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Abstract

We study a scalable alternative to robust gradient descent
(RGD) techniques that can be used when losses and/or gra-
dients can be heavy-tailed, though this will be unknown to
the learner. The core technique is simple: instead of trying to
robustly aggregate gradients at each step, which is costly and
leads to sub-optimal dimension dependence in risk bounds,
we choose a candidate which does not diverge too far from
the majority of cheap stochastic sub-processes run over par-
titioned data. This lets us retain the formal strength of RGD
methods at a fraction of the cost.

Introduction
Obtaining “strong contracts” for the performance of ma-
chine learning algorithms is difficult.1 Classical tasks in
computer science, such as sorting integers or simple ma-
trix operations, come with lucid worst-case guarantees. With
enough resources, the job can be done correctly and com-
pletely. In machine learning, since we only have access to
highly impoverished information regarding the phenomena
or goal of interest, inevitably the learning task is uncer-
tain, and any meaningful performance guarantee can only
be stated with some degree of confidence, typically over the
random draw of the data used for training. This uncertainty
is reflected in the standard formulation of machine learning
tasks as “risk minimization” problems (Vapnik 1982; Haus-
sler 1992). Here we consider risk minimization over some
set of candidates W ⊆ R

d, where the risk of w is defined as
the expected loss to be incurred by w, namely

RP(w) ..= EP L(w;Z) =

∫
Z
L(w; z) P(dz), w ∈ W .

Here we have a loss function L : W×Z → R+, and random
data Z ∼ P takes values in a set Z . At most, any learning
algorithm will have access to n data points sampled from
P, denoted Z1, . . . , Zn. Write (Z1, . . . , Zn) �→ ŵn to de-
note the output of an arbitrary learning algorithm. The usual
starting point for analyzing algorithm performance is the es-
timation error RP(ŵn)−R∗

P, where R∗
P

..= inf{RP(w) : w ∈
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This notion was described lucidly in a keynote lecture by L.
Bottou (Bottou 2015).

W}, or more precisely, the distribution of this error. Since
we never know much about the underlying data-generating
process, typically all we can assume is that P belongs to
some class P of probability measures on Z , and typical
guarantees are given in the form of

P {RP(ŵn)−R∗
P > ε (n, δ, P,W)} ≤ δ, ∀ P ∈ P.

Flipping the inequalities around, this says that the algorithm
generating ŵn enjoys ε-good performance with (1−δ)-high
confidence over the draw of the sample, where the error level
depends on the sample size n, the desired confidence level
δ, the underlying data distribution P, and any constraints en-
coded in W , not to mention the nature of loss L. Ideally, we
would like formal guarantees to align as closely as possi-
ble with performance observed in the real world by machine
learning practitioners. With this in mind, the following prop-
erties are important to consider.

1. Transparency: can we actually compute the output ŵn

that we study in theory?

2. Strength: what form do bounds on ε(n, δ, P,W) take?
How rich is the class P?

3. Scalability: how do computational costs scale with the
above-mentioned factors?

Balancing these three points is critical to developing guar-
antees for algorithms that will actually be used in practice.
If strong assumptions are made on the data distribution (i.e.,
P is a “small” class), then most of the data any practitioner
runs into will fall out of scope. If the error bound grows
too quickly with 1/δ or shrinks too slowly with n, then ei-
ther the guarantees are vacuous, or the procedure is truly
sub-optimal. If the procedure outputting ŵn cannot be im-
plemented, then we run into a gap between what we code,
and what we study formally.

Our problem setting In this work, we consider the setup
of potentially heavy-tailed data, specialized to the case of
strongly convex loss functions; in related work (Holland
2021), we consider a completely different approach when
we do not have strong convexity. More concretely, all the
learner can know is that for some m < ∞,

P ⊆
{

P : sup
w∈W

EP |L(w;Z)|m < ∞
}
, (1)
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where typically m = 2. Thus, it is unknown whether the
losses (or partial derivatives, etc.) are congenial in a sub-
Gaussian sense (where (1) holds for all m), or heavy-tailed
in the sense that all higher-order moments could be infinite
or undefined. We next review the related technical literature,
and give an overview of our contributions.

