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Abstract
Bayesian Optimization (BO) has shown significant success
in tackling expensive low-dimensional black-box optimiza-
tion problems. Many optimization problems of interest are
high-dimensional, and scaling BO to such settings remains
an important challenge. In this paper, we consider general-
ized additive models in which low-dimensional functions with
overlapping subsets of variables are composed to model a
high-dimensional target function. Our goal is to lower the
computational resources required and facilitate faster model
learning by reducing the model complexity while retaining
the sample-efficiency of existing methods. Specifically, we
constrain the underlying dependency graphs to tree structures
in order to facilitate both the structure learning and optimiza-
tion of the acquisition function. For the former, we propose
a hybrid graph learning algorithm based on Gibbs sampling
and mutation. In addition, we propose a novel zooming-based
algorithm that permits generalized additive models to be em-
ployed more efficiently in the case of continuous domains. We
demonstrate and discuss the efficacy of our approach via a
range of experiments on synthetic functions and real-world
datasets.

1 Introduction
Bayesian Optimization (BO) is a widespread method for se-
quential global optimization (Snoek, Larochelle, and Adams
2012), and is suited to scenarios in which the target func-
tion f is unknown and expensive to evaluate. BO was tra-
ditionally used in model selection (Močkus 1975) and hy-
perparameter tuning (Snoek, Larochelle, and Adams 2012;
Swersky, Snoek, and Adams 2013). Recently, BO has also
found success in black-box adversarial attack (Ru et al. 2020),
robotics (Jaquier et al. 2020), finance (Gonzalvez et al. 2019),
pharmaceutical product development (Sano et al. 2019), nat-
ural language processing (Yogatama, Kong, and Smith 2015),
and more. Two critical ingredients of BO include a model
that captures prior beliefs about the objective function, and
an acquisition function that can be optimized efficiently.

BO has been most successful in low dimensions (i.e. 10
or less) (Wang et al. 2013; Nayebi, Munteanu, and Poloczek
2019), whereas many applications require optimization in
higher-dimensional spaces; this remains a critical problem in
BO (Wang 2016; Rolland et al. 2018; Frazier 2018).
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A key difficulty associated with high-dimensional BO is
the curse of dimensionality (Spruyt 2014), namely, exponen-
tially many observations are needed to find the global opti-
mum in the absence of structural assumptions. Accordingly,
two significant opposing challenges include the incorpora-
tion of suitable structural assumptions, and computationally
efficient acquisition function optimization.

1.1 Related Work
In the literature, there are at least two approaches to high-
dimensional BO with differing assumptions:
• Under low effective dimensionality, only few dimensions

significantly affect f . (Chen, Castro, and Krause 2012)
performed joint variable selection and optimization us-
ing GP-UCB. (Djolonga, Krause, and Cevher 2013) ap-
plied low-rank matrix recovery techniques to learn the
underlying effective subspace, and (Zhang, Li, and Su
2019) proposed a related approach based on sliced in-
verse regression. (Wang et al. 2013) proposed REMBO,
tackling the problem through random embedding. More
recently, (Kirschner et al. 2019) proposed LineBO, decom-
posing the problem into a sequence of one-dimensional
sub-problems. The use of non-linear low-dimensional em-
beddings has also recently been proposed (Lu et al. 2018;
Moriconi, Kumar, and Deisenroth 2019).

• Under additive structure, small subsets of variables inter-
act with each other. Specifically, additive models assume
that f can be decomposed into sums of lower-dimensional
functions. (Kandasamy, Schneider, and Póczos 2015) as-
sumed that the variables constructing a particular lower-
dimensional function are not present in the other decom-
posed functions (i.e., the variables of each function are
pairwise disjoint), which we refer to as Graph No-Overlap.
(Rolland et al. 2018) generalized the additive model to
allow for an arbitrary dependency graph, removing the
restriction of pairwise disjointness, which we refer to
as Graph Overlap. Also considering overlapping groups,
(Hoang et al. 2018) assumed that f can be decomposed
into several sparse factor functions, allowing for distributed
acquisition function approximation. (Li et al. 2016) gen-
eralized to a projected-additive assumption; the model
proposed by (Kandasamy, Schneider, and Póczos 2015)
is a special case when there is no projection. Ensemble
BO (Wang et al. 2018) seeks to not only exploit addi-
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tive structures, but also use an ensemble of GP models
through a divide and conquer strategy. (Mutny and Krause
2018) combined additive GPs with approximations based
on Fourier features, with the notable advantage of also
establishing rigorous regret bounds.

