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Abstract

As a technology ML is oblivious to societal good or bad,
and thus, the field of fair machine learning has stepped up to
propose multiple mathematical definitions, algorithms, and
systems to ensure different notions of fairness in ML appli-
cations. Given the multitude of propositions, it has become
imperative to formally verify the fairness metrics satisfied by
different algorithms on different datasets. In this paper, we
propose a stochastic satisfiability (SSAT) framework, Justicia,
that formally verifies different fairness measures of supervised
learning algorithms with respect to the underlying data distri-
bution. We instantiate Justicia on multiple classification and
bias mitigation algorithms, and datasets to verify different fair-
ness metrics, such as disparate impact, statistical parity, and
equalized odds. Justicia is scalable, accurate, and operates on
non-Boolean and compound sensitive attributes unlike existing
distribution-based verifiers, such as FairSquare and VeriFair.
Being distribution-based by design, Justicia is more robust
than the verifiers, such as AIF360, that operate on specific test
samples. We also theoretically bound the finite-sample error
of the verified fairness measure.

Introduction
Machine learning (ML) is becoming the omnipresent tech-
nology of our time. ML algorithms are being used for high-
stake decisions like college admissions, crime recidivism,
insurance, and loan decisions. Thus, human lives are now
pervasively influenced by data, ML, and their inherent bias.

Example 0.1. Let us consider an example (Figure 1) of de-
ciding eligibility for health insurance depending on the fitness
and income of the individuals of different age groups (20-
40 and 40-60). Typically, incomes of individuals increase as
their ages increase while their fitness deteriorates. We assume
relation of income and fitness depends on the age as per the
Normal distributions in Figure 1. Now, if we train a decision
tree (Narodytska et al. 2018) on these fitness and income
indicators to decide the eligibility of an individual to get a
health insurance, we observe that the ‘optimal’ decision tree
(ref. Figure 1) selects a person above and below 40 years with
probabilities 0.18 and 0.72 respectively. This simple example
demonstrates that even if an ML algorithm does not explicitly
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Figure 1: A trained decision tree to learn eligibility for health
insurance using age-dependent fitness and income indicators.

learn to differentiate on the basis of a sensitive attribute, it
discriminates different age groups due to the utilitarian sense
of accuracy that it tries to optimize.

Fair ML. Statistical discriminations caused by ML algo-
rithms have motivated researchers to develop several frame-
works to ensure fairness and several algorithms to mitigate
bias. Existing fairness metrics mostly belong to three cate-
gories: independence, separation, and sufficiency (Mehrabi
et al. 2019). Independence metrics, such as demographic
parity, statistical parity, and group parity, try and ensure the
outcomes of an algorithm to be independent of the groups
that the individuals belong to (Feldman et al. 2015; Dwork
et al. 2012). Separation metrics, such as equalized odds, de-
fine an algorithm to be fair if the probability of getting the
same outcomes for different groups are same (Hardt, Price,
and Srebro 2016). Sufficiency metrics, such as counterfactual
fairness, constrain the probability of outcomes to be inde-
pendent of individual’s sensitive data given their identical
non-sensitive data (Kusner et al. 2017).

In Figure 1, independence is satisfied if the probability
of getting insurance is same for both the age groups. Sepa-
ration is satisfied if the number of ‘actually’ (ground-truth)
ineligible and eligible people getting the insurance are same.
Sufficiency is satisfied if the eligibility is independent of their
age given their attributes are the same. Thus, we see that the
metrics of fairness can be contradictory and complimentary
depending on the application and the data (Corbett-Davies
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and Goel 2018). Different algorithms have also been devised
to ensure one or multiple of the fairness definitions. These
algorithms try to rectify and mitigate the bias in the data and
thus in the prediction-model in three ways: pre-processing the
data (Kamiran and Calders 2012; Zemel et al. 2013; Calmon
et al. 2017), in-processing the algorithm (Zhang, Lemoine,
and Mitchell 2018), and post-processing the outcomes (Kami-
ran, Karim, and Zhang 2012; Hardt, Price, and Srebro 2016).

Fairness Verifiers. Due to the abundance of fairness met-
rics and difference in algorithms to achieve them, it has
become necessary to verify different fairness metrics over
datasets and algorithms.

In order to verify fairness as a model property on a dataset,
verifiers like FairSquare (Albarghouthi et al. 2017) and Ver-
iFair (Bastani, Zhang, and Solar-Lezama 2019) have been
proposed. These verifiers are referred to as distributional
verifiers owing to the fact that their inputs are a probability
distribution of the attributes in the dataset and a model of a
suitable form, and their objective is to verify fairness w.r.t.
the distribution and the model. Though FairSquare and Veri-
Fair are robust and have asymptotic convergence guarantees,
we observe that they scale up poorly with the size of inputs
and also do not generalize to non-Boolean and compound
sensitive attributes. In contrast to the distributional verifiers,
another line of work, referred to as sample-based verifiers,
has focused on the design of testing methodologies on a given
fixed data sample (Galhotra, Brun, and Meliou 2017; Bellamy
et al. 2018). Since sample-based verifiers are dataset-specific,
they generally do not provide robustness over the distribution.

Thus, a unified formal framework to verify different fair-
ness metrics of an ML algorithm, which is scalable, capable
of handling compound protected groups, robust with respect
to the test data, and operational on real-life datasets and
fairness-enhancing algorithms, is missing in the literature.

