
Towards Reusable Network Components by Learning Compatible Representations

Michael Gygli, Jasper Uijlings, Vittorio Ferrari
Google Research

gyglim@google.com, jrru@google.com, vittoferrari@google.com

Abstract

This paper proposes to make a first step towards compatible
and hence reusable network components. Rather than train-
ing networks for different tasks independently, we adapt the
training process to produce network components that are com-
patible across tasks. In particular, we split a network into
two components, a features extractor and a target task head,
and propose various approaches to accomplish compatibility
between them. We systematically analyse these approaches
on the task of image classification on standard datasets. We
demonstrate that we can produce components which are di-
rectly compatible without any fine-tuning or compromising
accuracy on the original tasks. Afterwards, we demonstrate
the use of compatible components on three applications: Un-
supervised domain adaptation, transferring classifiers across
feature extractors with different architectures, and increasing
the computational efficiency of transfer learning.

1 Introduction
In computer vision we often train a different neural network
for each task, where reuse of previously learnt knowledge typ-
ically remains limited to pre-training on ImageNet (ILSVRC-
12) (Russakovsky et al. 2015). However, human knowledge is
composable and reusable (Tenenbaum et al. 2011). Therefore
it seems prudent to give neural networks these properties too.
Similar to what humans do, computer vision methods should
reuse and transfer from previously acquired knowledge in
the form of previously trained models (Zamir et al. 2018;
Ngiam et al. 2018; Dwivedi and Roig 2019; Achille et al.
2019; Kontogianni et al. 2020). For example, when a model
can recognize cars in daylight, this knowledge should help
recognizing cars by night through domain adaptation (Ben-
David et al. 2010; Shu et al. 2018). In addition, when a model
expands its knowledge, e.g. through more training examples
or by learning a new concept, these improvements should be
easily transferable to related tasks.

We believe that a general way to achieve network reusabil-
ity is to build a large library of compatible components which
are specialized for different tasks. For example, some would
extract features from RGB images, depth images, or optical
flow fields. Other components could use these features to

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

classify animals, localize cars, segment roads, or estimate hu-
man body poses. The compatibility of the components would
make it easy to mix and match them into a highly performing
model for the task at hand. Besides domain adaptation and
transfer learning, this would also enable training a single clas-
sifier which can be deployed on various devices, each with
its own hardware-specific backbone network. We make a first
step in the direction of reusable components by devising a
training procedure to make the feature representations learnt
on different tasks become compatible, without any post-hoc
fine-tuning. On the long term, we envisage a future where
the practice of building computer vision models will mature
into a state similar to the car manufacturing or building con-
struction industries: with a large pool of high-quality and
functionally well-defined compatible parts that a designer
can conveniently recombine into more complex models tai-
lored to new tasks. The compatibility of components saves
the designer the effort to make them work together in a new
combination, so they are free to focus on designing ever more
complex models.

Our quest for reusable components is related to the ques-
tion of how similar the representations of independently
trained networks are, when they are trained on similar
data (Kornblith et al. 2019; Lenc and Vedaldi 2019; Li et al.
2016b; Lu et al. 2018; Mehrer, Kriegeskorte, and Kietzmann
2018; Morcos, Raghu, and Bengio 2018; Wang et al. 2018).
Instead of such a post-hoc analysis, we make a first step
towards training neural network that are directly compati-
ble, rather than only similar (e.g. in terms of feature corre-
lation (Li et al. 2016b; Morcos, Raghu, and Bengio 2018)).
For the purpose of this paper, we define components by split-
ting a neural network into two parts: a feature extractor and
a target task head. We say two networks are compatible if
we can recombine the feature extractor of one network with
the task head of the other while still producing good predic-
tions, directly without any fine-tuning after recombination
(Fig. 1). When network components become perfectly com-
patible, they can be interchanged at no loss of accuracy. It is
important to note that compatibility does not require learning
identical mappings, as in feature distillation (Romero et al.
2015). As an extreme case, we could not distill the features
from a network for street view images to a network for un-
derwater images. Instead, by only requiring compatibility as
defined above, each network can learn a feature extractor that

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7620

Figure 1: Experimental setups for the analysis and the applications. Our method enables recombining network components,
which benefits domain adaptation, classifier transferability and efficient transfer learning.

is appropriate for its task.
Concretely, we introduce three ways to alter the train-

ing procedure of neural networks to encourage compatibil-
ity (Sec. 3): using a shared self-supervised auxiliary head
which predicts rotation (Gidaris, Singh, and Komodakis
2018) (Sec 3.1), using a shared auxiliary head which discrim-
inates common classes (Sec. 3.2), and starting training from
identical initial weights (Sec. 3.3). We systematically analyse
how well our methods make components compatible for the
case of two image classification networks, one for CIFAR-10
and the other for STL-10 (Sec. 4). We also demonstrate that
compatibility comes at no loss of accuracy on the original
tasks. In Sec. 5 we apply our method to three diverse appli-
cations: unsupervised domain adaptation (Sec. 5.1), trans-
ferring pre-trained classifiers across networks with different
architectures (Sec. 5.2) and increasing the computational ef-
ficiency of transfer learning (Sec. 5.3). These applications
involve demonstrating compatibility between networks with
different architectures, making several networks compatible
at the same time, and testing on more complex datasets like
CIFAR-100 and ILSVRC-12.

2 Related Work
In this section we discuss the relation of our work with ex-
isting methods. We provide a structured positioning in Tab.1.

Representational similarity analysis. Several works investi-
gate whether neural networks learn different projections of
the same high-level representations, when trained indepen-
dently and potentially on different datasets (Li et al. 2016b;
Lu et al. 2018; Mehrer, Kriegeskorte, and Kietzmann 2018;
Morcos, Raghu, and Bengio 2018; Wang et al. 2018; Lenc

and Vedaldi 2019; Kornblith et al. 2019; Shuai Tang 2020).
Closest to our work, (Lenc and Vedaldi 2019) analyze repre-
sentational similarity via the performance of networks after
recombining their components. As they start from indepen-
dently trained networks, they require adding a stitching layer
and training the recombined network with a supervised loss
for several epochs. We alter training, instead, so that the
components are directly compatible and can be recombined,
without the need for post-hoc optimization. This leads to
features that are more similar than those of independently
trained networks, as we show using (Li et al. 2016b).