In addition to the methods described above, other approaches
have been taken to tackle high dimensionality. (Li et al. 2017)
proposed a dropout strategy to optimize on a smaller subset
of variables for every iteration. (Oh, Gavves, and Welling
2018) proposed BOCK, which tackles high-dimensionality
via a cylindrical transformation of the search space. (Eriksson
et al. 2019) proposed an approach based on running several
local search procedures in parallel, and giving more samples
to the most promising ones. Other methods use deep neural
networks combined with BO, such as (Snoek et al. 2015;
Cui, Yang, and Hu 2019).

The assumptions of low effective dimension vs. addi-
tive structure are complementary. The performance of the
optimization is dependent on the structure of the high-
dimensional function, and trade-offs exist between computa-
tion time and accuracy. Methods that assume low effective
dimensionality are often computationally faster than additive
methods; for example, due to scalability concerns, (Eriks-
son et al. 2019) omitted methods that attempt to learn an
additive decomposition from their experiments. To the best
of our knowledge, none of the existing works have scaled
Graph Overlap past 20 to 30 dimension.

In this paper, our focus is on additive structures; in particu-
lar, we seek to build on Graph Overlap. Graph Overlap main-
tains computational tractability by using a message passing
algorithm to optimize the acquisition function efficiently.
However, the message passing algorithm runs exponentially
in the size of the maximum clique of the triangulated depen-
dency graph (Rolland et al. 2018), impeding its scalability.

We see in the above-outlined works (Rolland et al. 2018;
Hoang et al. 2018; Li et al. 2016) that the trend in the study
of additive models has been to increase the model expres-
siveness. An important caveat to such approaches is that a
suitable model may be much harder to find given limited sam-
ples. Since one of the main premises of BO is optimizing with
few samples, we contend that simpler models should also be
sought to facilitate model learning with fewer samples, as
well as reduced computation.

1.2 Contributions
The main contributions of this paper are as follows:
1. We trade-off expressiveness for scalability and ease of

learning by reducing the complexity of the additive model,
constraining the dependency structure to tree structures.
As the function class is simpler, it reduces overfitting of
the GP kernel, and we are also able to reap computational
efficiencies in both acquisition function optimization and
dependency structure learning.

2. We propose a zooming technique for extending the mes-
sage passing algorithm of (Rolland et al. 2018) to continu-
ous domains, thus benefiting additive methods in general,
and in particular our tree-based approach.

3. We propose a hybrid method to learn the additive tree
structures, composed of the following two techniques:

x4x1

x5

x6

x3 x2

Figure 1: Dependency tree structure, h pxq “ hApx1, x6q `
hBpx1, x5q ` h

Cpx1, x4q ` h
Dpx3, x4q ` h

Epx2q.

(a) a tree structure growing algorithm that efficiently discov-
ers edges that do not form cycles via Gibbs sampling;

(b) an edge mutation algorithm that obtains a new genera-
tion of trees from the current tree efficiently.

4. Although limiting to tree structures may seem potentially
risky due to the reduced expressivity, we show this ap-
proach to be highly effective in a wide range of experi-
ments, indicating a highly competitive trade-off between
expressive power and ease of model learning.

We briefly mention that the use of tree structures in BO ap-
peared in prior works (Jenatton et al. 2017; Ma and Blaschko
2020), but with a very different type of model and motivation.
These works aim to handle structured domains instead of
real-valued domains, and in contrast with our work, the tree
represents binary decisions with only the leaves correspond-
ing to Gaussian Processes.

2 Additive GP-UCB using Tree Structures

We consider the sequential global optimization problem, seek-
ing xmax “ arg maxxPX fpxq for a D-dimensional black-
box function f : X Ñ R, where X “

ŚD
i“1 Xi with each Xi

being an interval in R. At the t-th observation, the algorithm
selects xt and observes a noisy observation yt “ fpxtq ` εt,
with εt „ N p0, η2q.

