y‖≤1〈Kx, y〉. Let ψX and ψY be 1-
strongly convex (w.r.t. to their respective norms) smooth
functions (known as distance-generating functions, DGF).
Let DX and DY be their respective Bregman divergence
functions, that is, for V = X,Y, v, v′ ∈ V,

DV(v′, v) := ψV(v′)− ψV(v)− 〈∇ψV(v), v′ − v〉. (3)

Let f be a proper lower-semicontinuous (l.s.c.) convex func-
tion whose gradient ∇f is Lf -Lipschitz continuous w.r.t.
‖ · ‖X. Let g, h be proper l.s.c. convex functions whose
proximal maps Proxτg(x) = arg minu {τg(u) +DX(x, u)}
and Proxσh∗(y) = arg minv {σh∗(v) +DY(y, v)}, τ, σ >
0 can be easily computed. In addition, assume dom g ⊆
domψX and domh∗ ⊆ domψY. Define the matrix Mτ,σ =[

1
τ I −K∗
−K 1

σ I

]
, which is positive definite (semidefinite) as

long as τ, σ > 0 and τσL2 < 1 (≤ 1). With the above setup,
consider the following SPP:

min
x∈X

max
y∈Y
L(x, y) := 〈Kx, y〉+ f(x) + g(x)− h∗(y). (4)

For (x̄, ȳ) ∈ X×Y, (x̃, ỹ) ∈ X×Y, the generic primal-dual
iteration (x̂, ŷ) = PDτ,σ(x̄, ȳ, x̃, ỹ) is

x̂ = arg min
x

{
f(x̄) + 〈∇f(x̄), x− x̄〉+ g(x)

+〈Kx, ỹ〉+ 1
τ
DX(x, x̄)

}
,

ŷ = arg min
y

{
h∗(y)− 〈Kx̃, y〉+

1

σ
DY(y, ȳ)

}
.

Here, the updates are asymmetric: in PD, yt+1 depends
on xt+1, which then depends on (xt, yt). Chambolle and
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Algorithm 1 Nonlinear primal-dual algorithm (PDA)

Input: Initial iterate (x0, y0) ∈ X×Y, stepsizes τ, σ > 0,
Bregman divergences DX and DY.
Iterations: For t = 0, 1, 2, . . . , compute
(xt+1, yt+1) = PDτ,σ(xt, yt, 2xt+1 − xt, yt).

Pock (2016) proposes a primal-dual algorithm (PDA), which
is listed here as Algorithm 1. Theorem 1 in their paper
shows that the uniform averages converge at O(1/T ) in
SPR. The proof relies on a lemma regarding the generic it-
eration PDτ,σ , which is restated below.
Lemma 1. Given τ, σ > 0, let (x̂, ŷ) = PDτ,σ(x̄, ȳ, x̃, ỹ).
For any (x, y) ∈ X× Y, one has
L(x̂, y)−L(x, ŷ) ≤ 1

τ (DX(x, x̄)−DX(x, x̂)−DX(x̂, x̄))

+
Lf
2 ‖x̂− x̄‖

2 + 1
σ (DY(y, ȳ)−DY(y, ỹ)−DY(ŷ, ȳ))

+ 〈K(x− x̂), ỹ − ŷ〉 − 〈K(x̃− x̂), y − ŷ〉.
Based on Lemma 1, we obtain the following extension

of Theorem 1 in Chambolle and Pock (2016) regarding the
convergence of IIAS for PDA.
Theorem 1. For t = 0, 1, 2, . . . , let wt = tq for some q ≥ 0
and (xt, yt), t = 1, 2, . . . generated by PDA, where step-
sizes τ, σ are chosen such that, for all x, x′ ∈ dom g and
y, y′ ∈ domh∗, it holds that(

1

τ
− Lf

)
DX(x, x′) +

1

σ
DY(y, y′)

−〈K(x− x′), y − y′〉 ≥ 0. (5)

Let the averages x̄T , ȳT be as in (2). Denote
A(x, y, x′, y′) = 1

τ
DX(x, x′)+ 1

σ
DY(y, y′)−〈K(x−x′), y−y′〉.

