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Abstract

Many physical systems have underlying safety considerations
that require that the policy employed ensures the satisfaction
of a set of constraints. The analytical formulation usually
takes the form of a Constrained Markov Decision Process
(CMDP).We focus on the case where the CMDP is unknown,
and RL algorithms obtain samples to discover the model and
compute an optimal constrained policy. Our goal is to charac-
terize the relationship between safety constraints and the num-
ber of samples needed to ensure a desired level of accuracy—
both objective maximization and constraint satisfaction—in a
PAC sense. We explore two classes of RL algorithms, namely,
(i) a generative model based approach, wherein samples are
taken initially to estimate a model, and (ii) an online approach,
wherein the model is updated as samples are obtained. Our
main finding is that compared to the best known bounds of the
unconstrained regime, the sample complexity of constrained
RL algorithms are increased by a factor that is logarithmic in
the number of constraints, which suggests that the approach
may be easily utilized in real systems.

Introduction
Markov Decision Processes (MDPs) are used to model a
variety of systems for which stationary control policies are
appropriate. In many cyber-physical systems (algorithmically
controlled physical systems) restrictions may be placed on
functions of the probability with which states may be vis-
ited. For example, in power systems, the frequency must be
kept within tolerable limits, and allowing it to go outside
these tolerances often might be unsafe. Similarly, in com-
munication systems the number of transmissions that may
be made in a time interval is limited by an average radiated
power constraint due to interference and human safety con-
siderations. The number of constraints can be large, since
they can represent physical limitations (e.g., communication
or transmission link capacities), performance requirements
(per-flow packet delays, tolerable frequencies) and so on. The
Constrained-MDP (CMDP) framework is used to model such
circumstances (Altman 1999).

In this paper, our objective is to design simple algorithms
to solve CMDP problems under an unknown model. Whereas
the goal of a typical model-based RL approach would take
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as few samples as possible to quickly determine the optimal
policy, minimizing the number of samples taken is even more
important in the CMDP setting. This because constraints are
violated during the learning process, and it might be critical
to keep the number of such violations as low as possible due
to safety considerations mentioned earlier, and yet ensure that
the system objectives are maximized. Hence, determining
how the joint metrics of objective maximization and safety
violation evolve over time as the model becomes more and
more accurate is crucial to understand the efficacy of a pro-
posed RL algorithm for CMDPs.

Main Contributions: Our goal is to analyze the sample
complexity of solving CMDPs to a desired accuracy with
a high probability in both objective and constraints in the
context of finite horizon (episodic) problems. We focus on
two figures of merit pertaining to objective maximization and
constraint satisfaction in a probably-approximately-correct
(PAC) sense. Our main contributions are as follows:
(i) We develop two model-based algorithms, namely, (i) a
generative approach that obtains samples initially then cre-
ates a model, and (ii) an online approach in which the model
is updated as time proceeds. In both cases, the estimated
model might have no solution, and we utilize a confidence-
ball around the estimate to ensure that a solution may be
found with high probability (assuming that the real model
has a solution).
(ii) The algorithms follow the general pattern of model con-
struction or update, followed by a solution using linear pro-
gramming (LP) of the CMDP generated in this manner, with
the addendum that the LP is extended to account for the fact
that a search is made over the entire ball of models given
the current samples. This procedure not only contributes to
optimism as (Efroni, Mannor, and Pirotta 2020), but also
guarantees feasibility of the solution.
(iii) We develop PAC-type sample complexity bounds for
both algorithms, accounting for both objective maximization
and constraint satisfaction. The general intuition is that the
model accuracy should be higher than in the unconstrained
case and, our main finding agrees with this intuition. Fur-
thermore, comparing our main results with lower bounds
on sample complexity of MDPs (Azar, Munos, and Kappen
2013; Dann and Brunskill 2015), we discover that the in-
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crease in the sample complexity is by a logarithmic factor in
the number of constraints and a size of state space. However,
there are no lower bound results for CMDPs to the best of
our knowledge.

As mentioned above, the number of constraints in cyber-
physical systems can be large. Our result indicating logarith-
mic scaling with the number of constraints indicates that the
number of constraints is not a major concern in solving un-
known CMDPs via RL, hence indicating that the practicality
of applying the constrained RL approach to cyber-physical
systems applications.