Distillation & per-example feature alignment. Methods
for feature alignment aim at training two or more networks
so that they map a data sample to the same feature represen-
tation. Inspired by knowledge distillation (Buciluǎ, Caruana,
and Niculescu-Mizil 2006; Hinton, Vinyals, and Dean 2015),
feature distillation trains a network to approximate the fea-
ture activations of another network (Romero et al. 2015).
Instead, multi-modal embeddings methods learn to map mul-
tiple views of the same example to a common representa-
tion (Frome et al. 2013; Socher et al. 2013; Karpathy and Fei-
Fei 2015; Gupta, Hoffman, and Malik 2016; Wang, van de
Weijer, and Herranz 2018). Examples include methods for im-
age captioning, which train on image+caption pairs (Karpathy
and Fei-Fei 2015), or mix-and-match networks (Wang, van de
Weijer, and Herranz 2018), which map different modalities
to the same representation, e.g. depth+RGB pairs. In contrast,
our notion of compatibility does not require both networks to
be trained from the same data, nor to see paired views of the
same data. It is thus more generally applicable.

Multi-Task Learning (MTL). The goal of MTL is produc-
ing a single network which can solve multiple tasks. This

7621

Representational
similarity

Distillation Multi-task
learning

Continual
learning

Unsupervised do-
main adaptation

Compatibility

Analysis / application Analysis Application Application Application Application Both
Paired data Yes Yes No No No No
Identical output space No No No No Yes No
Identical architecture No No Yes Yes Yes No
Learns from / adapts
existing model

Not applicable Yes No Yes Yes No

Feature space align-
ment method

Post-hoc, Per-
example

Per-example Shared compu-
tational path

Various Distribtion match-
ing

Compatibility
w.r.t. a head

Table 1: Positioning of compatibility w.r.t.related work.

is typically achieved with large architectures and partially
sharing computational paths across tasks, e.g. (Misra et al.
2016; Kaiser et al. 2017; Maninis, Radosavovic, and Kokki-
nos 2019). In contrast, we train different networks whose
components are compatible and our method regularizes the
feature representation space only, without imposing archi-
tectural constraints. Furthermore, MTL requires access to
all datasets of all tasks at the same time for training, which
becomes burdensome in computation and engineering as the
number of task grows, and might be infeasible due to li-
censing or privacy concerns. Instead, our incremental version
(Sec. 3.4) does not require simultaneous access to all datasets,
which we demonstrate experimentally in Sec. 4, 5.1 & 5.3.

Continual learning (CL). CL is typically formulated as the
online version of MTL (Ruvolo and Eaton 2013; Rebuffi
et al. 2017; Farquhar and Gal 2018; Chen and Liu 2018;
Parisi et al. 2019). Thereby, the core challenge is to preserve
compatibility between existing classification heads and a
feature extractor that gets updated over time. This is often
addressed by penalizing changing important weights (Kirk-
patrick et al. 2017; Zenke, Poole, and Ganguli 2017; Aljundi
et al. 2018), or changing predictions of the model on previous
tasks (Li and Hoiem 2017; Shmelkov, Schmid, and Alahari
2017; Michieli and Zanuttigh 2019). Instead of just preserv-
ing compatibility between initially identical networks, we
propose a method that produces compatible networks even
if they have different architectures, are trained on different
datasets, or start from different initializations (Sec. 4 & 5).

Unsupervised domain adaptation (UDA). The goal of UDA
is to produce a model which works on the target domain,
given a labeled source domain but only unlabeled data form
the target domain. There are two dominant ways to approach
this (Wang and Deng 2018; Zhang et al. 2018): (i) train one
model that works on both the source and the target domain,
e.g. (Tzeng et al. 2014; Ganin and Lempitsky 2014; Zhang
et al. 2018; Kumar et al. 2018), who make features domain
invariant through a domain discriminator; or (ii) train a model
on the source domain and then adapt it to the target domain,
e.g. (Saito, Ushiku, and Harada 2017; Zhang et al. 2018),
who rely on pseudo labels. The latter is more general since
it does not require access to the source and target dataset at
the same time, and also works for non-conservative domain
adaptation where a single classifier cannot perform well in
both domains (Ben-David et al. 2010; Shu et al. 2018). In Sec.
5.3 we adopt this approach and show that the self-supervised

version of our method improves UDA.

Transfer Learning (TL). The goal of TL is to improve re-
sults on a target task by reusing knowledge derived from a
related source task. The current standard is to simply reuse
the feature extractor of a model trained on ILSVRC-12 (Don-
ahue et al. 2013; Sharif Razavian et al. 2014; Ren et al. 2015;
He et al. 2017). However, what is the best source task de-
pends on the target task (Zamir et al. 2018; Ngiam et al. 2018;
Dwivedi and Roig 2019; Achille et al. 2019; Yan, Acuna, and
Fidler 2020). In (Zamir et al. 2018), they proposed a com-
putational framework to find good source tasks. But this is
expensive: finding good source+target task combinations con-
sumed 50’000 GPU hours to train 3000 transfer functions.
Recently, (Dwivedi and Roig 2019; Achille et al. 2019) pro-
posed methods to predict what tasks to transfer from. This
allows to only transfer, fine-tune, and test the most promising
feature extractors, thus saving computation. In Sec. 5.3 we
demonstrate that we can reduce the amount of fine-tuning
necessary to achieve good performance on the target task,
which increases efficiency further.