Our Contribution. From this vantage point, we propose
to model verifying different fairness metrics as a Stochastic
Boolean Satisfiability (SSAT) problem (Littman, Majercik,
and Pitassi 2001). SSAT was originally introduced by (Pa-
padimitriou 1985) to model games against nature. In this
work, we primarily focus on reductions to the exist-random
quantified fragment of SSAT, which is also known as E-
MAJSAT (Littman, Majercik, and Pitassi 2001). SSAT is a
conceptual framework that has been employed to capture
several fundamental problems in AI such as computation of
maximum a posteriori (MAP) hypothesis (Fremont, Rabe,
and Seshia 2017), propositional probabilistic planning (Ma-
jercik 2007), and circuit verification (Lee and Jiang 2018).
Furthermore, our choice of SSAT as a target formulation is
motivated by the recent algorithmic progress that has yielded
efficient SSAT tools (Lee, Wang, and Jiang 2017, 2018).

Our contributions are summarised below:

• We propose a unified SSAT-based approach, Justicia, to
verify independence and separation metrics of fairness for
different datasets and classification algorithms.

• Unlike previously proposed formal distributional verifiers,
namely FairSquare and VeriFair, Justicia verifies fairness
for compound and non-Boolean sensitive attributes.

• Our experiments validate that our method is more accu-
rate and scalable than the distributional verifiers, such as
FairSquare and VeriFair, and more robust than the sample-
based empirical verifiers, such as AIF360.

• We prove a finite-sample error bound on our estimated fair-
ness metrics which is stronger than the existing asymptotic
guarantees.

It is worth remarking that significant advances in AI bear
testimony to the right choice of formulation, for example,
formulation of planning as SAT (Kautz, Selman et al. 1992).
In this context, we view that formulation of fairness as SSAT
has potential to spur future work from both the modeling and
encoding perspective as well as core algorithmic improve-
ments in the underlying SSAT solvers.

Background: Fairness and SSAT
In this section, we define different fairness metrics for a super-
vised learning problem. Following that, we discuss Stochastic
Boolean Satisfiability (SSAT) problem.

Fairness Metrics for Machine Learning
Let us represent a dataset D as a collection of triples
(X,A, Y ) sampled from an underlying data generating dis-
tribution D. X , {X1, . . . , Xm} ∈ Rm is the set of non-
protected (or non-sensitive) attributes. A , {A1, . . . , An} is
the set of categorical protected attributes. Y is the binary la-
bel (or class) of (X,A). A compound protected attribute a =
{a1, . . . , an} is a valuation to all Ai’s and represents a com-
pound protected group. For example,A = {race, sex}, where
race ∈ {Asian,Colour,White} and sex ∈ {female,male}.
Thus, a = {Colour, female} is a compound protected group.
We defineM , Pr(Ŷ |X,A) to be a binary classifier trained
from samples in the distribution D. Here, Ŷ is the predicted
label (or class) of the corresponding data.

As we illustrated in Example 0.1, a classifierM that solely
optimizes accuracy, i.e., the average number of times Ŷ = Y ,
may discriminate certain compound protected groups over
others (Chouldechova and Roth 2020). Now, we describe two
family of fairness metrics that compute bias induced by a
classifier and are later verified by Justicia.

Independence Metrics of Fairness. The independence (or
calibration) metrics of fairness state that the output of the
classifier should be independent of the compound protected
group. A notion of independence is referred to group fairness
that specifies an equal positive predictive value (PPV) across
all compound protected groups for an algorithm M, i.e.,
Pr[Ŷ = 1|A = a,M] = Pr[Ŷ = 1|A = b,M], ∀a,b ∈ A.
Since satisfying group fairness exactly is hard, relaxations
of group fairness, such as disparate impact and statistical
parity (Dwork et al. 2012; Feldman et al. 2015), are proposed.

Disparate impact (DI) (Feldman et al. 2015) measures
the ratio of PPVs between the most favored group and least
favored group, and prescribe it to be close to 1. Formally, a
classifier satisfies (1− ε)-disparate impact if, for ε ∈ [0, 1],

min
a∈A

Pr[Ŷ = 1|a,M] ≥ (1− ε) max
b∈A

Pr[Ŷ = 1|b,M].
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Another popular relaxation of group fairness, statistical par-
ity (SP) measures the difference of PPV among the compound
groups, and prescribe this to be near zero. Formally, an algo-
rithm satisfies ε-statistical parity if, for ε ∈ [0, 1],

max
a,b∈A

|Pr[Ŷ = 1|a,M]− Pr[Ŷ = 1|b,M]| ≤ ε.

For both disparate impact and statistical parity, lower value
of ε indicates higher group fairness of the classifierM.

Separation Metrics of Fairness. In the separation (or
classification parity) notion of fairness, the predicted label Ŷ
of a classifierM is independent of the sensitive attributes A
given the actual class labels Y . In case of binary classifiers,
a popular separation metric is equalized odds (EO) (Hardt,
Price, and Srebro 2016) that computes the difference of false
positive rates (FPR) and the difference of true positive rates
(TPR) among all compound protected groups. Lower value of
equalized odds indicates better fairness. A classifierM satis-
fies ε-equalized odds if, for all compound protected groups
a,b ∈ A,

|Pr[Ŷ = 1|A = a, Y = 0]− Pr[Ŷ = 1|A = b, Y = 0]| ≤ ε,
|Pr[Ŷ = 1|A = a, Y = 1]− Pr[Ŷ = 1|A = b, Y = 1]| ≤ ε.

In this paper, we formulate verifying the aforementioned
independence and separation metrics of fairness as stochastic
Boolean satisfiability (SSAT) problem, which we define next.