Let Ω = supx,x′∈dom g, y,y′∈domh∗ A(x, y, x′, y′). Then, for
any T ≥ 1 and (x, y) ∈ X× Y, one has

L(x̄T , y)− L(x, ȳT ) ≤ (q + 1)Ω

T
.

Proof. As in the proof of Theorem 1 in (Chambolle and
Pock 2016), Lemma 1 and PDA imply the following critical
inequality regarding the iterates (xt, yt) and (xt+1, yt+1):

L(xt+1, y)− L(x, yt+1)

≤ A(x, y, xt, yt)−A(x, y, xt+1, yt+1)

−
(
A(xt+1, yt+1, xt, yt)− Lf

2
‖xt+1 − xt‖2

)
≤ A(x, y, xt, yt)−A(x, y, xt+1, yt+1) (6)

where the last inequality is by (5). Multiplying (6) by wt+1

and summing up over t = 0, 1, . . . , T − 1 yield
T∑
t=1

wt
(
L(xt, y)− L(x, yt)

)
≤

T∑
t=1

wt
(
A(x, y, xt−1, yt−1)−A(x, y, xt, yt)

)
=

T∑
t=1

(wt − wt−1)A(x, y, xt−1, yt−1) ≤ ΩwT .

The convex-concave structure of L implies

L(x̄T , y)− L(x, ȳT ) ≤ 1

ST

T∑
t=1

wt
(
L(xt, y)− L(x, yt)

)
.

Furthermore, ST ≥
∫ T

0
xq dx = T q+1

q+1 . Combining the
above inequalities yields the claim.

The key proof idea is to take a weighted sum of the
critical inequalities at all t and bound the right hand side
via telescoping summation. This is also used in subsequent
analysis. Here, the constant in the bound increases with q.
Nonetheless, numerical experiments show that a nonzero,
small value of q always yields significant speedup. We also
remark that our result is no more restrictive than (Cham-
bolle and Pock 2016) in terms of the domain boundedness
assumption. In fact, Ω often takes on a small, finite value
in many realistic scenarios. For example, for a two-person
zero-sum game, g and h∗ are indicator functions of the strat-
egy spaces X,Y (which are simplexes for a matrix game),
which are bounded polytopes with small diameters. The lin-
ear mapK corresponds to the payoffs, which can be normal-
ized to ‖K‖ = 1 w.l.o.g. Finally, note that Theorem 1 and
subsequent theorems present point-wise inequalities, that is,
a uniform bound on L(x̄T , y) − L(x, ȳT ) independent of
(x, y). A bound on the saddle-point residual εsad(x̄T , ȳT )
can be easily obtained by taking minx∈X maxy∈Y on both
sides.

Extensions of the Primal-Dual Algorithm
Similar IIAS can be applied to the relaxed and inertial ver-
sions of PDA, as described in (Chambolle and Pock 2016),
as well as a nontrivial extension with linesearch (PDAL)
(Malitsky and Pock 2018). We inherit the notation of the
previous section and further assume ‖ · ‖X, ‖ · ‖Y are Eu-
clidean 2-norms and DX(x, x′) = 1

2‖x− x
′‖22, DY(y, y′) =

1
2‖y − y

′‖22.
Relaxed primal dual algorithm. The relaxed primal-

dual algorithm (RPDA) in (Chambolle and Pock 2016) is
listed here as Algorithm 2. Similar to Theorem 1, we have
the following convergence guarantee for RPDA. Here, de-
note Ω = supz,z′∈X×Y

1
2‖z − z′‖Mτ,σ , where Mτ,σ is the

positive semidefinite matrix defined in the previous section.
Theorem 2. Let τ, σ > 0 and 0 ≤ ρt ≤ ρt+1 ≤ ρ, where
ρ ∈ (0, 2) satisfy1

(
1
τ −

Lf
2−ρ

)
1
σ ≥ ‖K‖

2
2. Let (ξt, ηt), t =

1, 2, . . . be generated by RPDA and x̄T = 1
ST

∑T
t=1 wtξ

t,

ȳT = 1
ST

∑T
t=1 wtη

t. For any z = (x, y) ∈ X× Y, one has

L(x̄T , y)− L(x, ȳT ) ≤ (q + 1)Ω

ρ0T
.