Related Work: Much work in the space of CMDP has
been driven by problems of control, and many of the algo-
rithmic approaches and applications have taken a control-
theoretic view (Altman 1999, 2002; Borkar 2005; Borkar and
Jain 2014; Singh and Kumar 2018; Singh, Hou, and Kumar
2014). The approach taken is to study the problem under a
known model, and showing asymptotic convergence of the
solution method proposed. There are also studies on con-
strained partially observable MDPs such as (Isom, Meyn, and
Braatz 2008; Kim et al. 2011). Both of these works propose
algorithms based on value iteration requiring solving linear
program or constrained quadratic program.

Extending CMDP approaches to the context on an un-
known model has also mostly focused on asymptotic conver-
gence (Bhatnagar and Lakshmanan 2012; Chow et al. 2018;
Tessler, Mankowitz, and Mannor 2018; Paternain et al. 2019)
under Lagrangian methods to show zero eventual duality
gap. (Liu, Ding, and Liu 2019) also proposes an algorithm
based on Lagrangian method, but proves that this algorithm
achieves a small eventual gap. On the other hand empirical
works built on Lagrangian method has also been proposed
(Liang, Que, and Modiano 2018).

A parallel theme has been related to the constrained bandit
case, wherein the the underlying problem, while not directly
being an MDP, bears a strong relation to it. Work such as
(Badanidiyuru, Kleinberg, and Slivkins 2013; Wu et al. 2015;
Amani, Alizadeh, and Thrampoulidis 2019) consider such
constraints, either in a knapsack sense, or on the type of
controls that may be applied in a linear bandit context.

Closest to our theme are parallel works on CMDPs. For
instance, (Zheng and Ratliff 2020) and (Wachi and Sui 2020)
present results in the context of unknown reward functions,
with either a known stochastic or deterministic transition
kernel. Other work (Satija, Amortila, and Pineau 2020) fo-
cuses on asymptotic convergence, and so does not provide
an estimate on the learning rate. Finally, (Efroni, Mannor,
and Pirotta 2020) explores algorithms and themes similar to
ours, but focuses on characterizing objective and constrained
regret under different flavors of online algorithms, which can
be seen as complementary to or work. Since there is no direct
relation between regret and sample complexity (Dann, Latti-
more, and Brunskill 2017), applying their regret approach to
our setting gives relatively weak sample complexity bounds.
Our discovery of a general principle of logarithmic increase
in sample complexity with the number of constraints also
distinguishes our work.

Notation and Problem Formulation
Notation and Setup: We consider a general finite-horizon
CMDP formulation. There are a set of states S and set of
actions A. The reward matrix is denoted by r, under which
r(s, a) is the reward for any state-action pair (s, a). We as-
sume that there are N constraints. We use c to denote the
cost matrix, where c(i, s, a) is the immediate cost incurred by
the ith constraint in (s, a) where i ∈ {1, . . . , N}. Also, the
vector C̄ is used to denote the value of the constraints (i.e.,
the bound that must be satisfied). The probability of reaching
another state s′ while being at state s and taking action a is
determined by transition kernel P (s′|s, a). At the beginning
of each horizon, we begin from a fixed initial state s0. As
the CMDP has a finite horizon, the length of each horizon,
or episode, is considered to be a fixed value H. Hence, the
CMDP is defined by the tuple M = 〈S,A, P, r, c, C̄, s0, H〉.
Assumption 1. We assume S and A are finite sets with car-
dinalities |S| and |A|. Further, we assume that the immediate
reward r(s, a) is taken from the interval [0, 1] and immediate
cost lies in [0, 1]. We also make an assumption that there
are N constraints which for each i ∈ {1, . . . , N}, C̄i ∈
[0, C̄max].

Next, to choose an action from A at time-step h, we define
a policy π as a mapping from state-action space S × A to
set of probability vectors defined over action space, i.e. π :
S ×A→ [0, 1]|A|. So π(s, ·, h) is a probability vector over
A at time-step h. Also, a ∼ π(s, ·, h) means that action a
is chosen according to policy π while being at state s at
time-step h.

When policy π is fixed, the underlying Markov Decision
Process turns into a Markov chain. The transition kernel
of this Markov chain is Pπ, which can be viewed as an
operator. The operator Pπf(s) = E[f(sh+1)|sh = s] =∑
s′∈S Pπ(s′|s)f(s′) takes any function f : S → R and

returns the expected value of f in the next time step. For
convenience, we define the multi-step version Phπ f(s) =
PπPπ . . . Pπf, which is repeated h times. Further, we define
P−1π and P 0

π as the identity operator.
We consider cumulative finite horizon criteria for both the

objective function and the constraint functions with identical
horizon H. We define the value function of state s at time-
step t under policy π as

V πt (s) = E[
H−1∑
h=t

r(sh, ah); ah ∼ π(sh, ·, h), st = s], (1)

where action ah is chosen according to policy π and expec-
tation E[.] is taken w.r.t transition kernel P. Then, the local
variance of the value function at time step h under policy π is

σπ
2

h (s) = E[(V πh+1(sh+1)− PπV πh+1(s))2]. (2)

Similar to the definition of the value function (1), the ith
constraint function at time t under policy π is formulated as

Cπi,t(s) = E[
H−1∑
h=t

c(i, sh, ah); at ∼ π(sh, ·, h), st = s].