Context and Contributions
With the three properties of transparency, strength, and scal-
ability highlighted in the previous section in mind, for the
next few paragraphs we look at the characteristics of several
important families of learning algorithms.

ERM: can scale well, but lacks robustness Classical
learning theory is primarily centered around empirical risk
minimization (ERM) (Vapnik 1998; Anthony and Bartlett
1999), and studies the statistical properties that hold for any
minimizer of the empirical risk, namely

ŵn ∈ argmin
w∈W

1

n

n∑
i=1

L(w;Zi). (2)

Clearly, this leaves all algorithmic aspects of the problem
totally abstract, and opens up the possibility for substan-
tial gaps between the performance of “good” and “bad”
ERM solutions, as studied by Feldman (2017). Furthermore,
the empirical mean is sensitive to outliers, and formally
speaking is sub-optimal in the sense that it cannot achieve
sub-Gaussian error bounds under potentially heavy tails,
while other practical procedures can; see Catoni (2012) and
Devroye et al. (2016) for comprehensive studies. Roughly
speaking, the empirical mean cannot guarantee better error

bounds than those which scale as Ω(1/
√
δn). In the context

of machine learning, these statistical limitations provide an
important implication about the feedback available to any
learner which tries to directly minimize the empirical risk,
effectively lower-bounding the statistical error (in contrast
to the optimization error) incurred by any such procedure.

Robust risk minimizers: strong in theory, but lacks
transparency To deal with the statistical weaknesses of
ERM, it is natural to consider algorithms based on more
“robust” feedback, i.e., minimizers of estimators of the risk
which provide stronger guarantees than the empirical mean
under potentially heavy tails. A seminal example of this is
the work of Brownlees, Joly, and Lugosi (2015), who con-
sider learning algorithms of the form

ŵn ∈ argmin
w∈W

R̂(w), s.t.

n∑
i=1

ψ

(
R̂(w)− L(w;Zi)

s

)
= 0.

(3)

That is, they consider minimizers of an M-estimator of the
risk, using influence function ψ of the type studied by Catoni
(2012). Under weak moment bounds like (1), their minimiz-
ers enjoy O(1/

√
n) rates with O(log(δ−1)) dependence on

the confidence. This provides a significant improvement in
terms of the strength of guarantees compared with ERM, but

unfortunately the issue of transparency remains. Like ERM,
the algorithmic side of the problem is left abstract here, and
in general may even be a much more difficult computational

task. Observe that the new objective R̂(·) cannot be written

in closed form, and even if L(·;Z) is convex, this R̂(·) need
not preserve such convexity. Direct optimization is hard, but
verifying improvement in the function value is easy, and
some researchers have utilized a guess-and-check strategy
to make the approach viable in practice (Holland and Ikeda
2017). However, these methods are inexact, and due to op-
timization error, strictly speaking the algorithm being run
does not enjoy the full guarantees given by Brownlees, Joly,
and Lugosi (2015) for the ideal case.

Robust gradient descent: transparent, but scales poorly
To try and address the issue of transparency without sacrific-
ing the strength of formal guarantees, several new families
of algorithms have been designed in the past few years to
tackle the potentially heavy-tailed setting using a tractable
procedure. Such algorithms may naturally be called robust
gradient descent (RGD), the naming being appropriate since
their core updates all take the form

ŵt+1 = ŵt − αt Ĝn(ŵt), (4)

and they are “robust” in the sense that the estimate Ĝn(w) ≈
∇RP(w) has deviations with near-optimal confidence inter-
vals under potentially heavy-tailed data (i.e., both the loss
and partial gradients are potentially heavy-tailed). The most
common strategy replaces the empirical risk gradient with
a high-dimensional “median of means” estimate (RGD-by-
MoM) (Chen, Su, and Xu 2017b,a; Prasad et al. 2018; El-
Mhamdi et al. 2019; Rajput et al. 2020). Other strategies
involve dimension-wise truncation (Holland 2019) and M-
estimation of the risk partial derivatives (RGD-M) (Hol-
land and Ikeda 2019). Note that both approaches enjoy er-
ror bounds with optimal dependence on n and 1/δ under
potentially heavy-tailed data, with the significant merit that
the computational procedures are transparent and easy to
implement as-is. Unfortunately, instead of a simple one-
dimensional robust mean estimate as in (3), all RGD meth-
ods rely on sub-routines that work in d-dimensions. This
makes the procedures much more expensive computation-
ally for “big” learning tasks, and leads to an undesirable de-
pendence on the ambient dimension d in the statistical guar-
antees as well, hampering their overall scalability.