Stochastic Boolean Satisfiability (SSAT)
Let B = {B1, . . . , Bm} be a set of Boolean variables. A lit-
eral is a variable Bi or its complement ¬Bi. A propositional
formula φ defined over B is in Conjunctive Normal Form
(CNF) if φ is a conjunction of clauses and each clause is a
disjunction of literals. Let σ be an assignment to the vari-
ables Bi ∈ B such that σ(Bi) ∈ {1, 0} where 1 is logical
TRUE and 0 is logical FALSE. The propositional satisfia-
bility problem (SAT) (Biere, Heule, and van Maaren 2009)
finds an assignment σ to all Bi ∈ B such that the formula
φ is evaluated to be 1. In contrast to the SAT problem, the
Stochastic Boolean Satisfiability (SSAT) problem (Littman,
Majercik, and Pitassi 2001) is concerned with the probability
of the satisfaction of the formula φ. An SSAT formula is of
the form

Φ = Q1B1, . . . , QmBm, φ, (1)
where Qi ∈ {∃, ∀,

Rpi} is either of the existential (∃), uni-
versal (∀), or randomized (

Rpi ) quantifiers over the Boolean
variable Bi and φ is a quantifier-free CNF formula. In the
SSAT formula Φ, the quantifier part Q1B1, . . . , QmBm is
known as the prefix of the formula φ. In case of randomized
quantification

Rpi , pi ∈ [0, 1] is the probability of Bi being
assigned to 1. Given an SSAT formula Φ, let B be the outer-
most variable in the prefix. The satisfying probability of Φ
can be computed by the following rules:

1. Pr[TRUE] = 1, Pr[FALSE] = 0,
2. Pr[Φ] = maxB{Pr[Φ|B ],Pr[Φ|¬B ]} if B is existentially

quantified (∃),
3. Pr[Φ] = minB{Pr[Φ|B ],Pr[Φ|¬B ]} if B is universally

quantified (∀),

4. Pr[Φ] = pPr[Φ|B ]+(1−p) Pr[Φ|¬B ] ifB is randomized
quantified (

Rp) with probability p of being TRUE,
where Φ|B and Φ|¬B denote the SSAT formulas derived by
eliminating the outermost quantifier of B by substituting the
value of B in the formula φ with 1 and 0 respectively. In
this paper, we focus on two specific types of SSAT formulas:
random-exist (RE) SSAT and exist-random (ER) SSAT. In the
ER-SSAT (resp. RE-SSAT) formula, all existentially (resp.
randomized) quantified variables are followed by randomized
(resp. existentially) quantified variables in the prefix.
Lemma 1. (Littman, Majercik, and Pitassi 2001) Solving
the ER-SSAT and RE-SSAT problems are NPPP hard.

The problem of SSAT and its variants have been pur-
sued by theoreticians and practitioners alike for over three
decades (Majercik and Boots 2005; Fremont, Rabe, and Se-
shia 2017; Huang et al. 2006). We refer the reader to (Lee,
Wang, and Jiang 2017, 2018) for detailed survey. It is worth
remarking that the past decade has witnessed a significant
performance improvements thanks to close integration of
techniques from SAT solving with advances in weighted
model counting (Sang et al. 2004; Chakraborty, Meel, and
Vardi 2013; Chakraborty et al. 2014).

Justicia: An SSAT Framework to Verify
Fairness Metrics

In this section, we present the primary contribution of this
paper, Justicia, which is an SSAT-based framework for veri-
fying independence and separation metrics of fairness.

Given a binary classifierM and a probability distribution
over dataset (X,A, Y ) ∼ D, our goal is to verify whether
M achieves independence and separation metrics with re-
spect to the distribution D. We focus on a classifier that
can be translated to a CNF formula of Boolean variables
B. The probability pi of Bi ∈ B being assigned to 1 is in-
duced by the data generating distributionD. In order to verify
fairness metrics in compound protected groups, we discuss
an enumeration-based approach and an equivalent learning-
based approach. We then provide a theoretical analysis for
a high-probability error bound on the fairness metric and
conclude with extension of Justicia in practical settings.

Evaluating Fairness with RE-SSAT Encoding
In order to verify independence and separation metrics, the
core component of Justicia is to compute the positive predic-
tive value Pr[Ŷ = 1|A = a] for a compound protected group
a. For simplicity, we initially make some assumptions and
discuss their practical relaxations later in this section. We first
assume the classifierM is representable as a CNF formula,
namely φŶ , such that Ŷ = 1 when φŶ is satisfied and Ŷ = 0
otherwise. Since a Boolean CNF classifier is defined over
Boolean variables, we assume all attributes in X and A to be
Boolean. Finally, we assume independence of non-protected
attributes on protected attributes and pi is the probability of
the attribute Xi being assigned to 1 for any Xi ∈ X .

Now, we define an RE-SSAT formula Φa to compute the
probability Pr[Ŷ = 1|A = a]. In the prefix of Φa, all non-
protected Boolean attributes in X are assigned randomized
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quantification and they are followed by the protected Boolean
attributes in A with existential quantification. The CNF for-
mula φ in Φa is constructed such that φ encodes the event
inside the target probability Pr[Ŷ = 1|A = a]. In order
to encode the conditional A = a, we take the conjunction
of the Boolean variables in A that symbolically specifies
the compound protected group a. For example, we repre-
sent two protected attributes: race ∈ {White, Colour} and
sex ∈ {male, female} by the Boolean variables R and S re-
spectively. Hence, the compound groups {White,male} and
{Colour, female} are represented by R ∧ S and ¬R ∧ ¬S,
respectively. Thus, the RE-SSAT formula for computing the
probability Pr[Ŷ = 1|A = a] is

Φa :=

Rp1X1, . . . ,

RpmXm︸ ︷︷ ︸
non-protected attributes

, ∃A1, . . . , ∃An︸ ︷︷ ︸
protected attributes

, φŶ ∧ (A = a).