(3)
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Again, the local variance of ith constraint function at time-
step h under policy π, i.e. σπ

2

i,h is defined similar to local
variance of value function (2).

Finally, the general finite-horizon CMDP problem is

max
π

V π0 (s0) s.t. Cπi,0(s0) ≤ C̄i, ∀i ∈ {1, . . . , N}. (4)

Assumption 2. We assume that there exists some policy π
that satisfies the constraints in (4). Hence, this CMDP prob-
lem is feasible with optimal policy π∗ and optimal solution
V ∗0 (s0) = V π

∗

0 (s0).

Note that we only consider learning feasible CMDPs, since
otherwise no algorithm would be able to discover an optimal
policy satisfying constraints.

Constrained-RL Problem: The Constrained RL problem
formulation is identical to the CMDP optimization problem
of (4), but without being aware of values of transition kernel
P.1 Our goal is to provide model-based algorithms and deter-
mine the sample complexity results in a PAC sense, which is
defined as follows:
Definition 1. For an algorithm A, sample complexity is the
number of samples that A requires to achieve

P
(
V A0 (s0) ≥ V π

∗

0 (s0)− ε and

CAi,0(s0) ≤ C̄i + ε ∀i ∈ {1, . . . , N}
)
≥ 1− δ

for a given ε and δ.
Note that this definition includes both objective maximiza-

tion and constraint violations, as opposed to a traditional def-
inition that only considers the objective (Strehl and Littman
2008).

Sample Complexity Result of Generative
Model Based Learning

In this section, we introduce a generative model based CMDP
learning algorithm called Optimistic Generative Model Based
Learning, or Optimistic-GMBL. According to Optimistic-
GMBL, we sample each state-action pair n number of times
uniformly across all state-action pairs, count the number of
times each transition occurs n(s′, s, a) for each next state s′,
and construct an empirical model of transition kernel denoted
by P̂ (s′|s, a) = n(s′,s,a)

n ∀(s′, s, a). Then Optimistic-GMBL
creates a class of CMDPs using the empirical model. This
class is denoted byMδP and contains CMDPs with identical
reward, cost matrices, C̄, initial state s0 and horizon of the
true CMDP, but with transition kernels close to true model.
This class of CMDPs is defined as

MδP := {M ′ : r′(s, a) = r(s, a), (5)

c′(i, s, a) = c(i, s, a), H ′ = H, s′0 = s0

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤ (6)

1We only assume that transition kernel is unknown and the
extension to unknown reward and cost matrices is straightforward,
and does not require additional methodology.

Algorithm 1 Optimistic-GMBL

1: Input: accuracy ε and failure tolerance δ.
2: Set δP = δ

12(N+2)|S|2|A|H .

3: Set n(s′, s, a) = 0 ∀(s, a, s′).
4: for each (s, a) ∈ S ×A do
5: Sample (s, a), n = 256

ε2 |S|H
3 log 12(N+2)|S||A|H

δ and
update n(s′, s, a).

6: P̂ (s′|s, a) = n(s′,s,a)
n ∀s′.

7: ConstructMδP according to (5).
8: Output π̃ = ELP(MδP ).

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
,√

log 4/δP
2n

)
∀s, a, s′, i},

where δP is defined in Algorithm 1. For any M ′ ∈ M,

objective function V
′π
0 (s0) and cost functions C

′π
i,0(s0) are

computed w.r.t. the corresponding transition kernel P ′ ac-
cording to equations (1) and (3) respectively.

Finally, Optimistic-GMBL maximizes the objective func-
tion among all possible transition kernels, while satisfying
constraints (if feasible). More specifically, it solves the opti-
mistic planning problem below

max
π,M ′∈MδP

V
′π
0 (s0) s.t. C

′π
i,0(s0) ≤ C̄i ∀i. (7)

Optimistic-GMBL uses Extended Linear Programming,
or ELP, to solve the problem of (7). This method inputs
MδP and outputs π̃ for the optimal solution. The descrip-
tion of ELP is provided in (HasanzadeZonuzy, Kalathil, and
Shakkottai 2020). Algorithm 1 describes Optimistic-GMBL.

