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Abstract

Unlabeled data exploitation and interpretability are usually
both required in reality. They, however, are conducted inde-
pendently, and very few works try to connect the two. For
unlabeled data exploitation, state-of-the-art semi-supervised
learning (SSL) results have been achieved via encouraging
the consistency of model output on data perturbation, that is,
consistency assumption. However, it remains hard for users
to understand how particular decisions are made by state-of-
the-art SSL models. To this end, in this paper we first disclose
that the consistency assumption is closely related to causality
invariance, where causality invariance lies in the main reason
why the consistency assumption is valid. We then propose
ECT (Explanation Consistency Training) which encourages a
consistent reason of model decision under data perturbation.
ECT employs model explanation as a surrogate of the causal-
ity of model output, which is able to bridge state-of-the-art
interpretability to SSL models and alleviate the high com-
plexity of causality. We realize ECT-SM for vision and ECT-
ATT for NLP tasks. Experimental results on real-world data
sets validate the highly competitive performance and better
explanation of the proposed algorithms.

Introduction
Conventional machine learning assumes that a large num-
ber of labeled data are readily available for training, and
a black-box nature of complex models is readily excellent
for deployment. However, in many real tasks such as image
understanding or disease diagnosis, obtaining ample labeled
examples is difficult since labeling comes at costly human
resources, and it is desirable for users to understand how par-
ticular decisions are made by these models. Unlabeled data
exploitation and interpretability are usually both required in
reality. They, however, conduct independently and very few
works try to connect the two, although much progress has
been made in these two aspects recently (Miyato et al. 2018;
Berthelot et al. 2019; Lipton 2018; Etmann et al. 2019). In
this work, we try to consider the use of interpretability to
facilitate unlabeled data exploitation.

As a major paradigm of unlabeled data exploitation, semi-
supervised learning (SSL) has been extensively studied and
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made much progress. One popular SSL paradigm was based
on smooth assumption (Zhu and Goldberg 2009), i.e., sim-
ilar input data should own similar output labels. Recently,
deep SSL methods extend such an idea, by constraining the
outputs according to consistency assumption (Laine and Aila
2016; Tarvainen and Valpola 2017; Miyato et al. 2018), that
is, data perturbations or augmentations should own similar
output labels. Consistency assumption has been shown state-
of-the-art performance in various mainstream SSL tasks
such as computer vision and NLP (Miyato et al. 2018).

Many SSL studies have been proposed to interesting data
perturbations or augmentations (Miyato et al. 2018; Berth-
elot et al. 2019) under consistency assumption. However,
it remains unclear why consistency assumption is effective,
and it is still hard for users to understand how particular de-
cisions are made by state-of-the-art deep SSL models.

In this paper, we first realize that consistency assump-
tion is closely related to causality invariance (Cartwright
2003). Specifically, the consistency assumption implies that
the causality to the class labels will not be destroyed by data
perturbation or augmentation. On the other hand, once the
data perturbation destroys or violates the causality invari-
ance, the consistency assumption may no longer be effective.
In this case, consistency assumption behaves as a rough sur-
rogate to causality invariance, and causality invariance plays
a key role to the success of SSL models.

However, direct learning of causality is infeasible, be-
cause of the high complexity of causal inference, especially
for big data and deep neural network models with high ca-
pacities (Spirtes 2010). Fortunately, recent studies discov-
ered that model explanation may provide effective clues and
excellent support to the causal relationships (Lipton 2018;
Moraffah et al. 2020). In this paper, we regard model ex-
planation as a better surrogate to causality invariance, and
propose a new SSL model ECT (Explanation Consistency
Training). ECT encourages a consistent reason for the model
decision under unlabeled data perturbation instead of out-
put invariance in the consistency assumption. ECT is able to
bridge state-of-the-art model interpretations to SSL models.
Figure 1 illustrates the motivation. Our basic idea is that a
better surrogate for causality invariance may lead to better
performance and interpretability of SSL. We realize ECT-
SM for vision tasks and ECT-ATT for NLP tasks.