2.1 Additive Dependency Tree Structures

We use a Gaussian Process (GP) model to reason about the
target function f . Following (Rolland et al. 2018), we model
f as a sum of several lower-dimensional components:

f pxq “
ÿ

GPG
fG

`

xG
˘

, (1)

where G Ď t1, . . . , Du denotes one subset of variables, and
G represents the additive structure (see Fig. 1 for an example).
The additive dependency structure is assumed to be tree-
structured, possibly including forests. In contrast with (Rol-
land et al. 2018), in our setting the additive structure associ-
ated with any given graph is unique: Each lower-dimensional
component fG : XG Ñ R is either a 1 or 2-dimensional func-
tion defined on the variables in G, where XG “

Ś

vPG Xv.
Each edge represents a 2-dimensional function, and each
disconnected vertex represents a 1-dimensional function.
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2.2 Prior and Posterior
We model f „ GP pµ, κq, with each fG being an indepen-
dent sample from a Gaussian Process GP

`

µG, κG
˘

, and

µ pxq “
ÿ

GPG
µG

`

xG
˘

,

κ
`

x, x1
˘

“
ÿ

GPG
κG

´

xG, x1
G
¯

.
(2)

We know from (Rolland et al. 2018) that the posterior can
be inferred via

`

fG˚ | y
˘

„ N
`

µGt´1,
`

σGt´1

˘2 ˘
for each fG˚

at an arbitrary point x˚ given Dt “ tpxi, yiqu
t
i“1, where

y “ py1, . . . , ytq correspond to x “ px1, . . . , xtq, and the
posterior mean and variance are given by

µGt´1 “ κG
`

xG˚ ,x
G
˘

∆
´1
y,

`

σGt´1

˘2
“ κG

`

xG˚ , x
G
˚

˘

´ κG
`

xG˚ ,x
G
˘

∆
´1
κG

`

xG, xG˚
˘

.

(3)

Here we define the matrix ∆ “ κ px,xq ` η2It P Rtˆt,
κ pxi, xjq is the pi, jq-th entry of κ px,xq, and κG

`

xG, xG˚
˘

is of length t, with i-th entry κG
`

xGi , x
G
˚

˘

.

3 Additive GP-UCB on Tree Structures

Algorithm 1: TREE-GP-UCB
1 Initialize D0 Ð tpxt, ytquxtPXinit

2 for t “ Ninit ` 1, . . . , Niter do
3 if t mod C “ 0 then
4 Learn G Ð TREE-LEARNING (Alg. 3)

5 Update µGt , σ
G
t : @G P G (3)

6 Optimize xt Ð arg maxxPX φt pxq (Alg. 2)
7 Observe yt Ð f pxtq ` ε
8 Augment Dt Ð Dt´1 Y tpxt, ytqu

9 return arg maxpx,yqPD y

In Alg. 1, we present Tree-GP-UCB (Tree for short). Here,
the total number of observations isN “ Ninit`Niter, where
Ninit is the number of initial random samples Xinit drawn
uniformly from X and Niter is the number of iterations. For
efficiency, G and its hyperparameters are learned every C
iterations, for some C ą 0.

3.1 Acquisition Function
We focus on upper confidence bound (UCB) based algorithms
(Auer 2002; Srinivas et al. 2010). Specifically, following
(Kandasamy, Schneider, and Póczos 2015) and (Rolland et
al. 2018), we let the global acquisition function φtpxq be the
sum of the individual acquisition functions with respect to
the dependency structure G:

φt pxq “
ÿ

GPG
φGt

`

xG
˘

,

φGt
`

xG
˘

“ µGt´1

`

xG
˘

` β
1{2
t σGt´1

`

xG
˘

.

(4)

Maximization over Continuous Domains. The message
passing approach proposed by (Rolland et al. 2018) works
on discrete domains. A naive approach to handle continu-
ous domains would be to discretize the continuous domain
uniformly (i.e., a grid with equal spacing). However, this
may require large amounts of computation, especially when
the discretization is performed using a small spacing. Here,
we present a refined message passing algorithm specifically
designed for continuous domains.

Algorithm 2: MSG-PASSING-CONTINUOUS

1 Initialize pa,bq with the bounds of X
2 for l “ 1, . . . , L do
3 for d “ 1, . . . , D do
4 Discretize Xd Ð rrad, bdssR // |Xd| “ R

5 X Ð
ŚD

d“1 Xd
6 px, yq Ð MSG-PASSING-DISCRETE pX q
7 Select pa,bq Ð ZOOM-STRATEGY pxq

8 return px, yq

The optimization of the acquisition function over continu-
ous domains is presented in Alg. 2; it starts with the full con-
tinuous domain X “

ŚD
d“1 Xd, where Xd P rad, bds Ď R.