PAC Analysis of Optimistic-GMBL
Here, we present the sample complexity result of Optimistic-
GMBL. Time complexity result and analysis will be provided
in (HasanzadeZonuzy, Kalathil, and Shakkottai 2020).

Theorem 1. Consider any finite-horizon CMDP M =
〈S,A, P, r, c, C̄, s0, H〉 satisfying assumptions 1 and 2, and
CMDP problem formulation of (4). Then, for any ε ∈
(0, 29

√
H
|S| ) and δ ∈ (0, 1), algorithm 1 creates a model

CMDP M̃ = 〈S,A, P̃ , r, c, C̄, s0, H〉 and outputs policy π̃
such that

P(V π̃0 (s0) ≥ V π
∗

0 (s0)− ε and

C π̃i,0(s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,

with at least total sampling budget of

256

ε2
|S|2|A|H3 log

12(N + 2)|S||A|H
δ

.

The proof of Theorem 1 differs from the traditional analy-
sis framework of unconstrained RL (Azar, Munos, and Kap-
pen 2013) in the following manner. First, is the role played
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by optimism in model construction. The notion of optimism
is not required for learning unconstrained MDPs with genera-
tive models, because any estimated model is always feasible
(Puterman 2014). However, there is no such guarantee for any
general CMDP problem formulation (Altman 1999). Specifi-
cally, simply substituting the true kernel P by the estimated
one P̂ is not appropriate, since there is no assurance of feasi-
bility of that problem. Hence, Optimistic-GMBL converts the
CMDP problem under the estimated transition kernel to an
optimistic planning problem (7) and an ELP-based solution.

Second, the core of the analysis of every unconstrained
MDP is based on being able to characterize the optimal pol-
icy via the Bellman operator. This technique enables one to
obtain a sample complexity that scales with the size of the
state space as O(|S|). However, we cannot use this approach
to characterize the optimal policy in a CMDP (Altman 1999).
We require a uniform PAC result over set of all policies and
set of value and constraint functions, which in turn leads to
O(|S|2 log |S|) sample complexity in the size of state space.
Corollary 1. In case of N = 0, the problem would become
regular unconstrained MDP. And, the sample complexity
result with N = 0 would also hold for unconstrained case.

Now, we present some of the lemmas that are essential
to prove Theorem 1. Then we sketch the proof of this theo-
rem. The detailed proofs are provided in (HasanzadeZonuzy,
Kalathil, and Shakkottai 2020).

First, we show that true CMDP lies inside theMδP with
high probability, w.h.p. So, the problem (7) would be feasible
w.h.p., since the original CMDP problem is assumed to be
feasible according to Assumption 2.
Lemma 1.

P(M ∈MδP ) ≥ 1− |S|2|A|δP .
Proof Sketch: Fix a state-action pair (s, a) and next state

s′. Then, according to combination of Hoefding’s inequality
(Hoeffding 1994) and empirical Bernstein’s inequality (Mau-
rer and Pontil 2009), we get that each P (s′|s, a) is inside the
confidence set defined by (6) with probability at least 1− δP .
Applying the union bound yields the result. 2

Now, we present the core lemma required for proving
Theorem 1 and its proof sketch. Using this lemma, we bound
the mismatch in objective and constraint functions when we
have n number of samples from each (s, a). This bound
applies uniformly over the set of policies and set of value
and constraint functions. The result also enables us to bound
the objective and constraint functions individually. Then we
apply union bound on all objective and constraint functions.
This process is the reason why the number of constraints
appear logarithmically in the sample complexity result.
Lemma 2. Let δP ∈ (0, 1). Then, if n ≥
2592|S|2H2 log 4/δP , under any policy π

‖V π0 − Ṽ π0 ‖∞ ≤
√

32|S|H3

n

w.p. at least 1− 3|S|2|A|HδP , and for any i ∈ {1, . . . , N},

‖Cπi,0 − C̃πi,0‖∞ ≤
√

32|S|H3

n

w.p. at least 1− 3|S|2|A|HδP .
Proof Sketch: We first show that |P̃ (s′|s, a) −

P (s′|s, a)| ≤ O(
√

P (s′|s,a)(1−P (s′|s,a))
n ) for each s′, s, a.