Our contributions mainly include the followings:
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Figure 1: The Venn diagram illustrates the scopes of output
invariance (consistency assumption), explanation invariance
(explanation consistency) and the causality invariance. Bet-
ter surrogate for causality invariance may lead to better per-
formance and interpretability.

• A new explanation on the effectiveness of consis-
tency assumption via causality invariance.
• A new SSL method ECT with the use of explanation

consistency training.
• Experimental results on real-world data sets validate

the highly competitive performance and better expla-
nation of the proposed algorithms.

Explanation Consistency Training
In this section, we first briefly introduce state-of-the-art
SSL models based on the consistency assumption, and then
present the framework of ECT, followed by its deployment
on mainstream tasks with optimization.

Deficiency of Consistency-Based SSL Model
In SSL, we are given a few labeled data {XL, YL} =
{(xl, yl)}Ll=1 and a large number of unlabeled data Xu =
{xu+L}Uu=1. Usually, we have x ∈ X ⊂ Rd, y ∈ Y =
{1, · · · , C} where d is the input data dimension and C is
the number of output classes. The SSL model h(x, θ) : {X :
Θ} → Y parameterized by θ ∈ Θ learns from both the la-
beled and unlabeled data.

The state-of-the-art deep SSL methods are conducted in
the teacher-student framework (Qi and Luo 2019). The core
idea is to construct a teacher from data perturbation (or aug-
mentation), and use the teacher’s outputs to supervise the
student model on unlabeled data.

Specifically, let `(·, ·) : {Y ×Y → R} denote the empiri-
cal supervised loss on labeled data. Denote the perturbation
function asA(x) : X → X (e.g., whenA refers to adversar-
ial augmentations, it turns out to Virtual Adversarial Train-
ing (VAT) (Miyato et al. 2018)) and the consistency loss on
unlabeled data as Ω(x;A, θ) : X → R. The objective of
teacher-student model can be formalized as

min
θ∈Θ

1

L

L∑
l=1

`(h(xl; θ), yl) + α
1

U

U∑
u=1

Ω(xu+L; θ)

s.t. Ω(xu;A, θ) = ‖h(xu; θ)− h(A(xu); θ)‖22,

(1)

α ∈ R balances the empirical supervised loss and the con-
sistency loss on unlabeled data. Different choice of A(x)
and Ω in Eq.(1) realizes various state-of-the-art deep SSL
models, e.g., Temporal Ensembling (Laine and Aila 2016),
VAT (Miyato et al. 2018), MixMatch (Berthelot et al. 2019).

Though consistency assumption has been shown effec-
tive in various mainstream tasks, it remains unclear why it
is valid, and thus it remains unclear to understand how par-
ticular decisions are made by state-of-the-art SSL models.

Proposed ECT Framework

Intuitively, consistency assumption in Eq.(1) is closely re-
lated to causality invariance. More specifically, the core idea
of consistency assumption is that, data perturbations or aug-
mentations should own similar output labels. In other words,
the causality to derive the class labels is not affected by
data perturbation or augmentation. Taking image classifica-
tion as an example, the causality of the factors triggering the
ground-truth tags of an image will not be changed by the
perturbations of some image pixels. This may be true intu-
itively, but not rigorous as consistency assumption does not
explicitly constrain the causality. In fact, on the other hand,
once the pixel perturbations destroy or violate the causal-
ity to the ground-truth tags, consistency assumption may no
longer be effective. As an example illustrated in Figure 2, al-
though the model outputs for two cats still seem to be consis-
tent, the underlying factors revealed by model explanations
triggering the ground-truth tags have been changed. This to
some extent discloses that consistency assumption is not ro-
bust to causality. Ross, Hughes, and Doshi-Velez (2017) pro-
posed that the model decisions should be right for the right
reasons. A more precise assumption if possible towards un-
derlying causality invariance may be more preferable.