3 Method
We consider neural networks formed by the combination
of two components: A feature extractor f(·) and a target
task head h(·), parameterized by Φ and Θ, respectively. In
standard supervised learning, one trains a neural network
on task t by minimizing a task loss `t(h(f(xi;Φt);Θt),yi)
over all examples xi with label yi in dataset Dt. We denote a
standard network trained on task t, using the feature extractor
and target head of task t, as ntt(xi).

When independently training two networks on tasks a and
b by minimizing their respective losses `a(·) and `b(·), the
resulting networks are incompatible: Recombining their com-
ponents into a new network nab(xi) = h(f(xi;Φa);Θb) or
nba(·) produces random or systematically wrong predictions
(Sec. 4). This happens because the two feature extractors gen-
erally learn features responding to different image patterns,
with different scaling of activation values, and even equiv-
alent feature channels will appear in arbitrary orders (Lenc
and Vedaldi 2019; Kornblith et al. 2019).

Compatibility. Our goal is to achieve compatibility between
networks, directly after training. We define compatibility
based on the performance of the recombined networks nab(·)
and nba(·). When these network performs at chance level,

7622

we say that the components of naa(·) and nbb(·) are incom-
patible. Instead, they are compatible when nab(·) and nba(·)
directly output predictions that are significantly better than
chance, without any fine-tuning after recombination. Gen-
erally, the recombined networks will not exceed the perfor-
mance of the vanilla networks naa(·) and nbb(·), trained
and tested on their own task without recombining any com-
ponent. Thus, we define this performance as the practical
upper bound. When the recombined networks reach this up-
per bound, they are perfectly compatible, which allows to use
their components interchangeably.

To achieve compatibility, we introduce some degree of de-
pendency between the training processes of naa(·) and nbb(·).
Specifically, we encourage compatibility between the fea-
tures produced by their extractors f(xi;Φa) and f(xi;Φb).
As many different parameterizations of a neural network pro-
duce comparable performance (Choromanska et al. 2015;
Lu et al. 2018), we hypothesize that we can make networks
more compatible without decreasing the performance on their
original task (confirmed in our experiments in Sec. 4).

Next, we introduce three different methods that encourage
compatibility. For clarity of exposition, we describe the case
for two networks, but our methods works with any number
of networks (Sec. 5.2 & 5.3). Similarly, while we denote
the model components with f(·) and h(·) for simplicity, our
method also handles the case where networks naa and nbb

have a different architecture (Sec. 5.2).

3.1 Compatibility Through Self-Supervision (RP)
We propose to make components compatible via a generally
applicable auxiliary task, based on a self-supervised objective.
Self-supervision relies on supervised learning techniques, but
the labels are created from the unlabelled input data itself. We
adopt the approach of previous methods like (Noroozi and
Favaro 2016; Doersch and Zisserman 2017; Gidaris, Singh,
and Komodakis 2018). First, we transform an image x with
g (x, s), a function which applies a transformation s. Then,
the task of the network is to predict what transformation was
applied (its label).

To achieve compatibility, this auxiliary task has its own
head s, but operates on the features produced by the extrac-
tors of the respective target tasks (Fig. 1a). Specifically, its
prediction function is s(f(x;Φt);Θs), where Θs are the
parameters of the auxiliary task head. During training, we
minimize the target task losses and the auxiliary task loss for
both tasks:∑

t∈{a,b}

∑
(xi,yi)∈Dt

[̀
t (h (f (xi;Φt) ;Θt) ,yi)

+
1

|S|
∑
s∈S

`s (h (f (g (xi, s) ;Φt) ;Θs) , s)
] (1)

where S is set of possible transformations that are applied,
Θs are the parameters of the auxiliary task head, and `s its
associated loss. While there are target task parameters Φt and
Θt specific to each task, we tie the auxiliary task parameters
Θs across tasks. This forces the feature extractors f(xi;Φt)
of each task t to produce features that are compatible with

the same auxiliary task head. As we show in Sec. 4, this
leads to feature extractors that are compatible more generally,
allowing to recombine the feature extractor of one with the
target task head of the other.
Choice of self-supervision task. Throughout this work we
use rotation prediction (Gidaris, Singh, and Komodakis 2018).
The input image is transformed by rotating it with an angle
S = {0◦, 90◦, 180◦, 270◦} and the task is to classify which
rotation angle was applied. For simplicity we refer to this
method as compatibility through rotation prediction (RP),
but any other self-supervised objective can be used here. We
discuss considerations for choosing a suitable self-supervised
task in the supplementary material.
Trade-offs. This compatibility method is very general. It only
requires the shared self-supervised task to be both meaningful
and non-trivial (Sun et al. 2019; Tschannen et al. 2019).
While such a task can be defined on almost any dataset, the
quality of the induced compatibility depends on how much
the target task and the auxiliary task rely on the same features.
In theory, a weakly related or orthogonal self-supervised
auxiliary task could negatively affect the performance of
the network on the target task. In practice though, it often
improves performance (Zhai et al. 2019; Hénaff et al. 2019).
Similarly, in our experiments we only observe positive effects
on performance when adding rotation prediction.

3.2 Compatibility Through Discriminating
Common Classes (DCC)

When tasks a, b have common classes, we can directly use
these to achieve compatibility, rather than resorting to a self-
supervised loss. Hence, we propose an auxiliary task head c,
which discriminates among these common classes. Specifi-
cally, we minimize the following loss:∑

t∈{a,b}

∑
(xi,yi)∈Dt

[
`t (h (f (xi;Φt) ;Θt) ,yi)

+̀ c (h (f (xi;Φt) ;Θc) ,yi) · 1 [yi∈C]
] (2)

where `c is the auxiliary task loss. It is computed only over
examples in the set of common classes C (1 is an indicator
function returning 1 if its argument is true and 0 otherwise).
Trade-offs. While this method is expected to achieve high
compatibility, it requires the target tasks to have common
classes. Depending on the scenario, the target tasks might
actually have few or even no common classes.