In Φa, the existentially quantified variables A1, . . . , An are
assigned values according to the constraint A = a. 1 There-
fore, by solving the SSAT formula Φa, the SSAT solver finds
the probability Pr[Φa] for the protected group A = a given
the random values of X1, . . . , Xm, which is the PPV of the
protected group a for the distribution D and algorithmM.

For simplicity, we have described computing the PPV of
each compound protected group without considering the cor-
relation between the protected and non-protected attributes.
In reality, correlation exists between the protected and non-
protected attributes. Thus, the non-protected attributes may
have different conditional distributions for different protected
groups. We incorporate these conditional distributions in
RE-SSAT encoding by evaluating the conditional probability
pi = Pr[Xi = TRUE|A = a] instead of the independent
probability Pr[Xi = TRUE] for any Xi ∈ X . We illustrate
this method in Example 0.2.
Example 0.2 (RE-SSAT encoding). Here, we illustrate the
RE-SSAT formula for calculating the PPV for the protected
group ‘age ≥ 40’ in the decision tree of Figure 1. We assign
three Boolean variables F, I, J for the three nodes in the tree
such that the literal F, I, J denote ‘fitness ≥ 0.61’, ‘income
≥ 0.29’, and ‘income ≥ 0.69’, respectively. We consider
another Boolean variable A where the literal A represents the
protected group ‘age ≥ 40’. Thus, the CNF formula for the
decision tree is (¬F ∨ I)∧ (F ∨ J). From the distribution in
Figure 1, we get Pr[F ] = 0.41,Pr[I] = 0.93, and Pr[J ] =
0.09. Given this information, we calculate the PPV for the
protected group ‘age≥ 40’ by solving the RE-SSAT formula:

ΦA :=

R0.41F,

R0.93I,

R0.09J, ∃A, (¬F ∨I)∧(F ∨J)∧A.
From the solution to this SSAT formula, we get Pr[ΦA] =
0.43. Similarly, to calculate the PPV for the group ‘age
< 40’, we replace the unit (single-literal) clause A with ¬A
in the CNF in ΦA and construct another SSAT formula Φ¬A
where Pr[Φ¬A] = 0.43. Therefore, if Pr[F ],Pr[I],Pr[J ]
are computed independently of A and ¬A, both age groups
demonstrate equal PPV as the protected attribute is not ex-
plicitly present in the classifier. However, there is an im-
plicit bias in the data distribution for different protected

1An RE-SSAT formula becomes an R-SSAT formula when the
assignment to the existential variables are fixed.

Algorithm 1 Justicia: SSAT-based Fairness Verifier

1: function Justicia enum(X,A, Ŷ )
2: φŶ := CNF(Ŷ = 1)
3: for all a ∈ A do
4: pi ← CalculateProb(Xi|a), ∀Xi ∈ X
5: φ := φŶ ∧ (A = a)
6: Φa :=

Rp1X1, . . . ,

RpmXm, ∃A1, . . . , ∃An, φ
7: Pr[Φa]← SSAT(Φa) . returns a probability
8: return maxa Pr[Φa],mina Pr[Φa]

9: function Justicia learn(X,A, Ŷ )
10: φŶ := CNF(Ŷ = 1)
11: pi ← CalculateProb(Xi), ∀Xi ∈ X
12: ΦER := ∃A1, . . . , ∃An,

Rp1X1, . . . ,

RpmXm, φŶ
13: Φ′

ER := ∃A1, . . . , ∃An,

Rp1X1, . . . ,

RpmXm,¬φŶ
14: return SSAT(ΦER), 1− SSAT(Φ′

ER)

groups and the classifier unintentionally learns it. To capture
this implicit bias, we calculate the conditional probabilities
Pr[F |A] = 0.01,Pr[I|A] = 0.99, and Pr[J |A] = 0.18 from
the distribution. Using the conditional probabilities in ΦA,
we find that Pr[ΦA] = 0.18 for ‘age ≥ 40’. For ‘age < 40’,
we similarly obtain Pr[F |¬A] = 0.82,Pr[I|¬A] = 0.88,
and Pr[J |¬A] = 0.01, and thus Pr[Φ¬A] = 0.72. Therefore,
presented RE-SSAT encoding detects the discrimination of
the classifier among different protected groups. An astute
reader would observe that I and J are not independent. Fol-
lowing (Chavira and Darwiche 2008), we can simply capture
relationship between the variables using constraints and if
needed, auxiliary variables. In this case, it suffices to add the
the constraint J → I .

Measuring Fairness Metrics. As we compute the proba-
bility Pr[Ŷ = 1|A = a] by solving the SSAT formula Φa,
we use Pr[Φa] to measure different fairness metrics. For that,
we compute Pr[Φa] for all compound groups a ∈ A that
requires solving exponential (with n) number of SSAT in-
stances. We elaborate this enumeration approach, namely
Justicia enum, in Algorithm 1 (Line 1–8).

We calculate the ratio of the minimum and the maximum
probabilities according to the definition of disparate impact.
We compute statistical parity by taking the difference be-
tween the maximum and the minimum probabilities of all
Pr[Φa]. Moreover, to measure equalized odds, we compute
two SSAT instances for each compound group with modified
values of pi. Specifically, to compute TPR, we use the condi-
tional probability pi = Pr[Xi|Y = 1] on samples with class
label Y = 1 and take the difference between the maximum
and the minimum probabilities of all compound groups. In
addition, to compute FPR, we use the conditional probability
pi = Pr[Xi|Y = 0] on samples with Y = 0 and take the
difference similarly. Thus, Justicia enum allows us to com-
pute different fairness metrics using a unified algorithmic
framework.