However, it is widely known that direct learning of causal-
ity is not practical, due to the high complexity of causal
inference, especially for big data and deep neural network
models with high capacities (Spirtes 2010). Fortunately, re-
cent studies discovered that model explanation is an excel-
lent surrogate on the causal relationships and provides ef-
fective clues (Lipton 2018; Moraffah et al. 2020). For exam-
ple, a diagnosis model might provide intuition to a human
decision-maker by pointing to similar cases in support of a
diagnosis; interpretable learning models are able to provide
clues about the causal relationships between physiologic sig-
nals and affective states, etc (Lipton 2018).

We therefore present a new attempt for well-performing
and interpretable SSL models by leveraging model explana-
tion as a better surrogate to causality invariance. We propose
a new SSL model based on explanation consistency training,
in short, ECT. Unlike consistency assumption based on out-
put invariance, ECT encourages a consistent reason for the
model decision, under unlabeled data perturbation.

Figure 3 shows the framework of ECT. Given model h
and parameter θ, an explainer is denoted by I(x; θ), which
returns the local explanation of model output h(x; θ) for any
instance x. Similar to consistency assumption, by measuring
explanation consistency E(x; I, θ) with some popular loss,

7640



Figure 2: The illustrated two cases of how model outputs and explanations (vectors of Saliency Map) change under adversarial
perturbation. In the case of A, both model explanations and outputs change, and output consistency methods handle well.
However, in the case of B, model output remains unchanged while the decision reasons change dramatically. The right part
provides an illustrative case of a cat, where consistent model outputs come from inconsistent gradient-based explanations.

Figure 3: The ECT framework. The explainer is a flexible
container of various SSL models.

e.g., mean square error (MSE), ECT is then formulated as:

min
θ∈Θ

1

L

L∑
l=1

`(h(xl; θ), yl) + λ
1

U

U∑
u=1

E(xu+L; I, θ)

s.t. E(xu; I, θ) = ‖I(xu; θ)− I(A(xu); θ)‖22.

(2)

where λ ∈ R balances the empirical supervised loss and the
explanation consistency loss on unlabeled data.

Notice that explainer I can be updated accordingly with
the development of the interpretable machine learning com-
munity. In the following, we first compare explanation con-
sistency with output consistency, and then introduce two ex-
plainers on two mainstream tasks, i.e., computer vision and
natural language process, respectively.

Explanation Consistency vs Output Consistency
To analyze the properties of explanation consistency, we
introduce the notion of local Lipschitz condition proposed
in (Alvarez-Melis and Jaakkola 2018).
Definition 1 h(x; θ) is locally difference-bounded by I, if
for every x0 there exist δ > 0 and L ∈ R such that ‖x −
x0‖ < δ implies ‖h(x; θ)−h(x0; θ)‖ ≤ L‖I(x)−I(x0)‖.

This condition resembles the local Lipschitz continuity that
similar explanations trigger similar outputs and it allows the
constant L (and δ) to depend on x0. Therefore, explanation
consistency would necessarily be output consistency, once
the local Lipschitz condition holds for h(x; θ).

In practice, as for human understandings friendly, many
interpretable machine learning methods derive explanations
via constructing a generalized linear map between inputs
and outputs (Lundberg and Lee 2017), such as,

hc(x; θ) = I(x; θ)Tx + b, (3)

where c is the interested class output and b is the interception
item. It is easy to find that hc(x; θ) fits the local Lipschitz
condition and therefore, explanation consistency generally
implies output consistency, but the opposite is not true.

Mainstream Tasks and Optimization

In the following, we introduce two easy-to-optimize tech-
niques as the explainer for two mainstream tasks, i.e., com-
puter vision and natural language process, respectively.