3.3 Compatibility Through Identical Initial
Weights (IIW)

(Zhang, Bengio, and Singer 2019) demonstrated that for many
layers in a trained network, resetting the weights of that layer
to their initial values leads to a limited loss in accuracy. This
suggests that the initialization defines a set of random projec-
tions which strongly shape the trained feature space. Hence,
we propose to encourage compatibility simply by starting the
loss minimization of both tasks from identical initial weights
(IIW). For this method, we initialize using either identical
random weights or identical pre-trained weights (Sec. 4).

7623

Trade-offs. This method only works when both tasks have
identical network architectures. Moreover, it only acts at the
start of training, where it makes networks identical and thus
perfectly compatible.

3.4 Training Schemes
For RP and DCC we consider two training schemes: joint
training and incremental training.

In joint training, we minimize (1) (or (2)) by alternating
between tasks a and b, each time minimizing the loss over a
single minibatch. This resembles multi-task training (Doersch
and Zisserman 2017; Maninis, Radosavovic, and Kokkinos
2019), but here each task has its own network, rather than
having a single network with shared computation. By training
jointly, both target tasks a, b influence the auxiliary task head
parameters and use that head to solve the auxiliary task.

In incremental training, we first train the network naa by
minimizing (1) (or (2)) over task a only. This also learns
the parameters of the auxiliary task head. Later, we train the
network nbb on task b, but use the auxiliary task head with its
parameters frozen. This encourages compatibility between
naa and nbb, without requiring both of them to be trained at
the same time.

4 Analysis of Compatibility
We now analyse the induced compatibility of our methods
introduced in Sec. 3: discriminating common classes (DCC),
rotation prediction (RP), and initializing networks with iden-
tical initial weights (IIW).

Experimental setup. Fig. 1a illustrates our basic experi-
mental setup when using a single auxiliary task (DCC or
RP). As network architecture we use ResNet-56 (He et al.
2016), which consists of 3 stages with 9 ResNet blocks of
two layer each. We split this into a feature extractor and tar-
get task head directly after the second stage (results for other
splits are in the supp. material). We train one network on the
CIFAR-10 (Krizhevsky 2009) train set and one on the STL-
10 (Coates, Ng, and Lee 2011) train set. These datasets have 9
classes in common. For simplicity we mostly train networks
jointly in this analysis. We also briefly explore incremental
training (Sec. 3.4) which we use extensively in Sec. 5.

An important detail is that our network components use
Batch Normalization (BN) (Ioffe and Szegedy 2015). At train-
ing time, BN normalizes the features in each batch to have
zero mean and unit variance. At test time, features are normal-
ized using aggregated statistics over the train set. However,
DCC and RP encourage compatibility in the training regime
of single-batch statistics, which may vary wildly per task.
This makes the aggregated training statistics unreliable for
any recombination of components. Therefore we use batch
statistics at test time in all experiments (see supp. material
for more discussion and alternatives)

As metric we define recombination accuracy: We recom-
bine the CIFAR-10 feature extractor with the STL-10 classi-
fication head and measure accuracy on CIFAR-10 test, on the
9 common classes. We measure accuracy immediately after

recombination, without any fine-tuning. We do the analogue
for STL-10 and report the average over the two test sets.
Evaluation of methods to encourage compatibility. Fig. 2
shows recombination accuracy for our different compatibility
measures. While the independently trained networks perform
at chance level (10.6%), our proposed methods achieve good
levels of compatibility: DCC works best (65.8%), followed
by RP (50.1%). We note that RP is more generally applicable,
since it does not not require any common classes. We investi-
gate recombination accuracy as a function of the number of
common classes in the supp. material.

Interestingly, there is even some compatibility between
networks just by starting from identical initial weights and
then separately minimizing the task loss on the two different
datasets (IIW: 25.1%). The experiments also show that all
three methods are complementary: using all methods together
reaches 76.7% recombination accuracy.

As upper bound, we use the classical setting of training
and testing a network on each task separately. For fairness,
we give each network its own rotation prediction head which
we found to improve results by 2.0%, but which does not
encourage compatibility. This results in an upper bound of
85.6% accuracy. Given that the tasks are different, we con-
sider IIW+RP+DCC (at 76.7%) to come rather close to this
upper bound.

Importantly, we achieve compatibility without compro-
mising accuracy on the original tasks. Using IIW+RP+DCC
on the original networks and measuring accuracy on their
own target tasks without recombination reaches 86.3%. This
is slightly higher than our upper bound, likely because of
beneficial regularization.
Starting from pre-trained models. It is common to start
from a model pre-trained for ILSVRC-12 classification (Don-
ahue et al. 2013; Ren et al. 2015; He et al. 2017). Therefore
we repeat the above experiments but starting from models pre-
trained for self-supervised rotation prediction on ILSVRC-12
(details in the supp. material).

For our IIW experiments we initialize both networks us-
ing the same pre-trained weights. When not using IIW, we
initialize the two networks with different pre-trained weights.

Initializing networks using the same pre-trained weights
(IIW) strongly encourages compatibility and already leads to
a recombination accuracy of 74.3%. The strongest compati-
bility is achieved by combining IIW with DCC (82.7%).

Experiments not using IIW exhibit a counter-intuitive ef-
fect. For RP we reported 50.1% recombination accuracy
when initializing the two networks using different random
weights (Fig. 2). Now, when initializing using different pre-
trained weights, recombination accuracy drops to 19.7%.
Similarly, for DCC recombination accuracy drops from
65.8% to 52.3%. This suggests it is harder to make networks
compatible after they are already independently (pre-)trained.
Compatibility should thus be encouraged from the beginning
of the training process.
Joint vs. incremental training. While so far we trained the
two networks jointly, some practical applications require
making a network compatible with an existing one (Sec. 5).

7624

Figure 2: Recombination accuracy for different methods. We report recombination accuracy with standard deviations over 10
runs (horizontal line segments). Results for each dataset seperately are given in the supp. material.