Then, we show that at each time-step h, (Pπ − P̃π)V πh (s) ≤
O(
√
|S|
n σ

π
h(s)). Applying this bound to |Ṽ π0 (s0)− V π0 (s0)|

and from the fact that σπh(s) is close to σ̃πh(s) by
√
|S|H2

n1/4 , we
obtain the result. This procedure is also applicable to each
constraint function i. 2

Proof Sketch of Theorem 1: From Lemma 1, we know
that the optimistic planning problem (7) is feasible w.h.p.
Hence, we can obtain an optimistic policy π̃. The rest of this
proof consists of two major parts.

First, we prove ε−optimality of objective function w.h.p.
Considering policy π∗ we obtain |V π∗0 (s0) − Ṽ π∗0 (s0)| ≤
O(
√
|S|H3

n ) w.h.p. by means of Lemma 2. Similarly,

|V π̃0 (s0)− Ṽ π̃0 (s0)| ≤ O(
√
|S|H3

n ) w.h.p. Next, we use the

fact that Ṽ π
∗

0 (s0) ≤ Ṽ π̃0 (s0) and obtain

V π̃0 (s0) ≥ V π
∗

0 (s0)−O(

√
|S|H3

n
).

Next, we show that each constraint is violated at most by
ε w.h.p. Here, we use the second part of Lemma 2 to bound
constraint violation. Thus, for each i ∈ {1, . . . , N} we have

|C π̃i,0(s0) − C̃ π̃i,0(s0)| ≤ O(
√
|S|H3

n ) w.h.p. Also, we know

that C̃ π̃i,0(s0) ≤ C̄i, since π̃ is solution of the ELP. Hence,
we obtain

C π̃i,0(s0) ≤ C̄i +O(

√
|S|H3

n
)

w.h.p. Finally, we obtain the end result by applying the union

bound, and obtaining n by solving ε = O(
√
|S|H3

n ). 2

Sample Complexity Result of Online Learning
The Optimistic-GMBL approach requires that every state-
action pair in the system be sampled a certain number of times
before a policy is computed. However, many applications
may not be able to utilize this approach since it may not be
possible to reach those states without the application of some
policy, or they might be unsafe and so should not be sampled
often. Hence, we need an approach that can collect samples
from the environment by means of an online algorithm.

Online Constrained-RL, or Online-CRL described in Al-
gorithm 2, is an online method proceeding in episodes with
length H. At the beginning of each episode k, Online-CRL
constructs an empirical model P̂ according to state-action
visitation frequencies, i.e., P̂ (s′|s, a) = n(s′,s,a)

n(s,a) , where
n(s′, s, a) and n(s, a) are visitation frequencies. This em-
pirical model P̂ induces a set of finite-horizon CMDPsMk

which any CMDP M ′ ∈ Mk has identical horizon and re-
ward and cost matrices. However, for any (s, a) ∈ S×A and
s′ ∈ S, P ′(s′|s, a) lies inside a confidence interval induced
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Algorithm 2 Online-CRL

1: Input: accuracy ε and failure tolerance δ.
2: Set k = 1, wmin = ε

4H|S| , Umax = |S|2|A|m, δ1 =
δ

4(N+1)|S|Umax
.

3: Set m according to (9) and (10).
4: Set n(s, a) = n(s′, s, a) = 0 ∀s, s′ ∈ S, a ∈ A.
5: while there is (s, a) with n(s, a) < |S|mH do
6: P̂ (s′|s, a) = n(s′,s,a)

n(s,a) ∀(s, a) with n(s, a) > 0 and
s′ ∈ S.

7: ConstructMk according to (8).
8: π̃k = ELP(Mk).
9: for t = 1, . . . ,H do

10: at ∼ π̃k(st), st+1 ∼ P (·|st, at), n(st, at) +
+, n(st+1, st, at) + +.

11: k + +

by P̂ . To construct a confidence interval for any element
of P ′(s′|s, a), we use identical concentration inequalities to
Optimistic GMBL as defined by (6). The only difference is
the use of n(s, a) instead of n. Thus the class of CMPDs is
defined as below at each episode k :

Mk := {M ′ : r′(s, a) = r(s, a),

c′(i, s, a) = c(i, s, a), H ′ = H, s′0 = s0

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1
,

√
log 4/δ1
2n(s, a)

)
∀s, s′, a, i},

(8)

where δ1 is defined in Algorithm 2.
Next, we use ELP to obtain an optimistic policy π̃k, which

is the solution of optimistic CMDP problem below:

max
π,M ′∈Mk

V
′π
0 (s0) s.t. C

′π
i,0(s0) ≤ C̄i ∀ i.