Saliency Map as Explanation In vision tasks, Saliency
Map (SM) (Simonyan, Vedaldi, and Zisserman 2014) is
a common used and effective gradient-based explanation
method. By adopting SM as the explainer, i.e., I(x; θ) =
∇xh

c(x; θ), where c = arg maxc∈Ch
c(x; θ) correspond-

ing to the class index with the maximum output. Using first-
order Talyor expansion on hc(x; θ) at point x0 as follows:

hc(x; θ) ≈ hc(x0; θ) +∇xh
c(x0; θ)T (x− x0)

= ∇xh
c(x0; θ)Tx + b,

(4)

and we can see that saliency map satisfies the form of Eq.(3),
therefore consistent saliency map implies consistent output
according to Definition 1.
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Then we have a new SSL model termed ECT-SM as

minθ∈Θ
1

L

L∑
l=1

`(h(xl; θ), yl) (5)

+λ
1

U

U∑
u=1

‖∇xh
c(xu+L; θ)−∇xh

c(A(xu+L); θ)‖22,

and the regularizer will be

‖∇xh
c(xu+L; θ)‖22 + ‖∇xh

c(A(xu+L); θ)‖22
− 2 〈∇xh

c(xu+L; θ), ∇xh
c(A(xu+L); θ)〉.

(6)

ECT-SM bounds the input gradient to achieve a low en-
ergy state, which is endowed with inherent robustness to
adversarial attacks as discussed in (Ross and Doshi-Velez
2018). Due to the loss on gradient-based explanation, the
solving of ECT-SM is second-order optimization. To re-
duce the computation cost, we reuse the computed saliency
map ∇xh

c(x; θ) in the augmentation function A(xu) =
xu − ε∇xh

c(xu; θ). It is noteworthy that, the explanation
will take the same operation to maintain spatial alignment,
once some scaling or rotation prior is applied in the augmen-
tation function.

Attention as Explanation Attention is a ubiquitous com-
ponent in NLP tasks that is naturally interpretable. Denote
the attention score vector of input x as ax ∈ Rd, the embed-
ding matrix to aggregate as Φ(x) ∈ Rd×k and the forward
network be F , the model output is written as:

h(x; θ) = F (Φ(x)Tax). (7)

If F is a linear fully connected layer, then attention con-
sistency also implies ouput consistency according to Eq.(3).
Putting the attention into the explainer realizes a new SSL
model ECT-ATT, where the regularizer is written as

E(xu; I, θ) = ‖axu
− aA(xu)‖22, (8)

Hybrid Consistency SSL Model It is natural to further
exploit the advantages of explanation consistency and out-
put consistency simultaneously in a whole framework, by
putting the two consistency regularizations together,

minθ∈Θ
1

L

L∑
l=1

`(h(xl; θ), yl) (9)

+
1

U

U∑
u=1

(αΩ(xu+L; θ) + λE(xu+L; I, θ)) .

We call such an SSL model ECT-hybrid.

Related Work
Current consistency-based SSL is mostly realized with a
teacher-student training framework (Qi and Luo 2019). The
output consistency SSL methods can be roughly divided
into spatial consistency and time consistency. Spatial con-
sistency methods focus on the smoothness of output at a
given training moment. Ladder Network (Rasmus et al.
2015) and Π-Model (Laine and Aila 2016) construct teacher

via adding noise to network layers, and the clean student
is noise-free. Virtual Adversarial Training (VAT) (Miyato
et al. 2018) employs an adversarial teacher to get a ro-
bust student model. MixMatch (Berthelot et al. 2019) com-
bines several techniques to build a unified SSL model.
Time consistency methods pursue consistent outputs during
a training sequence. Temporal Ensembling (Laine and Aila
2016) and Mean Teacher (Tarvainen and Valpola 2017) en-
semble the models at different training stages as a better
teacher model. TC-SSL (Zhou, Wang, and Bilmes 2020) uti-
lizes self-supervision to select unlabeled instances possess-
ing time consistent pseudo-labels as teachers.