1Theorem 2 in (Chambolle and Pock 2016) requires strict in-
equality. In fact, a non-strict one suffices. The strict inequality is
required for sequence convergence of the last iterates (Chambolle
and Pock 2016, Remark 3). The same holds for Theorem 3. How-
ever, there we assume strict inequality as in (Chambolle and Pock
2016, Theorem 3), as it conveniently ensures eventual polynomial
growth of the weights.
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Algorithm 2 Relaxed primal-dual algorithm (RPDA)

Input: Initial iterates z0 = (x0, y0) ∈ X × Y, τ, σ > 0,
relaxation parameters ρt, Euclidean DX and DY.
Set: zt = (xt, yt) and ζt = (ξt, ηt).
Iterations: For t = 0, 1, 2, . . . , compute

(ξt+1, ηt+1) = PDτ,σ(xt, yt, 2ξt+1 − xt, yt),
zt+1 = (1− ρn)zt + ρnζ

t+1.

Algorithm 3 Inertial primal-dual algorithm (IPDA)

Input: (x−1, y−1) = (x0, y0) ∈ X×Y, τ, σ > 0, inertial
parameters αt, Euclidean DX and DY.
Set: zt = (xt, yt) and ζt = (ξt, ηt).
Iterations: For t = 0, 1, 2, . . . , compute
ζt = zt + αt(z

t − zt−1),
zt+1 = PDτ,σ(ξt, ηt, 2xt+1 − ξt, ηt).

Inertial primal-dual algorithm. Another useful variant
of PDA is the inertial primal-dual algorithm (IPDA) (Cham-
bolle and Pock 2016), listed here as Algorithm 3. In con-
trast to PDA and RPDA, in order to preserve the rate of con-
vergence of IPDA, wt needs to satisfy a few additional in-
equalities arising from the analysis of the telescoping sum.
The choice ofwt and the convergence guarantee are summa-
rized below. The proof is based on the same principles but is
much more involved. Note that the strict inequality involving
τ, σ, ‖K‖ makes bt ≥ b∗ > 1, which ensures eventual poly-
nomial growth of wt (and an asymptotical O(1/T ) rate).

Theorem 3. Let α > 0 be such that
(

1
τ −

(1+α)2

1−3α Lf

)
1
σ >

‖K‖22 and 0 ≤ αt ≤ αt+1 ≤ α < 1
3 for all t. Let (xt, yt) be

generated by IPDA. Let wt be chosen as follows:
w0 = 0, w1 = 1, wt+1 = wt ·min

{
bt,

(t+1)q

tq

}
, t ≥ 2,

where

bt = min

{
1− αt−1

αt
,
r(1− αt−1)− (1 + αt−1)

αt(1 + 2r + αt)

}
,

r =
1
τ
− σ‖K‖2

Lf
.

Then, it holds that wt ≤ wt+1 and bt ≥ b∗ for some b∗ > 1
for all t. Furthermore, let ST , x̄T and ȳT be as in (2). For
any z = (x, y) ∈ X× Y, one has

L(x, ȳT )− L(x̄T , y)

≤ (1− α0)w1A0 + Ω [(1− αT−1)wT + α1w2 − w1]

ST

≤ (q + 1)(2− α0)Ω

T
,

where A0 := ‖z − z0‖2Mτ,σ
and Ω is as in Theorem 2.

Primal-dual algorithm with linesearch. Recently, Mal-
itsky and Pock (2018) proposed a primal-dual algorithm
with linesearch (PDAL), which is listed as Algorithm 4 here.
To align the primal and dual iterates in the increasing av-
eraging version of PDAL, yt here correspond to yt+1 in

Algorithm 4 PDAL: Primal-dual algorithm with linesearch

Input: (x0, y0) ∈ X × Y, initial stepsize τ0 > 0, back-
tracking discount factor µ, backtracking break tolerance
δ, primal-dual ratio β > 0, Euclidean DX and DY.
Set: stepsize growth factor θ0 = 1.
Iterations: For t = 0, 1, 2, . . . , compute

xt+1 = Proxτtg(x
t − τtK∗yt).