Learning Fairness with ER-SSAT Encoding
In most practical problems, there can be exponentially many
compound groups based on the different combinations of
valuation to the protected attributes. Therefore, the enumera-
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tion approach may suffer from scalability issues. Hence, we
propose efficient SSAT encodings to learn the most favored
group and the least favored group for givenM and D, and to
compute their PPVs to measure different fairness metrics.

Learning the Most Favored Group. In an SSAT formula
Φ, the order of quantification of the Boolean variables in the
prefix carries distinct interpretation of the satisfying probabil-
ity of Φ. In ER-SSAT formula, the probability of satisfying
Φ is the maximum satisfying probability over the existen-
tially quantified variables given the randomized quantified
variables (by Rule 2, Sec. ). In this paper, we leverage this
property to compute the most favored group with the highest
PPV. We consider the following ER-SSAT formula.

ΦER := ∃A1, . . . , ∃An,

Rp1X1, . . . ,

RpmXm, φŶ . (2)

The CNF formula φŶ is the CNF translation of the clas-
sifier Ŷ = 1 without any specification of the compound
protected group. Therefore, as we solve ΦER, we find the
assignment to the existentially quantified variables A1 =
amax
1 , . . . , An = amax

n for which the satisfying probability
Pr[ΦER] is maximum. Thus, we compute the most favored
group afav , {amax

1 , . . . , amax
n } achieving the highest PPV.

Learning the Least Favored Group. In order to learn the
least favored group in terms of PPV, we compute the min-
imum satisfying probability of the classifier φŶ given the
random values of the non-protected variables X1, . . . , Xm.
In order to do so, we have to solve a ‘universal-random’ (UR)
SSAT formula (Eq. (3)) with universal quantification over the
protected variables and randomized quantification over the
non-protected variables (by Rule 3, Sec. ).

ΦUR := ∀A1, . . . , ∀An,

Rp1X1, . . . ,

RpmXm, φŶ . (3)

A UR-SSAT formula returns the minimum satisfying proba-
bility of φ over the universally quantified variables in contrast
to the ER-SSAT formula that returns the maximum satisfying
probability over the existentially quantified variables. Due
to practical issues to solve UR-SSAT formula, in this pa-
per, we leverage the duality between UR-SSAT (Eq. (3)) and
ER-SSAT formulas (Eq. (4))

Φ′
ER := ∃A1, . . . , ∃An,

Rp1X1, . . . ,

RpmXm, ¬φŶ . (4)

and solve the UR-SSAT formula on the CNF φ using the
ER-SSAT formula on the complemented CNF ¬φ (Littman,
Majercik, and Pitassi 2001). Lemma 2 encodes this duality.
Lemma 2. Given Eq. (3) and (4), Pr[ΦUR] = 1− Pr[Φ′

ER].
As we solve Φ′

ER, we obtain the assignment to the protected
attributes aunfav , {amin1 , . . . , aminn } that maximizes Φ′

ER.
If p is the maximum satisfying probability of Φ′

ER, according
to Lemma 2, 1 − p is the minimum satisfying probability
of ΦUR, which is the PPV of the least favored group aunfav.
We present the algorithm for this learning approach, namely
Justicia learn in Algorithm 1 (Line 9–14).

In ER-SSAT formula of Eq. (4), we need to negate the clas-
sifier φŶ to another CNF formula ¬φŶ . The naı̈ve approach
of negating a CNF to another CNF generates exponential
number of new clauses. Here, we can apply Tseitin transfor-
mation that increases the clauses linearly while introducing

linear number of new variables (Tseitin 1983). As an alterna-
tive, we also directly encode the classifierM for the negative
class label Ŷ = 0 as a CNF formula and pass it to Φ′

ER, if
possible. The last approach is generally more efficient than
the other approaches as the resulting CNF is often smaller.
Example 0.3 (ER-SSAT encoding). Here, we illustrate the
ER-SSAT encodings for learning the most favored and the
least favored group in presence of multiple protected groups.
As the example in Figure 1 is degenerate for this purpose,
we introduce another protected group ‘sex ∈ {male, fe-
male}’. Consider a Boolean variable S for ‘sex’ where the
literal S denotes ‘sex = male’. With this new protected
attribute, let the classifier be M , (¬H ∨ I ∨ S) ∧
(H ∨ J), where A,H, I, J have same distributions as dis-
cussed in Example 0.2. Hence, we obtain the ER-SSAT
formula of M to learn the most favored group: ΦER =
∃S, ∃A, R0.41H,

R0.93I,

R0.09J, (¬H ∨ I ∨ S) ∧ (H ∨ J).
As we solve ΦER, we learn that the assignment to the

existential variables σ(S) = 1, σ(A) = 0, i.e. ‘male in-
dividuals with age < 40’ is the most favored group with
PPV computed as Pr[ΦER] = 0.46. Similarly, to learn the
least favored group, we negate the CNF of the classifier
M to obtain the following ER-SSAT formula: ΦER′ =
∃S, ∃A, R0.41H,

R0.93I,

R0.09J, ¬((¬H∨I∨S)∧(H∨J)).
Solving ΦER′ , we learn the assignment σ(S) = 0, σ(A) =

0 and Pr[ΦER′ ] = 0.57. Thus, ‘female individuals with age
< 40’ constitute the least favored group with PPV: 1−0.57 =
0.43. Thus, Justicia learn allows us to learn the most and
least favored groups and the corresponding discrimination.