Interpretable Machine Learning (IML) concentrates on
bridging the gap between complex models and human un-
derstanding to improve the safety and reliability of machine
learning (Lipton 2018). Post-hoc explanations reveal the
decision process or dominated elements of a given model
and input. For agnostic black-box models, LIME (Ribeiro,
Singh, and Guestrin 2016) approximates the model output of
a given instance with a local sparse linear model, where the
model coefficients realize the explanation. SHAP (Lundberg
and Lee 2017) provides a unified linear method to approx-
imate feature contributions from game theory. For white-
box models, explanations are specially designed according
to the model structure. Performing first-order Taylor expan-
sion at the input data point (Bach et al. 2015) is effective
for differentiable models such as CNN and LSTM. Saliency
Map (SM) (Simonyan, Vedaldi, and Zisserman 2014) com-
putes the gradient of the model output regarding the input
image to visualize the contribution or sensitivity of each
pixel. More gradient-based tools are designed to enhance vi-
sual effects (Springenberg et al. 2015; Selvaraju et al. 2017),
but Nie, Zhang, and Patel (2018) proves that GuidedBP is es-
sentially doing (partial) image recovery, which is unrelated
to the network decisions.

Recently, there have been few works applying IML to im-
prove models. Etmann et al. (2019) discovers the connec-
tion between saliency maps and model robustness. Ross and
Doshi-Velez (2018) regularizes the norm of input gradients
to get a robust and interpretable model. GradMask (Viviano
et al. 2019) uses image masks to supervise saliency maps
to ignore distracting features. Wang et al. (2020) proposes
to learn from explanations with neural module execution
tree. All the above efforts are devoted to supervised learn-
ing, while the attempts on SSL have not been thoroughly
studied yet.

Experiments
Firstly, we study ECT on the benchmark datasets to evalu-
ate the effectiveness. Then we compare the visual effect and
measure the robustness of explanations. Finally, we study
ECT on biased data sets. To fairly compare each method, we
control the other implementations to be the same and set the
following α, λ to realize different models.
• Pure SL with labeled data: α = 0, λ = 0.
• SSL with output consistency (VAT) : α > 0, λ = 0.
• SSL with explanation consistency: α = 0, λ > 0.
• SSL with hybrid consistency: α > 0, λ > 0.
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Figure 4: Tranining procedures on the Fashion-MNIST dataset with α ∈ {0, 0.2}, λ ∈ {0, 20}. Each column shows the training
loss of output consistency (above) and explanation consistency (below) of a corresponding model. For comparison, the black
dashed lines mark the same level of y-axis for each loss.

Fashion-MNIST

#labels 100 200 1000

Baseline (SL) 68.90±1.97 73.50±1.17 81.10±0.79
VAT 71.89±1.41 75.46±0.86 82.58±0.73

ECT-SM 72.37±1.34 76.23±0.68 82.92±0.59
ECT-hybrid 72.45±1.58 75.65±0.59 82.99±0.61

MNIST

#labels 100 200 1000

Baseline (SL) 87.74±1.46 91.63±0.55 96.07±0.23
VAT 88.61±0.80 92.15±0.76 96.64±0.28

ECT-SM 89.39±1.24 92.43±0.92 96.38±0.15
ECT-hybrid 88.97±1.61 92.69±0.82 96.80±0.16

Table 1: The test ACC on the Fashion-MNIST and MNIST.

Performance on Benchmarks
Datasets We test model performances on the benchmark
datasets of MNIST (LeCun, Cortes, and Burges 2010) and
Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017). MNIST
contains gray images of hand-written digits from 0 to 9.
Fashion-MNIST is a dataset of Zalando’s article images, in-
cluding {T-shirt, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, ankle boot}. Both of them are 10-class classifi-
cation tasks on images, consisting of a training set of 60,000
examples and a test set of 10,000 examples. We sample la-
beled data evenly from each class, and the rest in the training
set is used as unlabeled data. Each experiment is repeated for
5 times with different labeled data numbers of {100, 200,
1,000} and 1,000 data for validation.

We build a convolutional neural network using Batch-
Norm and ReLu functions, followed by a 128-unit fully con-
nected layer. The optimizer is SGD with a decayed learning
rate, 1 × e−4 weight decay, and the momentum is 0.9. All

the models are trained for 50 epochs on unlabeled data, so it
is close to 30,000 batch iterations. The perturbation extend
is set to ε = 2.0, and the value of α, λ are set according to
the magnitude of their losses without heavy tuning. All the
experiments are conducted with Pytorch1.