Summarizing the above points, first of all, ERM and ro-
bust risk minimizers leave the potential for a severe gap be-
tween what is guaranteed on paper and what is done in prac-
tice. On the other hand, both formal guarantees and compu-
tational requirements for RGD methods do not scale well to
high-dimensional learning tasks. For comparison, we show
concrete error bounds for RGD procedures under strongly
convex losses in Table 1. The key issues are clear: even when
working with the Euclidean geometry, a quick glance at the
proofs in the cited works on RGD shows that direct depen-
dence on d in the error bounds is unavoidable. Furthermore,
the extra computational overhead, scaling at least linearly in
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Method Error Cost

DC-SGD (Algorithm 1) O
(
log(δ−1)

n

)
O
(

dn

log(δ−1)

)
+ cost (Merge)

RGD-by-MoM (Chen et
al. 2017a)

O (
(1− c)2T

)
+O

(
k(d+ log(δ−1))

n

)
O
(
Tdn

k

)
+ T cost(GeoMed)

RGD-M (Holland and
Ikeda 2019)

O (
(1− c)2T

)
+O

(
d(log(dδ−1) + log(n))

n

)
O (Tdn)

Table 1: Here we compare performance guarantees for different learning algorithms. Error refers to 1− δ confidence intervals
for RP(·)−R∗

P, evaluated at the output of each algorithm after T iterations (with DC-SGD using T = n by definition). All error
bounds stated are under the assumptions of Theorem 1. Here GeoMed refers to the geometric median sub-routine (Minsker
2015; Vardi and Zhang 2000). Cost estimates assume the availability of k cores for parallel computations. See appendix for
additional details.

d, must be incurred at every step in the iterative procedure,
which severely hurts scalability.

Our contributions Considering the issues highlighted
above, in particular with the scalability of modern RGD
techniques in terms of loose guarantees and computational
cost, here we investigate a different algorithmic approach of
equal generality, with the goal of achieving as-good or better
dependence on n, d, and 1/δ, under the same assumptions,
and in provably less time for larger problems. The core tech-
nique uses distance-based rules to select among independent
weak candidates, which are implemented using inexpensive
stochastic gradient-based updates. Our main contributions:

• We analyze a flexible and robust archetype for learning
under heavy tails (Algorithm 1), and obtain sharp high-
probability error bounds (Theorem 1) that improve on the
poor dimension dependence of existing RGD routines un-
der strongly convex risks when both the losses and gradi-
ents can be heavy-tailed (see Table 1).

• The procedure outlined in Algorithm 1 is simple to im-
plement and amenable to distributed computation, provid-
ing superior computational scalability over existing serial
RGD procedures, without sacrificing the strength or trans-
parency of theoretical guarantees.

• Empirically, we study the efficiency and robustness of the
proposed algorithm and its key competitors in a tightly
controlled simulated setting (section ), verifying a sub-
stantial improvement in the cost-performance tradeoff, ro-
bustness to heavy-tailed data, and performance that scales
well to higher dimensions.

Taken together, our results suggest a promising class of al-
gorithms for convex risk minimization, which achieve an ap-
pealing balance between transparency, strength and scalabil-
ity.

Theoretical Analysis
Preliminaries
First we establish some basic notation, and organize techni-
cal details in one place for ease of reference.

Notation For any positive integer k, write [k] ..=
{1, . . . , k}. For any index I ⊆ [n], write ZI ..= (Zi)i∈I ,
defined analogously for independent copy Z ′

I . To keep the
notation simple, in the special case of I = [n], we write
Zn

..= Z[n] = (Z1, . . . , Zn). We shall use P as a generic
symbol to denote computing probability; in most cases this
will be the product measure induced by the sample Zn or
Z ′

n. For any function f : Rd → R, denote by ∂f(u) the sub-
differential of f evaluated at u. Variance of the loss is de-
noted by σ2

P(w)
..= varP L(w;Z) = EP(L(w;Z)−RP(w))

2

for each w ∈ W . When we write I{event}, this refers to
the indicator function which returns 1 when event is true,
and 0 otherwise.