We use the PPVs of the most and least favored groups to
compute different fairness metrics. We next prove the equiva-
lence of Justicia enum and Justicia learn in Lemma 3.
Lemma 3. Let Φa be the RE-SSAT formula for comput-
ing the PPV of the compound protected group a ∈ A. If
ΦER is the ER-SSAT formula for learning the most favored
group and ΦUR is the UR-SSAT formula for learning the
least favored group, then maxa Pr[Φa] = Pr[ΦER] and
mina Pr[Φa] = Pr[ΦUR].

Theoretical Analysis: Error Bounds
We access the data generating distribution through finite num-
ber of samples observed from it. These finite sample set intro-
duce errors in the computed probabilities of the randomised
quantifiers being 1. These finite-sample errors in computed
probabilities induce further errors in the computed positive
predictive value (PPV) and fairness metrics. We next provide
a bound on this finite-sample error.

Let us consider that p̂i is the estimated probability of a
Boolean variable Bi being assigned to 1 from k-samples
and pi is the true probability according to D. Thus, the true
satisfying probability p of Φ is the weighted sum of all sat-
isfying assignments of the CNF φ: p =

∑
σ

∏
Bi∈σ pi. This

probability is estimated as p̂ using k-samples from the data
generating distribution D such that p̂ ≤ ε0p for ε0 ≥ 1.
Theorem 4. For an ER-SSAT problem, the sample complex-
ity is given by k = O

(
(n+ ln(1/δ)) lnm

ln ε0

)
, where p̂

p ≤ ε0

with probability 1− δ such that ε0 ≥ 1.
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Corollary 1. If k samples are considered from the
data-generating distribution in Justicia such that k =

O
(

(n+ ln(1/δ)) lnm
ln ε0

)
, the estimated disparate impact D̂I

and statistical parity ŜP satisfy, with probability 1 − δ,
D̂I ≤ ε0DI, and ŜP ≤ 2ε0SP.

This implies that given a classifierM , Pr(Ŷ |X,A) rep-
resented as a CNF formula and a data-generating distribution
(X,A, Y ) ∼ D, Justicia can verify independence and sepa-
ration notion of fairness up to an error level ε0 and 2ε0 with
probability 1 − δ. Thus, Justicia is a sound framework of
fairness verification with high probability.

Practical Settings
We now relax the assumptions on access to Boolean clas-
sifiers and Boolean attributes, and extend Justicia to verify
fairness metrics for more practical settings of decision trees,
linear classifiers, and continuous attributes.

Extending to Decision Trees and Linear Classifiers. In
the SSAT approach, we assume that the classifierM is repre-
sented as a CNF formula. We extend Justicia beyond CNF
classifiers to decision trees and linear classifiers, which are
widely used in the fairness studies (Zemel et al. 2013; Raff,
Sylvester, and Mills 2018; Zhang and Ntoutsi 2019).

Binary decision trees are trivially encoded as CNF formu-
las. In the binary decision tree, each node in the tree is a
literal. A path from the root to the leaf is a conjunction of
literals and thus, a clause. The tree itself is a disjunction of all
paths and thus, a DNF (Disjunctive Normal Form). In order
to derive a CNF of a decision tree, we first construct a DNF
by including all paths terminating at leaves with negative
class label (Ŷ = 0) and then complement the DNF to CNF
using De Morgan’s rule.

Linear classifiers on Boolean attributes are encoded into
CNF formulas using pseudo-Boolean encoding (Philipp and
Steinke 2015). We consider a linear classifier WTX + b ≥ 0
on Boolean attributes X with weights W ∈ R|X| and bias
b ∈ R. We first normalize W and b in [−1, 1] and then
round to integers so that the decision boundary becomes a
pseudo-Boolean constraint. We then apply pseudo-Boolean
constraints to CNF translation to encode the decision bound-
ary to CNF. This encoding usually introduces additional
Boolean variables and results in large CNF. In order to gen-
erate a smaller CNF, we can trivially apply thresholding on
the weights to consider attributes with higher weights only.
For instance, if the weight |wi| ≤ λ for a threshold λ ∈ R+

and wi ∈ W , we can set wi = 0. Thus, the attributes with
lower weights and thus, less importance do not appear in the
encoded CNF. Moreover, all introduced variables in this CNF
translation are given existential (∃) quantification and they
appear in the inner-most position in the prefix of the SSAT
formula. Thus, the presented ER-SSAT formulas become
effectively ERE-SSAT formulas.

Extending to Continuous Attributes. In practical prob-
lems, attributes are generally real-valued or categorical
but classifiers, which are naturally expressed as CNF such
as (Ghosh, Malioutov, and Meel 2020), are generally trained

on a Boolean abstraction of the input attributes. In order to
perform this Boolean abstraction, each categorical attribute is
one-hot encoded and each real-valued attribute is discretised
into a set of Boolean attributes (Lakkaraju et al. 2019; Ghosh,
Malioutov, and Meel 2020).

For a binary decision tree, each attribute, including the
continuous ones, is compared against a constant at each in-
ternal node of the tree. We fix a Boolean variable for each
internal node, where the Boolean assignment to the variable
decides one of the two branches to choose from the current
node.