Therefore we analyze here what happens when we train net-
works incrementally (Sec. 3.4). We first train a network on
CIFAR-10 with auxiliary task heads DCC and RP. We then
freeze the DCC and RP heads. Finally, we train a new net-
work on STL-10 starting from identical initial weights (IIW)
and also using the frozen DCC and RP heads. We repeat the
analogue starting from STL-10.

Compared to joint training in Fig. 2, results decrease mod-
erately from 76.7% to 72.7%. This demonstrates that we can
make new networks compatible with existing ones.

Reaching the compatibility upper bound. While we
achieved high compatibility in our experiments involving
CIFAR-10 and STL-10 (Fig. 2), we did not reach the upper
bound and hence our components are not perfectly compati-
ble. However, a classification head optimized for CIFAR-10
is not expected to yield top accuracy on STL-10 (and vice
versa). To remove the task mismatch, we repeat all experi-
ments using CIFAR-10 for both tasks. In this setting, several
combinations of methods reach the upper bound: IIW+RP,
IIW+DCC, and IIW+RP+DCC (see supp. material). This
shows that our methods are in principle strong enough to
achieve perfect compatibility, when the data allows it.

Feature cross-correlation. Various analysis papers measure
how similar, under some transformation, the features pro-
duced by two networks are. Their goal is to understand
whether the networks activate on similar image patterns and
hence learn similar representations (discussed in Sec. 2). Fol-
lowing (Li et al. 2016b), we repeat this analysis for two
independently trained networks. We feed all images from the
full CIFAR-10 and STL-10 test sets to both feature extractors
and measure cross-correlation under an optimal permutation,
as determined post-hoc (denoted as ’permuted independent’).
For our methods of compatibility, instead, we measure cross-
correlation of the features produced by two networks directly
after training, i.e. without permutation, as these methods aim
to directly make features compatible. Results are shown in
Fig. 3.

We observe that all our compatibility methods directly
yields reasonably correlated features (≥ 0.15). While cor-
relation for the post-hoc aligned features is 0.34 (permuted
independent), we measure higher correlation for RP+ random

IIW(0.38) and very high correlation when starting from pre-
trained IIW: (0.69− 0.76). Hence, using pre-trained weights
leads to strongly correlated features. However, we also find
that RP leads to more strongly correlated features (0.38) than
DCC (0.19), even though DCC leads to a higher recombi-
nation accuracy (Fig. 2). Similarly, when using pre-trained
weights, IIW yields the same correlation as IIW+DCC, yet
the latter yields 8.5% higher recombination accuracy (Fig. 2).
We therefore conclude that a higher cross-correlation does not
necessarily translate to more compatible features as measured
by recombination accuracy. Hence trying to learn identical
feature mappings (as in feature distillation, e.g. (Romero
et al. 2015)) is not required for compatibility.

5 Applications
5.1 Unsupervised Domain Adaptation

Application. We transfer knowledge from a source domain
with labeled data to a target domain with unlabeled data.

Experimental setup (Fig. 1b). We first train a model on
the source training set, where the model consists of a fea-
ture extractor, a classification head and an auxiliary rotation
prediction head RP (initialized by training for rotation pre-
diction on ILSVRC-12 (Russakovsky et al. 2015)). We then
want to adapt the feature extractor of this source model to the
target domain while preserving compatibility with the origi-
nal classification head. We do this by freezing the RP head
while fine-tuning the feature extractor on the unlabeled target
training set. For this we minimize the self-supervised RP loss
for 1000 steps. Finally, we recombine this updated feature
extractor with the source domain classification head to pre-
dict classes on the target domain. We report average class
accuracy on the target test set. We evaluate adapting between
CIFAR-10 and STL-10, as is common in this area (Ghifary
et al. 2016; Shu et al. 2018; Sun et al. 2019). We use here a
larger WRN-28 (Zagoruyko and Komodakis 2016) architec-
ture as in (Sun et al. 2019) (see supp. material).

Results (Tab. 2). We compare our method to previous ap-
proaches and two baselines based on our source model. One
baseline uses the model as is. The other updates BN statis-
tics at test time, which performs significantly better. This

7625

Figure 3: Cross-Correlation between features produced by two feature extractors. The blocks visualise the per-channel cross-
correlations, sorted by magnitude. The number reports the cross-correlation averaged over all channels.

Method Source: CIFAR-10 STL-10 Avg.Target: STL-10 CIFAR-10
VADA (Shu et al. 2018) 78.3% 71.4% 74.9%
VADA+Co-DAbn (Kumar et al. 2018) 81.3% 76.3% 78.8%
DTA (Lee et al. 2019) 82.6% 72.8% 77.7%
Joint w/ rotation (Sun et al. 2019) 81.2% 65.6% 73.4%
Joint multi-objective (Sun et al. 2019) 82.1% 74.0% 78.1%
Our source model 77.2% 52.9% 65.1%
Our source model w/ test BN 82.0% 71.3% 76.7%
Ours w/ adaptation through RP 82.6% 73.1% 77.9%

Table 2: Accuracy for unsupervised domain adaptation.

confirms their importance, as discussed in Sec. 4 and ob-
served by (Li et al. 2016a). Our method improves perfor-
mance further and matches the state-of-the-art on adapting
from CIFAR-10 to STL-10 (Lee et al. 2019) (82.6%). The
methods (Kumar et al. 2018; Sun et al. 2019) perform best
for adapting from STL-10 to CIFAR-10. On average over
both adaptation directions, our method is competitive (78.8%
for (Kumar et al. 2018) vs. 77.9% for us).

Importantly, our method is simpler and faster than com-
peting methods. The state-of-the-art (Kumar et al. 2018)
combines multiple models, includes a domain discrimina-
tor (Ganin and Lempitsky 2014; Ganin et al. 2016), employs
a custom network architecture (Shu et al. 2018), and trains
for 80000 steps on the joint source and target training sets.
Instead, we use a single ResNet model and fine-tune only for
1000 steps on the target domain, which makes our method
computationally faster. Finally, (Sun et al. 2019) gets signifi-
cant gains by combining multiple self-supervised objectives,
which we could potentially include as well.