Firstly, we discretize each variable’s domain to a finite subset,
and let R denote the size of the subset. Thereafter, we use a
simplified version of the message passing algorithm MSG-
PASSING-DISCRETE of (Rolland et al. 2018)—Alg. S1 in
the appendix—to perform optimization over the discretized
domain. As the dependency graph is a tree, the complexity
of message passing is quadratic in R. The bounds pa,bq for
the next level are picked by ZOOM-STRATEGY (see below)
given the selected point. We perform the steps iteratively for
some number L of levels.

Zoom Strategy. Different strategies can be employed in
choosing the bounds and their representative points for the
next level. We adopt a simple randomized strategy exem-
plified in Fig. 2: At each level, we partition each current
interval rai, bis uniformly onto a grid of size R, and choose
a uniformly random point within that interval as its repre-
sentative. We refer to this discretization of the domain as
rrai, bissR. We use MSG-PASSING-DISCRETE restricted to
these representatives, and for the one chosen, we recursively
zoom into the corresponding sub-domain. Henceforth, we
use MSG-PASSING-CONTINUOUS with this zoom strategy.

3.2 Additive Components
The choice of an appropriate kernel and the learning of
its parameters are critical to the success of BO. In high-
dimensional additive BO, the problem compounds, as we
need to learn the dependency structure along with kernel
parameters for every kernel in the additive model.

As mentioned previously, an additive decomposition G
corresponds to a dependency graph; the additive function
f pxq “

ř

GPG f
G
`

xG
˘

is the sum over its additive com-
ponents in G. It will be convenient to work with the equiva-
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l “ 1

l “ 2

l “ 3

Returned by
MSG-PASSING-DISCRETE

Grid by
ZOOM-STRATEGY

Point Returned

3

0

3

1

0

1

1
3

`

0, 1
3

˘

2
3

Figure 2: Example with two variables, grid size R “ 3, and
domain r0, 3s. Firstly, we partition each axis evenly into 3 par-
titions. Next, we draw a uniformly random point from each
partition. The points from each axis form a discretized do-
main, and we run MSG-PASSING-DISCRETE on this discrete
domain. Finally, we zoom into the square, representative of
the selected point. In this manner, we recursively sub-divide
the grid for all L “ 3 levels.

lent representation of an adjacency matrix Z P t0, 1uDˆD,
where Zij “ 1 if variables i and j are connected on the
(tree-structured) graph. Assuming that each function’s ker-
nel κG is parameterized by some kernel parameters θG
(e.g., lengthscale etc.), the overall collection of parameters
is ΘG “

 

θG
(

GPG given a decomposition G. We note that
learning the kernel parameters along with the decomposition
G is difficult, as the search space is large and we may en-
counter problems with overfitting. We tackle this problem by
defining a fixed set of dimensional kernel parameters Θ that
are independent of the decomposition and defining the kernel
parameters over them; see Sec. 4.1 for details.

Maximum likelihood. For model learning, we make use
of the maximum log-likelihood score, given by

ρ pZ, θq “ ´
1

2
yT

`

K ` η2I
˘´1

y

´
1

2
log |K ` η2I| ´

n

2
log 2π,

(5)

where K P Rnˆn is the kernel matrix of the observed data
points n, assuming a dependency graph G with an equivalent
adjacency matrix Z and parameters θ.

Dependency Structure Learning. Following (Wang et al.
2017; Rolland et al. 2018), we adopt a Bayesian approach
to structure learning, on which we place a prior distribution
on Z and seek to sample from the posterior distribution. We
use Gibbs sampling to sample approximately, avoiding the
difficult task of sampling directly from the high-dimensional
distribution over tree structures.