This problem is exactly the same as problem of (7), except
for substitutingMδP withMk. Here, for any M ′ ∈ Mk,
V ′π0 (s0) and C ′πi,0(s0) are computed according to (1) and (3)
w.r.t. underlying transition kernel P ′, respectively.

This algorithm draws inspiration from the infinite-horizon
algorithm UCRL−γ (Lattimore and Hutter 2014) and its
finite-horizon counterpart UCFH (Dann and Brunskill 2015)
with several differences. Unlike UCRL-γ and UCFH, Algo-
rithm 2 updates the model at the beginning of each episode,
which allows for faster model construction. Also, since we
desire a policy that pertains to a CMDP using an linear pro-
gramming approach (Altman 1999), we must ensure that
all constraints are linear. Hence, unlike UCFH, Algorithm 2
utilizes a combination of the empirical Bernstein’s and Ho-
effding’s inequalities, which allows us to ensure linearity of
constraints (i.e., we can indeed use an extended linear pro-
gram to solve for the constrained optimistic policy). However,
the constraints of UCFH are non-linear and require the use of

extended value iteration coupled with a complex sub-routine,
which cannot be utilized in the constrained RL case. Thus,
we are able to obtain strong bounds on sample complexity
similar to UCFH, but yet ensure that the solution approach
only uses a linear program.

PAC Analysis of Online-CRL
We now present the PAC bound of Algorithm 2.
Theorem 2. Consider CMDP M = 〈S,A, r, c, C̄, s0, H〉
satisfying assumptions 1 and 2. For any 0 < ε, δ < 1, under
Online-CRL we have:

P(V π̃k0 (s0) ≥ V π
∗

0 (s0)− ε and

C π̃ki,0(s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,
for all but at most

Õ(
|S|2|A|H2

ε2
log

N + 1

δ
)

episodes.
To prove Theorem 2, we follow an approach motivated by

(Lattimore and Hutter 2014) and its finite-horizon version
(Dann and Brunskill 2015). However, there are several dif-
ferences in our technique. As mentioned above, one of the
differences is with regard to restricting ourselves to only lin-
ear concentration inequalities. We will show that excluding
non-linear concentration inequalities pertaining to variance
does not increase the sample complexity, and utilizing the
fact that the number of successor states is less that |S| leads to
matching sample complexity in terms of |S| with the UCFH
algorithm. Furthermore, we are able to show that, unlike ex-
isting approaches, we can update the model at each episode,
again without increasing the sample complexity. Thus, we
are able to obtain PAC bounds that match the unconstrained
case, and only increase by logarithmic factor with the number
of constraints.

There are also recent results on characterizing the regret
of constrained-RL (Efroni, Mannor, and Pirotta 2020) while
using an algorithm reminiscent of Algorithm 2, and the ques-
tion arises as to whether one can immediately translate these
regret results into sample complexity bounds? However, re-
gret and sample complexity results do not directly follow
from one another (Dann, Lattimore, and Brunskill 2017), and
following the (Efroni, Mannor, and Pirotta 2020) approach
gives a PAC result Õ( |S|

2|A|H4

ε2 ), which is looser than our
result by a factor of H2. Thus, this alternative option does
not provide the strong bounds that we are able to obtain to
match existing PAC results of the unconstrained case.

Now, we introduce the notions of knownness and impor-
tance for state-action pairs and base our proof on these no-
tions. Then we present the key lemmas required to prove
Theorem 2. Finally, we sketch the proof of Theorem 2. The
detailed analysis is provided in (HasanzadeZonuzy, Kalathil,
and Shakkottai 2020).

Let the weight of (s, a)−pair in an episode k under policy
π̃k be its expected frequency in that episode

wk(s, a) :=
H−1∑
h=0

P(sh = s, a ∼ π̃k(sh, ·, h))

7671



=
H−1∑
h=0

Ph−1π̃k
I{s = ·, a ∼ π̃k(s, ·, h)}(s0).

Then, the importance ιk of (s, a) at episode k is defined as
its relative weight compared to wmin := ε

4H|S| on a log-scale

ιk(s, a) := min{zj : zj ≥
wk(s, a)

wmin
}

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, . . . .