(a) Choose τt+1 ∈ [τt, τt
√

1 + θt], compute
θt+1 = τt+1

τt
, x̃t+1 = xt+1 + θt+1(xt+1 − xt) and

yt+1 = Proxβτt+1h∗(y
t + βτt+1Kx̃

t+1).
(b) Break if

√
βτt+1‖K∗yt+1 − K∗yt‖ ≤ δ‖yt+1 − yt‖.

Otherwise, set τt+1 ← τt+1µ and go to ((a)).

the original paper, t = 0, 1, 2, . . . Assume ‖ · ‖X, ‖ · ‖Y,
DX, DY are all Euclidean as in Theorem 2 and f = 0
in (4). Theorem 3.5 in (Malitsky and Pock 2018) estab-
lishes the ergodic convergence rate of PDAL. We show the
following theorem on IIAS for PDAL. Note that the aver-
aging involves not only the weights wt but also the step-
sizes τt. Similar is true for the subsequent Mirror-type al-
gorithms. Here, denote ΩX = supx,x′∈dom g

1
2‖x − x′‖2,

ΩY = supy,y′∈domh∗
1
2‖y − y

′‖2.

Theorem 4. Let (xt, yt) be generated by PDAL on problem
(4) with f = 0. Let wt be as follows:
w0 = 0, w1 = 1, wt+1 = wt ·min

{
1+θt
θt+1

, (t+1)q

tq

}
, t ≥ 1.

Let ST =
∑T
t=1 wtτt and

x̄T =
w1θ1τ1x0 +

∑N
t=1 wtτtx̃

t

wtτ1θ1 + ST
, ȳT =

∑T
t=1 wtτty

t

ST
.

For any (x, y) ∈ X× Y, T ≥ 2, we have

L(x̄T , y)− L(x, ȳT ) ≤
wT

(
ΩX + 1

βΩY

)
+ w1τ1θ1P0

ST

≤
(q + 1)

(
ΩX + 1

βΩY + τ1θ1P0

)
T

,

where P0 = g(x0)− g(x) + 〈K(x0 − x), y〉.

Mirror-Type Algorithms
Next, we consider Mirror Descent (MD) (Nemirovski and
Yudin 1983; Beck and Teboulle 2003) and Mirror Prox (MP)
(Nemirovski 2004), which require a setup different from that
of the previous sections. Specifically, assume that X and Y
are Euclidean spaces with norms ‖ · ‖X and ‖ · ‖Y. Let Z =
X × Y and ‖ · ‖ be be any norm (with dual norm ‖ · ‖∗)
on Z. Let X ⊆ X and Y ⊆ Y be closed convex sets. Let
φ : Z = X × Y → R be a convex-concave cost function,
that is, φ(·, y) is convex for any y ∈ Y and φ(x, ·) is concave
for any x ∈ X . The saddle-point problem that Mirror-type
algorithms solve is

min
x∈X

max
y∈Y

φ(x, y).
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Algorithm 5 Mirror Descent (MD) and Mirror Prox (MP)

Input: initial iterate z0 = (x0, y0) ∈ Z , stepsizes τt,
Bregman function DZ.
Iterations: For t = 0, 1, 2, . . . , compute

MD: zt+1 = ProxZ〈τtF (zt),·〉(z
t),

MP:

{
z̃t = ProxZ〈τtF (zt),·〉(z

t),

zt+1 = ProxZ〈τtF (z̃t),·〉(z
t).

Let ψZ : Z → R be a 1-strongly convex (w.r.t. ‖ · ‖Z)
smooth function, that is, a DGF on Z. For example, given
DGF ψX(x) and ψY for X and Y, the DGF ψZ(z) :=
ψX(x) + ψY(y), z = (x, y), is 1-strongly convex w.r.t.
the norm ‖z‖ :=

√
‖x‖2X + ‖y‖2Y. Let the Bregman di-

vergence function DZ be defined as (3) with V = Z. Let
Ω = supz∈Z DZ(z).2 The “gradient vector field” associ-

ated with φ is F (z) =
(
∂
∂x
φ(z),− ∂

∂y
φ(z)