Specifically, we use such sampling to update the pres-
ence/absence of edges from variable i to j, but to maintain
the tree structure, we discard edges that would create a cy-
cle. We assume a prior with Bernoulli random variables with
parameter γ, Zij „ Bernoulli pγq. We can use this model
to formulate the posterior for Zij ; letting D denote the data
collected, and letting Z´pijq be the adjacency variables ex-
cluding pi, jq, we have the following (Rolland et al. 2018):

P
`

Zij “ 1 | Z´pijq, θ,D; γ
˘

9γ eρpZij“1YZ´pijq,θq. (6)

For each Zij , we compare the log of the posterior for two
cases: log pγq ` ρ pZij “ 1Y Z´ij , θq vs. log p1´ γq `
ρ pZij “ 0Y Z´ij , θq. The parameter γ can be set to 1{2
if there is no prior information about Z. We use the log-
likelihood in two ways, combining them to learn the structure
in Alg. 3. First, we use Gibbs Sampling to build a connected
tree from an empty graph iteratively. Once the dependency
graph is a connected tree, we apply mutation in subsequent
iterations. Thus, we grow the empty graph into a tree and
then seek improvements via mutation.

Algorithm 3: TREE-LEARNING

1 Z Ð tZcurrentu

2 Zpkq Ð Zcurrent

3 while k ă S do
4 if NUMBER-OF-EDGES

`

Zpkq
˘

ă D ´ 1 then
5 Update pZ, kq via GIBBS-SAMPLING (Alg. 4)
6 else
7 Update pZ, kq via MUTATION (Alg. 5)

8 return Z P Z with the highest likelihood score

Adding Edges. Alg. 4 samples from the marginal posteri-
ors, while only adding edges that maintain thatZ is still a tree.
The Union-Find (UF) data structure tracks a set of disjoint
sets, providing the operations union and find. Both operations
can be performed in (amortized) time O pα pDqq when im-
plemented using weights with path compression (Cormen
et al. 2009; Sedgewick and Wayne 2011), where α pDq is
the inverse Ackermann function. In short, both operations
can be performed in nearly constant time (amortized). In our
algorithm, we use UF to track the connected components of
G, represented by disjoint subsets of variables. We use the
find operation to check for cycles. After adding the edge, we
update UF by performing the union operation.

Mutation. Alg. 5 describes the mutation operation that we
perform when the dependency graph G is a connected tree.
We borrow the idea of mutation from genetic algorithms; the
mutation operation can maintain tree structure diversity from
one generation to another. The purpose of the mutation oper-
ation is to preserve and introduce diversity, wherein genetic
algorithms, a mutation helps to avoid getting stuck in local
maxima by making minor changes to the previous generation.
In our context, the population is a new generation of trees in
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Algorithm 4: GIBBS-SAMPLING at k-th iteration
1 Initalize UF data structure
2 for j “ 1, . . . , D do
3 for i “ 1, . . . , j ´ 1 do
4 Zpk`1q Ð Zpkq

5 if cycle not formed by Zpk`1q
ij “ 1 then

6 Sample Z (new)
ij from posterior

7 Zpk`1q Ð Z (new)
ij

8 Update UF via union operation
9 Add Z Ð Z Y

 

Zpk`1q
(

10 k Ð k ` 1

each iteration, and the fitness function is the log-likelihood.
Using mutation, we can simultaneously avoid local maxima
and efficiently maintain a tree structure.

We note that one could simply use the Gibbs sampling
approach or the mutation approach separately rather than
using the former followed by the latter, but we found this
combined approach to be effective experimentally.

Algorithm 5: MUTATION at k-th iteration

1 Zpk`1q Ð Zpkq

2 i, j Ð Sample random edge for which Zpk`1q
ij “ 1

3 Remove edge: Zpk`1q
ij “ 0

4 i1, j1 Ð Sample nodes from the disconnected sub-trees
5 Sample Z (new)

i1j1 using posterior
6 Zpk`1q Ð Z (new)

i1j1

7 Augment the dataset: Z Ð Z Y
 

Zpk`1q
(

8 k Ð k ` 1

4 Experimental Results
For each of our experiments,1 we compare our method,
Tree, to several state-of-the-art black-box global opti-
mization methods, particularly BO methods including
Graph No-Overlap (Kandasamy, Schneider, and Póczos
2015), Graph Overlap (Rolland et al. 2018), LineBO
(Kirschner et al. 2019), and REMBO (Wang et al. 2013).