Technical conditions The two key running assumptions
that we make are related to independence and convexity.
First, we assume that all the observed data are independent,
i.e., the random variables Zi and Z ′

i taken over all i ∈ [n]
are independent copies of Z ∼ P. Second, for each z ∈ Z ,
we assume the map w �→ L(w; z) is a real-valued convex
function over R

d, and that the parameter set W ⊆ R
d is

non-empty, convex, and compact. All results derived in the
next sub-section will be for an arbitrary choice of P ∈ P ,
where P satisfies (1) with m = 2. We say a function f is
λ1-smooth if its gradient is λ1-Lipschitz continuous, and μ-
strongly convex if 〈u − v,∇f(u) − ∇f(v)〉 ≥ μ‖u − v‖2
for all u, v (details given in appendix). Finally, to make for-
mal statements technically simpler, we assume that RP(·)
achieves its minimum on the interior of W .

Overview of algorithm We study a general-purpose
learning algorithm using a divide-and-conquer strategy,
summarized in Algorithm 1. Following a partition of the data
into k disjoint subsets, a sub-routine SGD is used to gener-
ate k candidates, and from these candidates, a final output
is determined by Merge, a generic sub-routine whose de-
sirable properties will be discussed shortly (see (7)). As for
SGD, for concreteness we are considering traditional (pro-
jected) stochastic gradient descent. The core update of arbi-
trary point w given data Z ∼ P is given by

SGD [w;Z, α,W] ..= ΠW (w − αG(w;Z)) . (5)
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Algorithm 1 Robust divide and conquer archetype; DC-SGD [Zn, ŵ0; k].

inputs: sample Zn, initial value ŵ0 ∈ W , parameter 1 ≤ k ≤ n.
k⋃

j=1

Ij = [n], with |Ij | ≥ �n/k�, and Ij ∩ Il = ∅ when j �= l. 	 Disjoint partition.

ŵ(j) = SGD
[
ŵ0;ZIj

,W]
, for each j ∈ [k]. 	 Obtain inexpensive candidates.

return: ŵDC = Merge
[
{ŵ(1), . . . , ŵ(k)}; ‖ · ‖2

]
. 	 Follow the majority.

Here α ≥ 0 denotes a step-size parameter, ΠW denotes
projection to W with respect to the 
2 norm, and the stan-
dard assumption is that the random vector G(w;Z) satisfies
EP G(w;Z) ∈ ∂RP(w), for each w ∈ W . That is, we as-
sume access to an unbiased estimate of some sub-gradient
of the true risk. For an arbitrary sequence (Z1, Z2, . . . , Zt)
of length t ≥ 1, let SGD[ŵ0; (Z1, . . . , Zt),W] ..=
SGD[ŵt−1;Zt, αt−1,W]. Note that using (5), the right-hand
side is defined recursively, and bottoms out at t = 0, us-
ing pre-fixed initial value ŵ0. Note that we suppress the step
sizes (α0, . . . , αt−1) from this notation for readability. For
any arbitrary sub-index I ⊆ [n], sequence SGD[ŵ0;ZI ,W]
is defined analogously; since the Zi are iid, the sequence or-
der does not matter.

Error Bounds Under Heavy-Tailed Losses and
Gradients
We start by stating the main performance guarantee for
Algorithm 1, which holds for potentially heavy-tailed
losses/gradients, and then sketch out the core principles be-
hind the proof.

Theorem 1. Let the risk be μ-strongly convex, and the loss
be λ1-smooth. Run Algorithm 1 with a sample size at least
n ≥ max{k,M∗}, where k = �8 log(δ−1)�, and

M∗ ..=
4λ1

μ

(
max

{
λ1μ‖ŵ0 − w∗‖2
EP ‖G(w∗;Z)‖2 , 1

}
− 1

)
.

For the initial update set α0 = 1/(2λ1), and subsequent
step sizes αt = a/(μn + b) for t > 0, with b = 2aλ1, and
a > 0 set such that αt ≤ α0 for all t. Then, with probability
no less than 1− δ, we have

RP(ŵDC)−R∗
P ≤ EP ‖G(w∗;Z)‖2

(
aλ1

μ

)2
2c log(δ−1)

n−Mδ

where Mδ ≤ 16 log(δ−1)(M∗ − b), and c depends only on
the choice of Merge.