Note that ιk(s, a) ∈ {0, 1, 2, 4, 8, 16, . . . } is an integer
indicating the influence of the state-action pair on the value
function of π̃k. Similarly, we define knownness as

κk(s, a) := max{zi : zi ≤
nk(s, a)

mwk(s, a)
} ∈ {0, 1, 2, 4, . . . },

which indicates how often (s, a) has been observed relative
to its importance. Value of m is defined in Algorithm 2. Now,
we can categorize (s, a)−pairs into subsets

Xk,κ,ι := {(s, a) ∈ Xk : κk(s, a) = κ, ιk(s, a) = ι}
and X̄k = S ×A \Xk,

where Xk = {(s, a) : ιk(s, a) > 0} is the active set and
X̄k is the set of (s, a)−pairs that are very unlikely under
policy π̃k. We will show that if |Xk,κ,ι| ≤ κ is satisfied, then
the model of Online-CRL would achieve near-optimality
while violating constraints at most by ε w.h.p. This condition
indicates that important state-action pairs under policy π̃k
are visited a sufficiently large number of times. Hence, the
model of Online-CRL will be accurate enough to obtain PAC
bounds.

Now, first we show that true model belongs to Mk for
every episode k w.h.p.
Lemma 3. M ∈ Mk for all episodes k with probability at
least 1− δ

2(N+1) .

Proof Sketch: Fix a (s, a), next state s′ and an episode k.
Then, P (s′|s, a) lies inside the confidence set constructed
by the combined Bernstein’s and Hoeffding’s inequalities.
Taking the union bound over maximum number of model
updates, Umax, and next states would yield the result. 2

Next, we bound the number of episodes that the condition
|Xk,κ,ι| ≤ κ is violated w.h.p.
Lemma 4. Suppose E is the number of episodes k for
which there are κ and ι with |Xk,κ,ι| > κ, i.e. E =∑∞
k=1 I{∃(κ, ι) : |Xk,κ,ι| > κ} and let

m ≥ 6H2

ε
log

2(N + 1)Emax

δ
, (9)

where Emax = log2
H
wmin

log2 |S|. Then, P(E ≤
6|S||A|mEmax) ≥ 1− δ

2(N+1) .

Proof sketch: The proof of this lemma is divided into two
stages. First, we provide a bound on the total number of
times a fixed (s, a) could be observed in a particular Xk,κ,ι

in all episodes. Then, we present a high probability bound
on the number of episodes that |Xk,κ,ι| > κ for a fixed

(κ, ι). Finally, we obtain the result by means of martingale
concentration and union bound. 2

Finally, the next lemma provides a bound on the mismatch
between objective and constraint functions of the optimistic
model and true model. The role of this lemma is similar to
Lemma 2 for Optimistic-GMBL. It provides a PAC result,
which is uniform over value and constraint functions. Hence,
it is possible to have individual PAC results for any objec-
tive and constraint functions. As discussed in the context of
Optimistic-GMBL, this process is responsible for a logN
increase in the sample complexity result.

Lemma 5. Assume M ∈ Mk. If |Xk,κ,ι| ≤ κ for all (κ, ι)
and 0 < ε ≤ 1 and

m = 1280
|S|H2

ε2
(log2 log2H)2 log2

2

(8|S|2H2

ε

)
log

4

δ1
,

(10)

then |Ṽ π̃k0 (s0) − V π̃k0 (s0)| ≤ ε and for any i, |C̃ π̃ki,0(s0) −
C π̃ki,0(s0)| ≤ ε.

Proof Sketch: We first use algebraic operations to ob-

tain |P̃ (s′|s, a) − P (s′|s, a)| ≤ O(
√

P (s′|s,a)(1−P (s′|s,a))
n )

for each s′, s, a. Then we show that at each time-step

h, (Pπ − P̃π)V πh (s) ≤ O(
√
|S|
n σ

π
h(s)). Then we divide the

state-action based on knownness, i.e., whether they belong
to Xk or not. By applying all bounds and using the fact

that σπh(s) is close to σ̃πh(s) by
√
|S|H2

n1/4 , we obtain a bound
on |Ṽ π0 (s0)− V π0 (s0)|. Eventually, we use the definition of
weights to get the final result. This procedure is also applica-
ble to each constraint function i. 2

Proof Sketch of Theorem 2: First, we apply Lemma 3 and
show that M ∈ Mk for every k w.p. at least 1 − δ

2(N+1) .