To avoid clutter, we avoid including every algorithm and
baseline in our charts. Instead, we make an effort to compare
against the best algorithm for the function at hand, leveraging
on prior works’ experimental results to complete our discus-
sion. For example, in cases where LineBO was already shown
to outperform standard GPs and REMBO in (Kirschner et al.
2019), we omit these worse-performing methods.

We run all additive methods using the zooming-based mes-
sage passing algorithm, analogous to Alg. 2. In addition,
we compare to Random, which evaluates points at random.

1The code is available at https://github.com/eric-vader/HD-BO-
Additive-Models.

Where possible, we also compare our results to Oracle, which
has access to the true dependency graph along with the true
kernel parameters. The functions and data sets considered are
summarized in Table S2 in the appendix.

4.1 Setup
Whenever possible, we used identical parameters across all
competing algorithms and functions. However, we note that
most algorithms have unique hyperparameters. We set those
hyperparameters to reasonable values, discussed in the ap-
pendix. The competing algorithms and their unique hyper-
parameters are given in Table S1 in the appendix. We ran
each algorithm 25 times for every function with varied condi-
tions.2 We ran all experiments with Ninit “ 10 initial points
and Niter “ 1000 total points. The same conditions are used
across all algorithms to ensure a fair comparison.

Kernel. We adopt the widely-used Radial Basis Function
(RBF) kernel, more specifically using a variant known as
the RBF-ARD kernel (Murphy 2012), which consists of a
dimensional lengthscale `i for every dimension i. In addition,
we decompose the scale parameter σG “

a

ř

iPG σi
2 into

its dimensional components σi, so that we can learn the pa-
rameters tractably. Each low-dimensional kernel corresponds
to a low-dimensional function with set of variables G:

κGRBF

`

x, x1
˘

“ σG exp

˜

´
1

2

ÿ

iPG

pxi ´ x
1
iq

2

`2i

¸

. (7)

In this manner, the kernel parameters ΘG are defined over
the dimensional kernel parameters Θ “ tp`i, σiqu

D
i“1. We

adopt the established gradient-based approach to learning Θ;
see Sec. S1 in the appendix. We initialize the dimensional
lengthscale and scale parameters as σi “ 0.5, and li “
0.1 for all i. We set η “ 0.1 in (3) to account for noisy
observations.

Additive Models. All additive models start with an empty
graph of the appropriate size for the given function. Con-
cerning the learning of the dependency structure, we assume
no prior knowledge (γ “ 0.5). We sample the structure for
S “ 250 times every C “ 15 iterations. After learning the
structure, we choose the best kernel parameters using the
gradient approach mentioned above. We set the trade-off pa-
rameter in UCB to be β ptq “ 0.5 log p2tq, as suggested in
(Rolland et al. 2018). For discrete experiments, we discretize
each dimension to 50 levels, with the maximum number of
individual acquisition function evaluations capped at 1000.
For continuous experiments, we let each level’s grid size be
R “ 4 and the number of levels be L “ 4 (see Fig. 2) with
no maximum evaluation limits.

4.2 Metrics
Following (Wang et al. 2013), we plot the mean and 1{4

standard deviation confidence intervals of the metrics over all
2Conditions include initial points, instances of the objective

function, and random seeds used by the algorithm.
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25 runs of the algorithm. For convenience, each plot’s legend
is ordered according to the curves’ final y-value.

Graph Learning Performance. We measure how close
the estimate G is from its target graph Gopt by calculating

F1score pGq “ 2
Precision pGq ˆ Recall pGq

Precision pGq ` Recall pGq
, (8)

where Precision pGq “
|Edges pGqXEdges pGoptq|

|Edges pGq| and

Recall pGq “
|Edges pGqXEdges pGoptq|

|Edges pGoptq|
, with Edges pGq denot-

ing the set of edges in graph G. A larger F1score indicates
better graph learning performance.

Optimization Performance. In accordance with the ulti-
mate goal of BO, we compute the best regret to measure
closeness to the best value fmax at iteration i:

Rt “ fmax ´ f
˚
i , (9)

where f˚i denotes the best f pxq value sampled up to iteration
i. For functions where fmax is unknown, we instead consider
f˚i , i.e., the best value found.