Proving such a theorem is straightforward using the
quadratic growth property of strongly convex functions
in conjunction with λ1-smoothness. When the risk is μ-
strongly convex, we have the critical property that points
which are ε-far away from the minimum w∗ must be
(ε2μ/2)-bad in terms of excess risk. As such, simple
distance-based robust aggregation metrics can be used to ef-
ficiently boost the confidence. To start, we need a few basic
facts which will be used to characterize a valid Merge op-

eration.2 Given k points u1, . . . , uk ∈ R
d, the basic require-

ment here is that we want the output of Merge to be close
to the majority of these points, in the appropriate norm. To
make this concrete, define

Δ(u; γ, {u1, . . . , uk}, ‖ · ‖) ..=

inf

{
r ≥ 0 : |{j : ‖uj − u‖ ≤ r}| > k

(
1

2
+ γ

)}
. (6)

When the other parameters are obvious from the context, we
shall write simply Δ(u; γ) = Δ(u; γ, {u1, . . . , uk}, ‖ · ‖).
In words, Δ(u; γ) is the radius of the smallest ball centered
at u which contains a γ-majority of the points u1, . . . , uk.
Using this quantity, our requirement on Merge is that for
any 0 ≤ γ < 1/2 and u ∈ R

d, we have

‖û− u‖ ≤ cγΔ(u; γ, {u1, . . . , uk}),
where û = Merge [{u1, . . . , uk}; ‖ · ‖] . (7)

Here cγ is a factor that is independent of the choice of u
or the points u1, . . . , uk given, which depends only on the
choice of γ.

Next, considering the partitioning scheme of Algorithm 1,
the ideal case is of course where, given some desired perfor-

mance level RP(ŵ
(j))−R∗

P ≤ ε, the SGD sub-routine returns
an ε-good candidate for all j ∈ [k] subsets. In practice, we
will not always be so lucky, but the following lemma shows
that with enough candidates, most of them will be ε-good
with high confidence.

Lemma 2. Let (S, ‖ · ‖) be any normed linear space. Let
X1, . . . , Xk be iid random entities taking values in S, and
fix x∗ ∈ S. For ε > 0, write ai(ε) ..= I{‖Xi − x∗‖ ≤ ε},
δε ..= 1 − E a(ε). For any 0 ≤ γ < (1/2 − δε), it follows
that

P

{
k∑

i=1

ai(ε) > k

(
1

2
+ γ

)}
≥ 1− e−2k(γ+δε− 1

2 )
2

.

Applying Lemma 2 using the event aj(ε) = I{RP(ŵ
(j)) −

R∗
P ≤ ε}, we see that when k scales with log(δ−1), we

can guarantee that there is a 1 − δ probability good event
in which at least a γ-majority of the candidates are ε-good.
On this good event, via strong convexity it follows that a γ-

majority of the candidates are
√
2ε/μ-close to w∗, which

means Δ(w∗; γ, {ŵ(1), . . . , ŵ(k)}) ≤ √
2ε/μ. Leveraging

the requirement (7) on Merge, one obtains the following
general-purpose boosting procedure.

2Procedures with this property are called “robust distance ap-
proximation” by Hsu and Sabato (2016).
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Lemma 3 (Boosting the confidence, under strong convex-
ity). Assume the risk is μ-strongly convex and λ1-smooth,
and that we have a learning algorithm ŵOLD which for n ≥ 1
and δ0 ∈ (0, 1) achieves

P

{
RP(ŵOLD)−R∗

P >
εP(n)

δ0

}
≤ δ0.

For desired confidence level δ, split Zn into k =

�8 log(δ−1)/(1 − γ)2� disjoint subsets, let ŵ(1)
OLD, . . . , ŵ

(k)
OLD

denote the outputs of ŵOLD run on these subsets, and con-
struct ŵNEW as

ŵNEW = Merge
[
{ŵ(1)

OLD, . . . , ŵ
(k)
OLD}; ‖ · ‖

]
.