Linear classifiers are generally trained on continuous at-
tributes, where we apply the following discretization. Let us
consider a continuous attribute Xc, where w is its weight dur-
ing training. We discretizeXc to a set B of Boolean attributes
and recalculate the weight of each variable in B based on w.
For the discretization of Xc, we consider the interval-based
approach2. For each interval in the continuous space of Xc,
we consider a Boolean variable Bi ∈ B, such that Bi is as-
signed TRUE when the attribute-value of Xc lies within the
ith interval and Bi is assigned FALSE otherwise. Following
that, we assign the weight of Bi to be µi ×w, when µi is the
mean of the ith interval and Bi is TRUE. We can show that
if we consider infinite number of intervals, Xc ≈

∑
i µiBi.

Empirical Performance Analysis
In this section, we discuss the empirical studies to evaluate the
performance of Justicia in verifying different fairness metrics.
We first discuss the experimental setup and the objective of
the experiments and then evaluate the experimental results.

Experimental Setup
We have implemented a prototype of Justicia in Python (ver-
sion 3.7.3). The core computation of Justicia relies on solv-
ing SSAT formulas using an off-the-shelf SSAT solver. To
this end, we employ the state of the art RE-SSAT solver
of (Lee, Wang, and Jiang 2017) and the ER-SSAT solver
of (Lee, Wang, and Jiang 2018). Both solvers output the
exact satisfying probability of the SSAT formula.

For comparative evaluation of Justicia, we have exper-
imented with two state-of-the-art distributional verifiers
FairSquare and VeriFair, and also a sample-based fairness
measuring tool: AIF360. In the experiments, we have studied
three type of classifiers: CNF learner, decision trees and logis-
tic regression classifier. Decision tree and logistic regression
are implemented using scikit-learn module of Python (Pe-
dregosa et al. 2011) and we use the MaxSAT-based CNF
learner IMLI of (Ghosh and Meel 2019). We have used the
PySAT library (Ignatiev, Morgado, and Marques-Silva 2018)
for encoding the decision function of the logistic regression
classifier into a CNF formula. We have also verified two
fairness-enhancing algorithms: reweighing algorithm (Kami-
ran and Calders 2012) and the optimized pre-processing algo-
rithm (Calmon et al. 2017). We have experimented on multi-
ple datasets containing multiple protected attributes: the UCI3

2Our implementation is agnostic to any discretization technique.
3http://archive.ics.uci.edu/ml
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Metric Exact Justicia FairSquare VeriFair AIF360

Disparate impact 0.26 0.25 0.99 0.99 0.25
Stat. parity 0.53 0.54 — — 0.54

Table 1: Results on synthetic benchmark. ‘—’ refers that the
verifier cannot compute the metric.

Dataset Ricci Titanic COMPAS Adult

Classifier DT LR DT LR DT LR DT LR

Justicia 0.1 0.2 0.1 0.9 0.1 0.2 0.2 1.0
FairSquare 4.8 — 16.0 — 36.9 — — —
VeriFair 5.3 2.2 1.2 0.8 15.9 11.3 295.6 61.1

Table 2: Scalability of different verifiers in terms of execution
time (in seconds). DT and LR refer to decision tree and
logistic regression respectively. ‘—’ refers to timeout.

Adult and German-credit dataset, ProPublica’s COMPAS re-
cidivism dataset (Angwin et al. 2016), Ricci dataset (McGin-
ley 2010), and Titanic dataset4.

Our empirical studies have the following objectives:

1. How accurate and scalable Justicia is with respect to ex-
isting fairness verifiers, FairSquare and VeriFair?

2. Can Justicia verify the effectiveness of different fairness-
enhancing algorithms on different datasets?

3. Can Justicia verify fairness in the presence of compound
sensitive groups?

4. How robust is Justicia in comparison to sample-based
tools like AIF360 for varying sample sizes?

5. How do the computational efficiencies of Justicia learn
and Justicia enum compare?

Our experimental studies validate that Justicia is more
accurate and scalable than the state-of-the-art verifiers
FairSquare and VeriFair. Justicia is able to verify the effec-
tiveness of different fairness-enhancing algorithms for multi-
ple fairness metrics, and datasets. Justicia achieves scalable
performance in the presence of compound sensitive groups
that the existing verifiers cannot handle. Justicia is also more
robust than the sample-based tools such as AIF360. Finally,
Justicia learn is significantly efficient in terms of runtime
than Justicia enum.

Experimental Analysis
Accuracy: Less Than 1%-error. In order to assess the ac-
curacy of different verifiers, we have considered the decision
tree in Figure 1 for which the fairness metrics are analyti-
cally computable. In Table 1, we show the computed fairness
metrics by Justicia, FairSquare, VeriFair, and AIF360. We
observe that Justicia and AIF360 yield more accurate esti-
mates of DI and SP compared against the ground truth with
less than 1% error. FairSquare and VeriFair estimate the dis-
parate impact to be 0.99 and thus, being unable to verify

4https://www.kaggle.com/c/titanic

the fairness violation. Thus, Justicia is significantly accurate
than the existing formal verifiers: FairSquare and VeriFair.

Scalability: 1 to 3 Orders of Magnitude Speed-up. We
have tested the scalability of Justicia, FairSquare, and Veri-
Fair on practical benchmarks with a timeout of 900 seconds
and reported the execution time of these verifiers on deci-
sion tree and logistic regression in Table 2. We observe that
Justicia shows impressive scalability than the competing veri-
fiers. Particularly, Justicia is 1 to 2 orders of magnitude faster
than FairSquare and 1 to 3 orders of magnitude faster than
VeriFair. Additionally, FairSquare times out in most bench-
marks. Thus, Justicia is not only accurate but also scalable
than the existing verifiers.