)
. We assume

F is bounded and L-Lipschitz continuous on Z, that is,
MF = supz∈Z ‖F (z)‖∗ < ∞ and ‖F (x) − F (z′)‖∗ ≤
L‖z − z′‖ for any z, z′ ∈ Z . For z, ξ ∈ Z, define the
(constrained) proximal mapping (of a linear function) as
ProxZ〈ξ,·〉(z) := arg minw∈Z {〈ξ, w〉+DZ(w, z)}. The al-
gorithms are listed together here as Algorithm 5. Similarly,
we show that IIAS applied to MD and MP preserves their
respective convergence rate, where the averaging weights
involve the stepsizes τt.3 In addition, (Ben-Tal and Ne-
mirovski 2019, Theorem 5.3.5) show that a similar bound
holds for MD with increasing averaging.

Theorem 5. Let z̃t = (x̃t, ỹt) be generated by MP and
δt := τt〈F (z̃t), z̃t − zt+1〉 − DZ(zt+1, zt). Let wt ≥ 0 be
nondecreasing weights and

ST =
T∑
t=1

wtτt, z̄
T = (x̄T , ȳT ) =

∑T
t=1 wtτtz̃

t

ST
.

Then, for any T ≥ 1 and any (x, y) ∈ X× Y, it holds that

φ(x̄T , y)− φ(x, ȳT ) ≤
wTΩ +

∑T
t=1 wtδt

ST
.

In particular, constant stepsizes τt = 1
L and wt = tq , q ≥ 0

ensure δt ≤ 0 and

φ(x̄T , y)− φ(x, ȳT ) ≤ (q + 1)LΩ

T
.

2The constant Ω here corresponds to Θ in (Ben-Tal and Ne-
mirovski 2019), defined on page 356.

3During the course of this research, we note that IIAS for MP
has been analyzed in the growing lecture notes of Ben-Tal and Ne-
mirovski (2019). Specifically, Theorem 5.6.2 in (Ben-Tal and Ne-
mirovski 2019) presents the weighted averaging version of MP, al-
though without no explicit weight formulaes.

Numerical Experiments
We demonstrate the numerical effectiveness of IIAS in solv-
ing zero-sum games, computing Fisher market equilibria
and image-denoising. For matrix games and EFG, our best
FOMs with IIAS are compared against state-of-the-art meth-
ods for equilibrium computation.

Matrix games. Here, we briefly describe the experiment
setup. A matrix game can be formulated as a bilinear SPP

min
x∈∆n1

max
y∈∆n2

〈x,Ay〉,

where ∆d := {x ∈ Rd | x>e = 1, x ≥ 0} is the unit sim-
plex in Rd. To use a PDA-type algorithm to solve a matrix
game, let g and h∗ be the indicator functions of ∆n1 and
∆n2 , respectively, and K = A>. For MP, we take X = ∆n1

and Y = ∆n2 and φ(x, y) = 〈x,Ay〉. We also try a line-
search variant of MP, referred to as MPL, that performs
linesearch as described in (Ben-Tal and Nemirovski 2019,
pp. 443). For all algorithms, we use their “default” stepsizes
and Euclidean DGF. We generate matrix games of different
dimensions with i.i.d. entries and solve them using all six
algorithms. For each matrix game and each algorithm, we
perform T = 2000 iterations, take increasing averages of
the iterates and compute their saddle-point residuals. Resid-
uals are normalized to make them commensurable in mag-
nitude. The above is repeated 50 times. We plot the averages
and standard errors (which have small magnitudes and are
nearly invisible) of the normalized residuals along sample
paths of each setup-algorithm-averaging combination. Fig-
ure 1 displays the plots. As can be seen, IIAS leads to sig-
nificant performance improvement for all algorithms across
all experiments, both against uniform averages as expected,
but, perhaps surprisingly, also against the last iterates. The
plots for IPDA and PDAL can be found in the full arXiv
version. Next, we compare PDA, RPDA, and CFR+ on the
same set of random matrix games as well as on a 2×2 matrix