5.2 Compatibility Across Feature Extractors With
Different Architectures

Application. We want to achieve compatibility between fea-
ture extractors having different architectures, thus enabling
transferring task heads across them. As a practical applica-
tion we consider a single classification task which runs on
many devices, each with a hardware-tailored network archi-
tecture (e.g. a powerful server, a standard desktop, a mobile
phone). Normally, every time the set of classes to be recog-
nized changes, all networks need to be retrained. Instead, if
their feature extractors are compatible, only one extractor and
its corresponding classification head need to be retrained. We
can then transfer that classification head to all other models.
This greatly facilitates deployment of the updated classifier

Figure 4: Accuracy when transferring a classification head to
compatible feature extractors.

to all client devices, especially if different people are respon-
sible for maintaining the different models.

Experimental setup (Fig. 1c). We consider three feature
extractor architectures: ResNet-56 (He et al. 2016), Wide
ResNet-56 (Zagoruyko and Komodakis 2016), MobileNet
V2 (Sandler et al. 2018). We combine these with a DCC head
based on MobileNet V2. In this application, DCC not only
encourages compatibility but also directly solves the target
task (as there is just one task). We split MobileNet V2 into
components after the 11-th inverted ResNet block (out of 17).
To fit all extractors to a single DCC head, we add to each
extractor a 1x1 convolution layer with 64 output channels.
Differences in spatial resolution are resolved by the average
pooling in the penultimate layer of the MobileNet V2 DCC.

At first, we assume that we only have data for the first
5 classes of CIFAR-10. We use these to jointly train the
three feature extractors with the DCC head. At this point,
each ‘feature extractor plus DCC’ network addresses the
target task for a particular device. Next, suppose we obtain
labeled data for 5 new classes (resulting in the full CIFAR-
10 training set). Instead of re-training everything, we only
want to update the DCC head. To do so, we first extend the
classification layer of the DCC head to handle 10 classes.
Then, we choose the trained Wide ResNet-56 as the reference
feature extractor. We freeze it, attach the DCC head, and fine-
tune this combination on the CIFAR-10 training set. Finally,
we attach the updated DCC to each individual extractor and
evaluate on the CIFAR-10 test set. Note that in this process we
updated none of the feature extractors after the initial training
phase (updating it is investigated in the supp. material).

Results (Fig. 4). As an upper bound we train the individual
networks on CIFAR-10 (also with a rotation prediction head).
As an optimistic lower bound we consider perfectly discrim-

7626

Reinitialize head Independent training Compatibility via RP Compatibility via RP+IIWChance

(a) STL-10

0 10 0 10 1 10 2

Fine -tuning s teps

0

20

40

60

80

100

A
cc

u
ra

cy
 o

n
 C

IF
A

R
-1

0

10.0

87.1

13.1

89.5

60.4

92.2

66.4

92.1

(b) CIFAR-10

0 10 0 10 1 10 2

Fine -tuning s teps

0

20

40

60

80

100

A
cc

u
ra

cy
 o

n
 C

IF
A

R
-1

0
0

1.0

50.1

1.3

66.8

42.0

69.6

40.0

69.9

(c) CIFAR-100

Figure 5: Average class accuracy of recombined components as a function of fine-tuning steps (log scale, up to 5 epochs). We
overlay accuracy values directly after recombination and after 1 epoch. Through training with RP, components are compatible,
enabling direct recombination.

inating the first five classes, leading to 50% accuracy. As
Fig. 4 shows, recombining either ResNet-56 or MobileNet
V2 with the updated DCC head lead to excellent accuracy of
91.7% and 91.6% respectively. While the upper bounds are
even higher at 94.6% and 93.3%, our method requires much
less computation and greatly facilitates deployment. Part of
the gap to the upper bound can be attributed to changes in ar-
chitectures: we added 1x1 convolutions and use mixed archi-
tectures with a simple MobileNet head. If we redo the upper
bound using these changed architectures, we get accuracies
between 92.7% and 92.8%. This suggests that optimizing
architectures would lead to even better results.

5.3 Faster Transfer Learning

Application. In transfer learning, the goal is to improve re-
sults on a target task by reusing knowledge derived from a
related source task. In the deep learning era, the standard
approach is to reuse the feature extractor of a model trained
on the source training set. This source feature extractor and
a randomly initialized task-specific head are combined into
a new model, which is then fine-tuned on the target training
set. When there are many possible source tasks, this process
is computationally expensive, e.g. (Zamir et al. 2018) re-
ports consuming 50’000 GPU hours. Instead, we propose to
train an initial target task head and reuse it when exploring
different source tasks to transfer from (Fig. 1d). For this,
we recombine the source feature extractor and the initial tar-
get task head into a new model. When these components
are compatible, the benefits of transferring from a potential
source can be evaluated and capitalized on with no or little
fine-tuning on the target training set.

Experimental setup (Fig. 1d). We study transferring from
a model trained on ILSVRC-12 as the source task. For this,
we simply replace the feature extractor of the target task
model with the source one, while keeping the target task
head. We make these components compatible by training
with rotation prediction (RP) and an incremental training
scheme (Sec. 3.4). In this scheme, we first need to set the

weights of RP (Θs), which we obtain by training a model on
CIFAR-100 (Krizhevsky 2009). Then, the source and target
models are trained with this frozen rotation prediction head,
forcing their feature extractor to produce features that work
with that same rotation prediction head.