Verification: Detecting Compounded Discrimination in
Protected Groups. We have tested Justicia for datasets
consisting of multiple protected attributes and reported the
results in Figure 2. Justicia operates on datasets with even
40 compound protected groups and can potentially scale
more than that while the state-of-the-art fairness verifiers
(e.g., FairSquare and VeriFair) consider a single protected
attribute. Thus, Justicia removes an important limitation in
practical fairness verification. Additionally, we observe in
most datasets the disparate impact decreases and thus, dis-
crimination increases as more compound protected groups are
considered. For instance, when we increase the total groups
from 5 to 40 in the Adult dataset, disparate impact decreases
from around 0.9 to 0.3, thereby detecting higher discrimina-
tion. Thus, Justicia detects that the marginalized individuals
of a specific type (e.g., ‘race’) are even more discriminated
and marginalized when they also belong to a marginalized
group of another type (e.g., ‘sex’).

Verification: Fairness of Algorithms on Datasets. We
have experimented with two fairness-enhancing algo-
rithms: the reweighing (RW) algorithm and the optimized-
preprocessing (OP) algorithm. Both of them pre-process to
remove statistical bias from the dataset. We study the effec-
tiveness of these algorithms using Justicia on three datasets
each with two different protected attributes. In Table 3, we
report different fairness metrics on logistic regression and
decision tree. We observe that Justicia verifies fairness im-
provement as the bias mitigating algorithms are applied. For
example, for the Adult dataset with ‘race’ as the protected
attribute, disparate impact increases from 0.23 to 0.85 for
applying the reweighing algorithm on logistic regression clas-
sifier. In addition, statistical parity decreases from 0.09 to
0.01, and equalized odds decreases from 0.13 to 0.03, thereby
showing the effectiveness of reweighing algorithm in all three
fairness metrics. Justicia also finds instances where the fair-
ness algorithms fail, specially when considering the decision
tree classifier. Thus, Justicia enables verification of different
fairness enhancing algorithms in literature.

Robustness: Stability to Sample Size. We have compared
the robustness of Justicia with AIF360 by varying the sample-
size and reporting the standard deviation of different fairness
metrics. In Figure 3, AIF360 shows higher standard deviation
for lower sample-size and the value decreases as the sample-
size increases. In contrast, Justicia shows significantly lower
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Classifier
Dataset→ Adult COMPAS

Protected→ Race Sex Race Sex

Algorithm→ orig. RW OP orig. RW OP orig. RW OP orig. RW OP

Logistic
regression

Disparte impact 0.23 0.85 0.59 0.03 0.61 0.62 0.34 0.36 0.47 0.48 0.80 0.74
Stat. parity 0.09 0.01 0.05 0.16 0.04 0.03 0.39 0.33 0.21 0.23 0.09 0.10
Equalized odds 0.13 0.03 0.10 0.30 0.02 0.06 0.38 0.33 0.18 0.17 0.19 0.07

Decision
tree

Disparte impact 0.82 0.60 0.67 0.00 0.73 0.95 0.61 0.58 0.57 0.94 0.78 0.63
Stat. parity 0.02 0.05 0.04 0.14 0.05 0.01 0.18 0.17 0.17 0.02 0.09 0.18
Equalized odds 0.07 0.05 0.03 0.47 0.03 0.04 0.17 0.16 0.16 0.07 0.05 0.16

Table 3: Verification of different fairness enhancing algorithms for multiple datasets and classifiers using Justicia. Numbers
in bold refer to fairness improvement compared against the unprocessed (orig.) dataset. RW and OP refer to reweighing and
optimized-preprocessing algorithm respectively.
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Figure 2: Fairness metrics measured by Justicia for different
protected groups in the Adult dataset. The number within
parenthesis in the xticks denotes total compound groups.
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Figure 3: Standard deviation in estimation of disparate impact
(DI) and stat. parity (SP) for different sample sizes. Justicia
is more robust with variation of sample size than AIF360.
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Figure 4: Runtime comparison of different encodings while
varying total protected groups in the Adult dataset.

(∼ 10× to 100×) standard deviation for different sample-
sizes. The reason is that AIF360 empirically measures on a
fixed test dataset whereas Justicia provides estimates over
the data generating distribution. Thus, Justicia is more robust
than the sample-based verifier AIF360.

Comparative Evaluation of Different Encodings. While
both Justicia enum and Justicia learn have the same output
according to Lemma 3, Justicia learn encoding improves ex-
ponentially in runtime than Justicia enum encoding on both
decision tree and Boolean CNF classifiers as we vary the to-
tal compound groups in Figure 4. Justicia cond (conditional
probabilities w.r.t. protected groups) also has an exponential
trend in runtime similar to Justicia enum. This analysis justi-
fies that the naı̈ve enumeration-based approach cannot verify
large-scale fairness problems containing multiple protected

attributes, and Justicia learn is a more efficient approach for
practical use.

Discussion and Future Work
Though formal verification of different fairness metrics of an
ML algorithm for different datasets is an important question,
existing verifiers are not scalable, accurate, and extendable
to non-Boolean protected attributes. We propose a stochastic
SAT-based approach, Justicia, that formally verifies indepen-
dence and separation metrics of fairness for different classi-
fiers and distributions for compound protected groups. Exper-
imental evaluations demonstrate that Justicia achieves higher
accuracy and scalability in comparison to the state-of-the-
art verifiers, FairSquare and VeriFair, while yielding higher
robustness than the sample-based tools, such as AIF360.

Our work opens up several new directions of research. One
direction is to develop SSAT models and verifiers for popular
classifiers like Deep networks and SVMs. Other direction is
to develop SSAT solvers that can accommodate continuous
variables and conditional probabilities by design.
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