game with payoff matrix A =

[
5 −1
0 1

]
(Farina, Kroer, and

Sandholm 2019). Figure 2 displays the results for these ex-
periments: the upper plot is for the random matrix game ex-
periments and displays averaged, normalized residuals and
standard deviations of the 3 settings, similar to Figure 1; the
lower plot is for the 2× 2 matrix game and displays the (un-
normalized) residual values. Clearly, PDA and RPDA out-
perform CFR+ in both settings. Moreover, for the 2× 2 ma-
trix game, the last iterates converge rapidly, suggesting the
use of a large weight exponent q. As the lower subplot in
Figure 2 displays, using q = 10 can even outperform the
last iterates. We stress that we test q = 10 mostly for exper-
imental curiosity. In general, using q = 1, 2 yields signifi-
cant speedup. Furthermore, even a large q does not lead to
numerical issues in any experiment when the averages are
incrementally updated.

Extensive-form games. An EFG can be written as a bilin-
ear saddle-point problem (BLSP) minx∈X maxy∈Y 〈x,Ay〉
where X ⊆ Rn1 and Y ⊆ Rn2 are polytopes encoding
players’ strategy spaces, known as treeplexes (Hoda et al.
2010). We perform IIAS with uniform, linear, quadratic and
cubic averaging for all first-order methods on two classic
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Figure 1: FOM with IIAS, matrix games, normalized SPR
v.s. number of gradient computations

EFG benchmark instances Kuhn and Leduc poker (see, e.g.,
(Kroer et al. 2018)). The choices of algorithm hyperparam-
eters are completely analogous to those in solving matrix
games. As Figure 3 shows, increasing averages outperform
uniform averages for all algorithms in both games. For all
algorithms except MP, increasing averages also outperform
the last iterates. For both games, we also compare RPDA
with quadratic and q = 10 averaging, CFR+ (Tammelin
et al. 2015) and EGT with the dilated entropy DGF (Kroer
et al. 2018). We plot the saddle-point residuals against the
number of gradient computations x 7→ A>x and y 7→ Ay,
since EGT uses linesearch and may require more than one
gradient computations in each iteration. Here, since we are
interested in the regime where gradient computations dom-
inate the overall computation cost, we assume computing
the proximal mappings under different DGFs takes much
less time in comparison. As Figure 4 shows, RPDA with
quadratic and q = 10 averaging significantly outperforms
CFR+ and EGT on Kuhn but are not as fast as CFR+ on
Leduc. In addition, even using theoretically safe, highly con-
servative stepsizes, RPDA with quadratic averaging outper-
forms the EGT implementation, which employs sophisti-
cated, adaptive stepsizing heuristics.

Fisher market equilibrium. In a Fisher market of n buy-
ers, each buyer i has a valuation vi ∈ Rm+ over m goods. An
allocation xi ∈ Rm+ gives a utility of v>i xi to buyer i. Each
buyer i has budget Bi > 0 and each good j has supply sj >
0. A market equilibrium is a set of prices p ∈ Rm+ for the
goods and an (aggregate) allocation x = [x1, . . . , xn] such
that xi ∈ arg max

{
v>i xi | p>xi ≤ Bi

}
for all buyers (i.e.,
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Figure 2: FOM with IIAS v.s. CFR+, matrix games, normal-
ized SPR v.s. number of gradient computations
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Leduc (right), SPR v.s. number of gradient computations

7542



101 103

10−5

10−3

10−1

Uniform
 n=20, m=20

101 103

Truncated normal
 n=20, m=20

101 103

Truncated normal
 n=60, m=20

PDA last
PDA uniform
PDA quadratic
PDA q=5

Figure 5: PDA with IIAS for Fisher market equilibria, nor-
malized SPR v.s. number of iterations

102

10−5

10−2

Cameraman

102

Pirate

102

Bingley
PDA last
PDA uniform
PDA linear
PDA quadratic

Figure 6: PDA with IIAS for TV-`1 minimization, normal-
ized loss v.s. number of iterations

buyer are optimal given their budgets) i and
∑
i xij = sj

for all items j with pj > 0 (i.e., all valuable items are sold).
It is well known that market equilibria are captured by the
solutions of the Eisenberg-Gale convex program (Jain and
Vazirani 2010, Eq. (1)). For more details, see (Eisenberg and
Gale 1959; Eisenberg 1961; Jain and Vazirani 2010). This
convex program can be formulated as a saddle-point prob-
lem (see, e.g., (Kroer et al. 2019)):

min
x≥0

max
p: 0≤pi≤‖B‖1

[
−
∑
i

Bi log v>i xi +
∑
i

p>xi − p>s

]
.