Discussion on Computation Time. In general, it is dif-
ficult to compare the amount of computational resources
by various algorithms, as it is very much affected by many
factors such as implementation, hardware, underlying GP
backends, etc. However, we provide a brief discussion of the
general trends observed. We generally found LineBO to be
one of the faster approaches due to the use of 1D subrou-
tines, though we also found its optimization perform to be
limited in several cases. A fairly similar discussion applies to
REMBO. On the other hand, the computational requirements
of the additive methods are somewhat easier to compare in a
fair manner, as we now discuss.

Cost Efficiency. For the additive methods, we compute the
Message Passing Cost counting the number of individual ac-
quisition function (φG) evaluations; see (S4) in the appendix.
This metric is a proxy for the computational resources used
in the optimization of the acquisition function. While it may
not always correspond exactly to the total computation time,
we expect that each message passing operation for Tree is
at least as fast as in Graph No-Overlap and Graph Overlap.
This is because Tree only works with functions containing
only one or two variables, whereas the others may contain a
larger number of variables.

4.3 Experiments with Additive GP Functions
We first compare Tree to other additive methods for func-
tions drawn from a GP with additive structure. We focus our
discussion on understanding the additive methods’ scaling
ability and performance. Afterwards, we compare Tree to
other methods using various non-GP functions. On all syn-
thetic experiments, we add Gaussian N

`

0, 0.152
˘

noise to
simulate noise that occurs in real-world applications.

Similar to (Rolland et al. 2018), we test our algorithm on
synthetic data by sampling functions from GPs with several
different additive dependency structures. We use an RBF
kernel with corresponding dimensional lengthscale and scale

parameters set to σopt
i “ 1 and lopti “ 0.2 for all i. We tested

several dependency structures; three notable examples are
illustrated in Fig. 4, and a full list is given in the appendix.

In Fig. 3a, it is unsurprising that Tree outperforms the
other additive methods for Star-25. The dependency graph of
Star-25 is indeed a tree, enabling our method to be effective
in learning the dependency structure. From Fig. S3e in the
appendix, by plotting F1score over iterations, we observe
that it is efficient in learning the dependency structure. The
dependency structure learned by Tree is closest to the ground-
truth throughout the experiment, when compared with other
additive models. This efficiency is also reflected in Fig. S3f,
where Tree achieves the best performance as a function of
the message passing cost. We additionally demonstrate in
the appendix that the reduction in cost becomes significantly
higher in the case of continuous domains, achieving better
performance return on cost than other additive methods.

Next, we turn to the case that the underlying graph is
not a tree. Fig. 3b-3c corresponds to the Grid-3ˆ3 struc-
ture, and we find that Graph Overlap performs the best
in terms of learning the dependency structure. This is be-
cause, for the grid graph model, only Graph Overlap’s un-
derlying structural assumptions are correct. Both Tree and
Graph No-Overlap face difficulty learning the graph accu-
rately, albeit worse for Graph No-Overlap. Interestingly,
Tree still remains competitive in terms of optimization
performance despite poorer graph learning. That is, when
Tree makes errant connections (or errant non-connections) in
the dependency graph, the performance does not degrade sig-
nificantly, and the algorithm can tweak other parameters (e.g.,
σi and li) to minimize the effect of any errant connections.
From Fig. 3b, despite all additive algorithms being mutually
competitive in terms of regret, both Graph No-Overlap and
Graph Overlap needed more acquisition function evaluations
to achieve the same performance as Tree (more than triple
for Graph No-Overlap); see Fig. S4l in the appendix. In this
instance, Graph No-Overlap’s pairwise disjoint assumption
not only results in worse graph learning, but also worse
cost efficiency. Next, we compare Graph No-Overlap and
Tree using an Ancestry-132 dependency structure (132D).3
We found that Graph Overlap was unable to complete such
high-dimensional experiments in a reasonable time. For
Graph No-Overlap to work efficiently, we limited the maxi-
mum clique size, consider limits of both 5 and 10, represented
by Graph No-Overlap p5q and Graph No-Overlap p10q re-
spectively. In Fig. 3d-3e, we find Tree performing best in
high-dimensions, and being the most cost efficient.

Scalability. Here, we test Tree’s scalability to higher di-
mensions up to 225D, focusing on studying how the total cu-
mulative message passing cost incurred scales as dimension
increases. We used the same setup and parameters as Sec. 4.3,
across additive grid structures of varying sizes – Grid-iˆi
for i P r2, 15s. We again include Graph No-Overlap p5q and
Graph No-Overlap p10q for this experiment.