We compare our method against re-initializing the tar-
get task head or recombining independently trained compo-
nents. For these baselines, we also use rotation prediction
as an auxiliary task for fair comparison, but initialize the
weights of its head randomly for each network. We evaluate
transferring a feature extractor trained on ILSVRC-12 (Rus-
sakovsky et al. 2015) to different target tasks, here CIFAR-
10 (Krizhevsky 2009), STL-10 (Coates, Ng, and Lee 2011),
or CIFAR-100 (Krizhevsky 2009). We measure transfer effi-
ciency as the accuracy directly after recombination, and after
a few epochs of fine-tuning on the target task.
Results (Fig 5). Our method achieves strong results in terms
of accuracy on the target task, even without any fine-tuning.
Here, the networks are trained separately and only made com-
patible via RP and optionally IIW. Nonetheless, our method
achieves 40.0%-66.4% recombination accuracy, despite the
differences in the datasets and their class vocabularies. In-
stead, the baselines yield random performance before fine-
tuning, as expected. After 1 epoch of fine-tuning our methods
are still significantly better than the baselines. They converge
only after fine-tuning for several epochs (Fig 5).

In summary, our method reduces the need for fine-tuning
when transferring components. As this is a core part of exist-
ing transfer learning methods (Zamir et al. 2018; Dwivedi
and Roig 2019; Achille et al. 2019; Yan, Acuna, and Fidler
2020), our method can help speed these up.

6 Conclusion
We have demonstrated that we can train networks to produce
compatible features, without compromising accuracy on the
original tasks. We can do this through joint training, or by
making new networks compatible with existing ones, through
iterative training. By addressing three different applications,
we demonstrated that our approach is widely applicable.

7627

References
Achille, A.; Lam, M.; Tewari, R.; Ravichandran, A.; Maji, S.;
Fowlkes, C. C.; Soatto, S.; and Perona, P. 2019. Task2Vec: Task
embedding for meta-learning. In ICCV.

Aljundi, R.; Babiloni, F.; Elhoseiny, M.; Rohrbach, M.; and Tuyte-
laars, T. 2018. Memory aware synapses: Learning what (not) to
forget. In ECCV.

Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; and
Vaughan, J. W. 2010. A theory of learning from different domains.
Machine learning .

Buciluǎ, C.; Caruana, R.; and Niculescu-Mizil, A. 2006. Model
compression. In ACM SIGKDD.

Chen, Z.; and Liu, B. 2018. Lifelong machine learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning .

Choromanska, A.; Henaff, M.; Mathieu, M.; Arous, G. B.; and
LeCun, Y. 2015. The loss surfaces of multilayer networks. In
Artificial intelligence and statistics.

Coates, A.; Ng, A.; and Lee, H. 2011. An analysis of single-layer
networks in unsupervised feature learning. In AISTATS.

Doersch, C.; and Zisserman, A. 2017. Multi-task self-supervised
visual learning. In ICCV.

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.;
and Darrell, T. 2013. Decaf: A deep convolutional activation feature
for generic visual recognition. arXiv preprint arXiv:1310.1531 .

Dwivedi, K.; and Roig, G. 2019. Representation similarity analysis
for efficient task taxonomy & transfer learning. In CVPR.

Farquhar, S.; and Gal, Y. 2018. Towards robust evaluations of
continual learning. arXiv .

Frome, A.; Corrado, G. S.; Shlens, J.; Bengio, S.; Dean, J.; Mikolov,
T.; et al. 2013. DeViSE: A deep visual-semantic embedding model.
In NeurIPS.

Ganin, Y.; and Lempitsky, V. 2014. Unsupervised domain adaptation
by backpropagation. In ICML.

Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.;
Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016. Domain-
adversarial training of neural networks. JMLR .

Ghifary, M.; Kleijn, W. B.; Zhang, M.; Balduzzi, D.; and Li, W.
2016. Deep reconstruction-classification networks for unsupervised
domain adaptation. In ECCV.

Gidaris, S.; Singh, P.; and Komodakis, N. 2018. Unsupervised
representation learning by predicting image rotations. In ICLR.

Gupta, S.; Hoffman, J.; and Malik, J. 2016. Cross modal distillation
for supervision transfer. In CVPR.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
R-CNN. In ICCV.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning
for image recognition. In CVPR.

Hénaff, O. J.; Razavi, A.; Doersch, C.; Eslami, S.; and Oord, A. v. d.
2019. Data-efficient image recognition with contrastive predictive
coding. arXiv preprint arXiv:1905.09272 .

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 .

Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In
ICML.

Kaiser, L.; Gomez, A. N.; Shazeer, N.; Vaswani, A.; Parmar, N.;
Jones, L.; and Uszkoreit, J. 2017. One model to learn them all.
arXiv preprint arXiv:1706.05137 .

Karpathy, A.; and Fei-Fei, L. 2015. Deep visual-semantic align-
ments for generating image descriptions. In CVPR.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins,
G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. 2017. Overcoming catastrophic forgetting
in neural networks. Proc. Nat. Acad. Sci. USA .

Kontogianni, T.; Gygli, M.; Uijlings, J.; and Ferrari, V. 2020. Con-
tinuous adaptation for interactive object segmentation by learning
from corrections. In ECCV.

Kornblith, S.; Norouzi, M.; Lee, H.; and Hinton, G. 2019. Similarity
of neural network representations revisited. In ICML.

Krizhevsky, A. 2009. Learning Multiple Layers of Features from
Tiny Images. Technical report, University of Toronto.

Kumar, A.; Sattigeri, P.; Wadhawan, K.; Karlinsky, L.; Feris, R.;
Freeman, B.; and Wornell, G. 2018. Co-regularized alignment for
unsupervised domain adaptation. In NeurIPS.

Lee, S.; Kim, D.; Kim, N.; and Jeong, S.-G. 2019. Drop to adapt:
Learning discriminative features for unsupervised domain adapta-
tion. In ICCV.

Lenc, K.; and Vedaldi, A. 2019. Understanding Image Represen-
tations by Measuring Their Equivariance and Equivalence. IJCV
.