We generate random instances of different sizes, solve them
using PDA and compute the saddle-point residuals of the
last iterates and various averages. Repeat each experiment
50 times, normalize residuals and compute mean and stan-
dard deviations similar to the procedures in matrix games.
Figure 5 displays the normalized residuals. The standard de-
viations have small magnitudes and thus become invisible.
As the plots shows, increasing averages can converge as fast
as, and sometimes even more rapidly (q = 5 averaging in
the rightmost subplot) than the last iterates.

Image denoising via TV-`1 minimization. The Total
Variation (TV)-`1 model is a means for image denoising
through convex optimization (Chambolle and Pock 2011).
We use the saddle-point formulation of the convex opti-
mization problem (Chambolle and Pock 2011, pp. 132). Let
X = Rm×n be the image domain. Let div denote the diver-
gence operator, that is, is the negative adjoint of the gradient
operator ∇ : X → X. Let Y = X ×X = Rm,n,2 be the set
of discrete finite differences and

P =
{
p ∈ Y | (p1

ij)
2 + (p2

ij)
2 ≤ 1

}
be the point-wise unit `2-ball. The saddle-point formulation
of the TV-`1 model is

min
u∈X

max
p∈Y
−〈u, div p〉+ λ‖u− g‖1 − δP (p),

where λ > 0 is the regularization strength hyperparame-
ter. Following Chambolle and Pock (2011), to align it with

Figure 7: Original (left), corrupted (middle) and recon-
structed images (right) of Bingley

(4), choose f = 0, g(u) = λ‖u − g‖1 with λ = 1.5 and
h∗(p) = δP (p); in this way, the proximal mappings yield
closed-form formulas. See (Chambolle and Pock 2011, pp.
135-156) for more details on the saddle-point problem setup.
We add salt-and-pepper noise to three 256× 256 gray-scale
images to obtain corrupted inputs and use the TV-`1 mini-
mization procedure for reconstruction. To solve the result-
ing saddle-point problems, we use PDA with default, static
hyperparameters used in (Chambolle and Pock 2011) and
run for T = 1000 iterations. We compute the values of the
original primal TV-`1 loss values of the last iterates and the
various increasing averages. The loss values are normalized
similarly and are displayed in Figure 6. Here, the last iter-
ates converge fast, while linear and quadratic averages still
perform nearly as well, and are far ahead of uniform aver-
ages. Figure 7 displays the original, corrupted, and recon-
structed images of Bingley. The reconstruction is based on
the quadratic averages of the PDA iterates at T = 1000.

Conclusion
We proposed increasing iterate averaging schemes for var-
ious first-order methods, provided simple, implementable
choices of averaging weights and established convergence
properties of the new iterate averages. Extensive numerical
experiments on various saddle-point problems demonstrated
their ability to accelerate numerical convergence by orders
of magnitude without modifying the original algorithm or
incurring extra computation. We reiterate that the algorithms
are run unaltered with untuned, theoretically safe hyperpa-
rameters, while the averaging weights are chosen simply
based on their respective convergence theorems. Even so,
IIAS can bring the algorithms close to, and sometimes make
them beat, other carefully engineered and tuned approaches.

Ethics Statement
Since our work is primarily algorithmic and works for a
broad class of convex optimization problems, we do not see
any direct ethical impacts of our work. Our work leads to
substantial practical speed-up on all classes of problems we
have tried it on so far. Thus, impact could arise indirectly by
enabling larger scale on certain problems. For example, an
increasing iterate averaging scheme may help efficient com-
putation of Nash equilibria of zero-sum games, as shown in
this work. Methods for training generative adversarial net-
works can potentially benefit from these schemes as well.
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However, the ethical and societal implications of individual
applications are beyond the scope of our paper.
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