From Fig. 3f, we can see that the amount of cost needed for
Graph Overlap and Graph No-Overlap quickly increases as

3See the appendix for more details on Ancestry-132.
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Figure 3: Summarized comparison of various additive methods across various functions.

(a) Star-25 (b) Partition-12 (c) Grid-3ˆ3

Figure 4: Synthetic Dependency Graphs Structures.

the dimensionality increases. In fact, we were unable to com-
plete the experiment for larger grids in a reasonable amount
of time. Recalling that Graph Overlap runs in time exponen-
tial in the size of the maximum clique of the triangulated
dependency graph (Rolland et al. 2018), we note that even
if that clique size does not grow large for the true graph, it
may still tend to increase for the estimated graph. Similarly,
Graph No-Overlap may be slow due to the consideration of
large cliques, unless the clique size is explicitly limited. Even
after imposing the limits, we found that Tree still incurs the
lowest cost when compared with both Graph No-Overlap p5q
and Graph No-Overlap p10q. This is because, for tree struc-
tures, the message passing cost is quadratic in the number of
discretization levels of a single dimension.

4.4 Experiments with Non-GP Functions
Non-GP Synthetic Functions. Here we test our algorithm
against commonly used BO synthetic function benchmarks
(Oh, Gavves, and Welling 2018; Kirschner et al. 2019), in-
cluding Hartmann6 (6D) and Stybtang250 (250D). We also

tested Tree on benchmarks with invariant subspaces; follow-
ing the setup in (Kirschner et al. 2019), Hartmann6+14Aux
(20D) was obtained by augmenting the synthetic functions
with 14 auxiliary dimensions. In Fig. 5a, we see that the
regret of Tree reduces rapidly compared to other methods,
with variants of LineBO catching up in later iterations. In
Fig. 5b, we see that Tree again manages to scale well in
higher-dimensional synthetic functions. From additional syn-
thetic experiments (Fig. S6a-S6f in the appendix), Tree is
also competitive against LineBO variants across both lower
and higher dimensional settings, even in cases with invariant
subspaces.

Linear Programming Solver. We consider tuning the pa-
rameters of lpsolve, an open-source Mixed Integer Linear
Programming (MILP) solver (Berkelaar, Eikland, and Note-
baert 2004). The parameters within each algorithm typically
have some relationship with each other; tweaking a parameter
can potentially affect another. We consider a similar config-
uration problem as defined by (Hutter, Hoos, and Leyton-
Brown 2010; Wang et al. 2013), focusing on tuning lpsolve’s
74 parameters - 59 binary, 10 ordinal and 5 categorical. Our
objective is to find the set of parameters of lpsolve that min-
imize the optimality gap it can achieve with a time limit of
five seconds for the MIP encoding ‘misc05inf’ found in the
benchmark MIPLIB (Gleixner et al. 2021).

From Fig. 5c, we observe that REMBO is competitive in
performance for optimizing the linear programming solver,
as parameter optimization problems often have low effective
dimensionality (Wang et al. 2013; Hoos and Leyton-Brown
2014). Despite being based on a very different notion of
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Figure 5: Comparison of various optimization algorithms for both synthetic functions and Lpsolve functions.

structure, Tree attains better performance than REMBO in
this example, with both clearly outperforming Random. In
the appendix, we provide two additional lpsolve examples in
which Tree outperforms REMBO.

Additional Experiments. Additional experiments on the
NAS-Bench-101 (NAS) dataset (Ying et al. 2019; Klein and
Hutter 2019) and BO-based adversarial attacks (BA) (Ru et
al. 2020) can be found in the appendix.

5 Conclusion
For the problem of GP optimization with generalized addi-
tive models, we traded off expressivity for computational
efficiency and ease of model learning by reducing the model
complexity, constraining the dependency graph to tree struc-
tures. Our method efficiently learns the additive tree struc-
ture using Gibbs Sampling and edge mutation, suitable for
resource-limited settings in line with the primary motivation
of BO. Besides, we presented a zooming-based message pass-
ing approach that can benefit BO with generalized additive
models in continuous domains, with or without tree structures.
We demonstrated that Tree is competitive on both synthetic
functions and real datasets, and that the computation can
be significantly reduced compared to more complex graph
structures, without sacrificing the optimization performance.
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