Training Curves and Results We plot the training pro-
cedure of 5 times random split experiments on Fashion-
MNIST in Figure 4 to show the effect of different regular-
izers. As expected, without any consistency regularization
in supervised learning, the two losses keep increasing. An
interesting phenomenon is that the explanation loss of VAT
shows a trend of up and down fluctuations. We think it re-
flects how VAT affects learning when exploiting unlabeled
data. In the beginning, the network learns consistent deci-
sion patterns, and then VAT progressively enforces patterns
to grow more and more complicated to keep output consis-
tency. From this perspective, the output consistency method
fails explanation consistency due to the high model capacity
such that it can easily learn inconsistent patterns including
biases. The proposed ECT-SM with only explanation con-
sistency promotes both losses to converge, and ECT-hybrid
gets more smooth curves during optimization. The ablation
outcomes verify our motivation and support our theoretical
result that ECT-SM implies output consistency.

Without heavy-tuning, the test accuracy in Table 1 shows
that the proposed ECT-SM and ECT-hybrid have compet-
itive performance. Therefore, explanation consistency is
more generic and powerful towards consistent SSL. In the
next section, we will show that the proposed ECT endows
better explanations as well.

Visual Interpretability and Robustness
Alvarez-Melis and Jaakkola (2018) has discussed that ex-
plicitness, faithfulness and stability of explanations are cru-

1https://pytorch.org
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Figure 5: Visual effect of explantions (Saliency Map) from different models. The left eight images come from the Fashion
MNIST test set and the right come from MNIST test set.

cial properties for meaningful explanations. In this section,
we show that constraining SSL for a consistent reason sheds
light on the robustness of interpretability.

Visual Effect We randomly sample 8 instances from two
vision datasets and visualize the saliency map explanations
as grey images in Figure 5. The saliency maps of the pro-
posed ECT-SM and ECT-hybrid highlight more informa-
tive details of the images than that of supervised learning.
It looks like there exists much “pepper noise” on the VAT
saliency map and this reflects that the explanations of VAT
are not very consistent and smooth. The proposed explana-
tion consistency not only earns more details than supervised
learning but also achieves more smooth explanations. Mean-
while, the norm of explanation vectors from ECT is much
smaller due to the low energy L2-regularization, which ben-
efits the explanation robustness and stability.

Quantitative Robustness To measure and compare the
robustness of model explanations, we measure the relative
change of explanations regarding perturbations (Alvarez-
Melis and Jaakkola 2018), formulated as follows:

C(x) =
‖I(A(x); θ)− I(x; θ)‖22

‖A(x)− x‖22
. (10)

We follow the metric with adversarial perturbations and
smaller C(x) means better robustness and stability of model
explanations. Each model is randomly chosen from 5 times
experiments and the quantitative results on the Fashion
MNIST test datasets are shown in Figure 6. Similar results
are found on the MNIST dataset.

The value of C(x) decreases when we increase ε because
the denominator increases larger. We observe the proposed
ECT-SM and ECT-hybrid to consistently and substantially
outperform pure SL and VAT in this metric with different ε.
The better explanation results also inspire us that requiring
consistent explanations will force the model to learn more
stable features and filter the distracting biases.

Overfitting Prevention
Biases are the distracting factors of true evidence, which fit
the training data well while fail to generalize. In the real

Figure 6: The relative change of saliency map with respect to
adversarial perturbations on Fashion MNIST. The ε controls
the adversarial perturbation weight.

world, insufficient sampling and the intrinsic prejudice in
our society exacerbate biases such as genders, colors, and so
on. SSL faces great challenges from both, especially for a
teacher-student model, where biases often make the teacher
over-confident to mislead its student. In this experiment, we
show that striving for consistent reasons is effective to fight
against overfitting.