Li, Y.; Wang, N.; Shi, J.; Liu, J.; and Hou, X. 2016a. Revisiting
batch normalization for practical domain adaptation. arXiv preprint
arXiv:1603.04779 .

Li, Y.; Yosinski, J.; Clune, J.; Lipson, H.; and Hopcroft, J. E. 2016b.
Convergent learning: Do different neural networks learn the same
representations? In ICLR.

Li, Z.; and Hoiem, D. 2017. Learning without forgetting. IEEE
Trans. on PAMI .

Lu, Q.; Chen, P.-H.; Pillow, J. W.; Ramadge, P. J.; Norman, K. A.;
and Hasson, U. 2018. Shared representational geometry across
neural networks. In NeurIPS.

Maninis, K.-K.; Radosavovic, I.; and Kokkinos, I. 2019. Attentive
single-tasking of multiple tasks. In CVPR.

Mehrer, J.; Kriegeskorte, N.; and Kietzmann, T. 2018. Beware of
the beginnings: intermediate and higherlevel representations in deep
neural networks are strongly affected by weight initialization. In
Conference on Cognitive Computational Neuroscience.

Michieli, U.; and Zanuttigh, P. 2019. Incremental Learning Tech-
niques for Semantic Segmentation. In ICCV Workshop.

Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. 2016. Cross-
stitch networks for multi-task learning. In CVPR.

Morcos, A.; Raghu, M.; and Bengio, S. 2018. Insights on represen-
tational similarity in neural networks with canonical correlation. In
NeurIPS.

Ngiam, J.; Peng, D.; Vasudevan, V.; Kornblith, S.; Le, Q. V.; and
Pang, R. 2018. Domain adaptive transfer learning with specialist
models. arXiv preprint arXiv:1811.07056 .

Noroozi, M.; and Favaro, P. 2016. Unsupervised learning of visual
representations by solving jigsaw puzzles. In ECCV.

Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter, S.
2019. Continual lifelong learning with neural networks: A review.
Neural Networks .

7628

Rebuffi, S.; Kolesnikov, A.; Sperl, G.; and Lampert, C. 2017. iCaRL:
Incremental Classifier and Representation Learning. In CVPR.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks.
In NeurIPS.

Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and
Bengio, Y. 2015. Fitnets: Hints for thin deep nets. In ICLR.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma,
S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.;
and Fei-Fei, L. 2015. ImageNet Large Scale Visual Recognition
Challenge. IJCV .

Ruvolo, P.; and Eaton, E. 2013. ELLA: An efficient lifelong learning
algorithm. In ICML.

Saito, K.; Ushiku, Y.; and Harada, T. 2017. Asymmetric tri-training
for unsupervised domain adaptation. In ICML.

Sandler, M.; Howard, A. G.; Zhu, M.; Zhmoginov, A.; and Chen, L.
2018. MobileNetV2: Inverted Residuals and Linear Bottleneck. In
CVPR.

Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; and Carlsson, S.
2014. CNN features off-the-shelf: an astounding baseline for recog-
nition. In CVPR workshop.

Shmelkov, K.; Schmid, C.; and Alahari, K. 2017. Incremental
learning of object detectors without catastrophic forgetting. In
ICCV.

Shu, R.; Bui, H. H.; Narui, H.; and Ermon, S. 2018. A DIRT-T
Approach to Unsupervised Domain Adaptation. In ICLR.

Shuai Tang, Wesley J. Maddox, C. D. T. D. A. D. 2020. Similarity of
Neural Networks with Gradients. arXiv preprint arXiv:2003.11498
.

Socher, R.; Ganjoo, M.; Manning, C. D.; and Ng, A. 2013. Zero-shot
learning through cross-modal transfer. In NeurIPS.

Sun, Y.; Tzeng, E.; Darrell, T.; and Efros, A. A. 2019. Unsuper-
vised Domain Adaptation through Self-Supervision. arXiv preprint
arXiv:1909.11825 .

Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; and Goodman, N. D.
2011. How to grow a mind: Statistics, structure, and abstraction.
science .

Tschannen, M.; Djolonga, J.; Ritter, M.; Mahendran, A.; Houlsby,
N.; Gelly, S.; and Lucic, M. 2019. Self-Supervised Learning of
Video-Induced Visual Invariances. arXiv preprint arXiv:1912.02783
.

Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; and Darrell, T. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv
preprint arXiv:1412.3474 .

Wang, L.; Hu, L.; Gu, J.; Hu, Z.; Wu, Y.; He, K.; and Hopcroft,
J. 2018. Towards understanding learning representations: To what
extent do different neural networks learn the same representation.
In NeurIPS.

Wang, M.; and Deng, W. 2018. Deep visual domain adaptation: A
survey. Neurocomputing .

Wang, Y.; van de Weijer, J.; and Herranz, L. 2018. Mix and match
networks: encoder-decoder alignment for zero-pair image transla-
tion. In CVPR.

Yan, X.; Acuna, D.; and Fidler, S. 2020. Neural Data Server: A
Large-Scale Search Engine for Transfer Learning Data. arXiv
preprint arXiv:2001.02799 .

Zagoruyko, S.; and Komodakis, N. 2016. Wide residual networks.
In BMVC.

Zamir, A. R.; Sax, A.; Shen, W.; Guibas, L. J.; Malik, J.; and
Savarese, S. 2018. Taskonomy: Disentangling task transfer learning.
In CVPR.

Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual learning
through synaptic intelligence. In ICML.

Zhai, X.; Oliver, A.; Kolesnikov, A.; and Beyer, L. 2019. S4L:
Self-Supervised Semi-Supervised Learning. In ICCV.

Zhang, C.; Bengio, S.; and Singer, Y. 2019. Are all layers created
equal? In ICML Workshop Deep Phenomena.

Zhang, W.; Ouyang, W.; Li, W.; and Xu, D. 2018. Collaborative and
adversarial network for unsupervised domain adaptation. In CVPR.

7629