Therefore, the optimistic planning problem would be feasible
and an optimistic policy π̃k exists w.h.p. Furthermore, we
bound the number of episodes where |Xk,κ,ι| > κ w.h.p.
by means of Lemma 4. Thus, for other episodes where
|Xk,κ,ι| ≤ κ, we show that objective function is ε−optimal
and all constraint functions are violated by ε by applying
Lemma 5. Eventually, taking union bound yields the result.
2

Experimental Results
We conduct experiments on CMDPs akin to a grid world
MDP, wherein each square indicates the location of the agent.
The goal of the is to start at the fixed start state and reach
the final state in H steps. The agent obtains a reward of 1
when reaching the goal. Transitions are stochastic, and given
any action, there is probability of self and other transitions,
as well as transitioning to other state as intended by the ac-
tion. We consider two classes of CMDPs under this setting,
namely, (i) state occupancy constraints, and (ii) action fre-
quency constraints, which represent the types of constraints
that might appear in real systems.

For the first scenario class, we augment the unconstrained
MDP by an action budget constraint. We restrict the number
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Figure 1: Value
Difference-Scenario 1a
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Figure 2: Constraint
Violation-Scenario 1a
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Figure 3: Value
Difference Scenario 1b
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Figure 4: Constraint
Violation-Scenario 1b

of moves to the right, while ensuring that a feasible path to
the goal exists. Here, we consider a 3× 3 and 5× 5 grid as
examples, with 9 state states and 25 states respectively, and
with 4 actions. The 3× 3 and 5× 5 examples are labeled as
scenario 1a and scenario 1b.

In the second scenario class, we consider a 3×3 grid world
with a particular state is “bad” for the CMDP, so the agent
must avoid entering it frequently or at all. The bad state has
higher probability of transitioning out of itself compared to
the rest of the states. But, if the agent enters this state, a cost
is levied. Thus, the constraint is to limit the probability of
entering the bad state, and to set the constraint threshold to 0.
This means that the optimal policy for CMDP is to avoid the
bad state altogether. This process is equivalent to incurring
an immediate cost of 1 when the agent finds itself in the bad
state.

We simulate Optimistic-GMBL and Online-CRL for these
scenarios. Here, we consider two performance metrics. One,
difference in value function calculated by

V π
∗

0 (s0)− V π
′

0 (s0).

where π′ is whether Optimistic-GMBL or Online-CRL. The
second performance metric is constraint violation which is
calculated by

max(Cπ
′

0 (s0)− C̄, 0).

since we have one constraint in each scenario. Further, we
average each data point on every figure over 25 runs.

As seen in the Figures 1, 3 and 5, both Optimistic-GMBL
and Online-CRL reach the optimal values in both scenarios.
We observe that the Online-CRL algorithm, despite having
fewer number of samples, does consistently better than the
Optimistic-GMBL algorithm in both the scenarios. Similar
behavior appears in figures 2, 4, and 6, which illustrates
constraint violation. Intuitively, Online-CRL outperforms
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Figure 5: Value
Difference-Scenario 2
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Figure 6: Constraint
Violation-Scenario 2

Optimistic-GMBL empirically because it samples the impor-
tant state-action pairs often, and hence resolves uncertainty
quickly.

Conclusion
This paper introduced the notion of sample complex-
ity in objective maximization and constraint satisfaction
for understanding the performance of RL algorithms for
safety-constrained applications. We developed two types of
algorithms—Optimistic-GMBL and online-CRL. The main
finding of a logarithmic factor increase in sample complexity
over the unconstrained regime suggests value of the approach
to real systems.

Broader Impact
Reinforcement learning has shown great success in domains
that are action constrained, such as robotics, but less so on
systems that are safety constrained in terms of the occupancy
measure generated by the policy employed. These include a
variety of cyber-physical systems (CPS) such as the power
grid, and other utilities, where guarantees on the operating
region of the system must be met—ideally deterministically,
but within some bounds with high probability in practice.

It is in the space of control of such CPS that our work is
applicable, and could potentially have an impact on a wide
variety of supervisory control and data acquisition (SCADA)
systems. Many of them already employ empirically deter-
mined policies validated through large scale simulations, and
it is not hard to visualize them as being driven by RL-based
policies. Sample complexity bounds reveal how much infor-
mation is needed to obtain what level of guarantee of safe
operability, and hence are a way of determining if a policy
has been well enough trained to be actually used.

However, a note of caution with this approach is that the
policy generated is only as good as the training environment,
and many examples exist wherein the policy generated is op-
timal according to its training, but violate basic truths known
to human operators and could fail quite badly. Indeed, our
approach does not provide sample-path constraints, and the
system could well move into deleterious states for a small
fraction of the time, which might be completely unaccept-
able and trigger hard fail safes, such as breakers in a power
system. Understanding the right application environments
with excellent domain knowledge is hence needed before any
practical success can be claimed.
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