Dataset We use the biographies texts collected by (De-
Arteaga et al. 2019), which is collected to study biases
against gender-minorities in occupation classification mod-
els. And we follow the (Pruthi et al. 2020) to carve out
a binary classification task of distinguishing between sur-
geons and (non-surgeon) physicians, where a majority of
surgeons (> 80%) in the dataset are male. To enhance the
gender bias, (Pruthi et al. 2020) further downsample minor-
ity classes — female surgeons, and male physicians by a
factor of ten. We randomly select 100 label texts from 17629
training texts as labeled data and the rest 17529 as unlabeled
data, and the test dataset has 5037 texts. To compare the
performance with/without biases, we simulate an unbiased
test dataset by anonymizing those gender words in the test
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Gender words Replacements

he/she they
him them

his/her/hers their
himself/herself themself
ms./mrs./mr. m.

Table 2: The replacement dictionary of biased words reflect-
ing genders. The unbiased dataset is constructed through re-
placing the left with the right accordingly.

Parameter Biased test Unbiased test

Baseline (SL) 92.64±(1.99) 72.68±(3.56)
VAT 74.94±(2.56) 74.31±(2.72)

ECT-ATT 94.00±(0.99) 77.76±(3.07)
ECT-hybrid 89.38±(2.82) 79.94±(2.48)

Table 3: The ACC of different models on gender biased and
unbiased test dataset.

dataset with an replacement dictionary listed in Table 2.

Model Architecture We train a simple embedding atten-
tion model (Pruthi et al. 2020), where the attention is directly
over word embeddings (128 dimensions). Then the word
embeddings are weighted aggregated by attention score, fol-
lowed by a linear layer and a softmax to perform prediction.
The augmentation method is randomly replacing ε words of
top attention scores with other words in this text, where ε
is the hyper-parameter. The ECT-ATT is realized based on
attention explanations.

Performance We run these models for 5 times and the per-
formances of models on the biased and unbiased test dataset
are listed in Table 3. The results show that pure SL is overfit-
ting on the gender biases easily that achieves 92.64% accu-
racy on the biased test. However, the performance drops to
72.68% on the unbiased test without gender words. The per-
formance of VAT drops dramatically on the biased test but
increases not much on the unbiased test. After regularizing
the explanation (attention) with ECT-ATT and ECT-hybrid,
the performance on the unbiased test gets significantly im-
proved.

Attention Distribution To verify our proposal, we look
inside into these models by summing the attention scores on
the biased words according to Table 2 called biased atten-
tion. Figure 7 shows the results from one run of our experi-
ments. The histogram on the left shows the number of test in-
stances where the corresponding model has the highest score
among the four models. The right part is the distribution of
biased attention over the two classes.

As we can see, VAT owns the most instances with the
highest biased attention, which verifies our intuition that the
biases will make the teacher-student model over-confident
and cause severe overfitting. The visualization effect of
attention-word distribution is drawn in Figure 8. The size

Figure 7: The histogram on the left shows the number of
test instances where the corresponding model has the high-
est score among the four models. The right part is the distri-
bution of biased attention over the two classes.

Figure 8: The wordcloud of two instances from different
models. The attention of VAT mainly focus on gender words.

and color of words have a positive correlation with their at-
tention scores. The proposed ECT-hybrid gets the best per-
formance as well as the best explanations preventing gender
biases via encouraging consistent reasons.

Conclusion
This paper considers the use of interpretability to facilitate
semi-supervised learning (SSL). We disclose that the con-
sistency assumption in SSL is closely related to causality in-
variance, where causality invariance works as the main rea-
son for why the consistency assumption is valid. To this end,
we propose ECT to encourage a consistent reason for model
decisions under data perturbation. ECT employs model ex-
planation as a surrogate of causality, and thus is able to
bridge state-of-the-art interpretability to SSL models. Exper-
imental results validate the highly competitive performance
and better explanation of the proposed algorithms. More-
over, consistent explanations may help fight against overfit-
ting and generalize much better on the biased dataset. In the
future, we will study the feasibility and efficiency of opti-
mization, especially on non-differentiable functions, for bet-
ter explanation consistency.
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