As long as Merge satisfies (7), then for any 0 ≤ γ < 1/4
and n ≥ k, we have that

RP(ŵNEW)−R∗
P ≤ 4c2γλ1

μ
εP

(
(1− γ)2n

8 log(δ−1)

)
with probability no less than 1− δ.

With these basic results in place, we can readily prove The-
orem 1.

Proof of Theorem 1. Using the assumptions provided in the
hypothesis, we can obviously leverage Lemma 3. The corre-

spondence between this lemma and Algorithm 1 is ŵ
(j)
OLD ↔

ŵ(j) and ŵNEW ↔ ŵDC. The remaining task is to fill in εP(·)
for the final iterate of standard SGD, using the prescribed
step sizes. It is well-known that for averaged SGD, one does
not need to require that the losses be Lipschitz. On the other
hand, for last-iterate SGD, it was only quite recently that
Nguyen et al. (2018), in a nice argument building upon Bot-
tou, Curtis, and Nocedal (2016), showed that the Lipschitz
condition is not required if we have λ1-smooth losses. For
our purposes, this implies that

εP(m) ≤ EP ‖G(w∗;Z)‖2
m−M∗ + b

(
2a2λ1

μ

)
for any choice of m ≥ M∗. A detailed statement of the
more general property used is given in Theorem 7 in the
appendix. Applying this to Lemma 3 for Algorithm 1, we
shall have m = (1 − γ)2n/8 log(δ−1). Multiplying these
factors out, we end up with n−8 log(δ−1)(M∗−b)/(1−γ)2

in the denominator, for arbitrary choice of 0 ≤ γ < 1/4.
To cover all choices of Merge and thus γ, we simply use
the rough upper bound 8 log(δ−1)(M∗ − b)/(1 − γ)2 ≤
16 log(δ−1)(M∗ − b) in the stated result.

Concrete implementations of Merge There are many
natural choices for implementing Merge. For example, the
geometric median (minimizing the sum of absolute devia-
tions) can be easily implemented (Vardi and Zhang 2000;
Cohen et al. 2016), and enjoys a factor of cγ ≤ (1+1/(2γ))
(Minsker 2015). A simple smallest-ball procedure, which
takes the point that contains a γ-majority in the smallest-
radius ball just requires doing pairwise distance calcula-
tions, and satisfies cγ ≤ 3 (Hsu and Sabato 2016). Using a

coordinate-wise median approach is the easiest to code, but

introduces dimension dependence, as cγ ≤ √
d(1+1/(2γ)).

Plugging these upper bounds into the proof of Theorem 1,
by basic arithmetic, the Merge-dependent constant c can be
bounded as c ≤ 1536, c ≤ 288, and c ≤ 1536d respectively.

Additional related literature The excess risk bounds
given by Theorem 1 give us an example of the guarantees
that are possible under potentially heavy-tailed data, for ar-
guably the simplest divide-and-conquer strategy one could
conceive of. Here we remark that the core idea of using ro-
bust aggregation methods to boost the confidence of inde-
pendent candidates under potentially heavy-tailed data can
be seen in various special cases throughout the literature. For
example, influential work from Minsker (2015, Sec. 4) ap-
plies the geometric median to robustify both PCA and high-
dimensional linear regression procedures, under potentially
heavy-tailed observations. Hsu and Sabato (2016, Sec. 4.2)
look at merging ERM solutions when the empirical risk is
strongly convex, using a smallest-ball strategy. In contrast,
we do not require the losses to be strongly convex, and our
computational procedure is explicit, yielding bounds which
incorporate error of both a statistical and computational na-
ture, unlike ERM-type guarantees.

Empirical Analysis
In this section, we use controlled simulations to investigate
how the differences in formal performance guarantees dis-
cussed in the previous section work out in practice.

Experimental setup We essentially follow the “noisy
convex minimization” tests used in the literature to test
the robustness of RGD methods (Holland and Ikeda 2019).
Complete details of the experimental setup are provided in
the supplementary materials.3 Put simply, we provide the
learner with random losses of the form L(w;Z) = (〈w −
w∗, X〉+E)2/2, where w∗ ∈ R

d is a pre-defined vector un-
known to the learner, X is a d-dimensional random vector,
E is zero-mean random noise, and X and E are indepen-
dent of each other. This approach is advantageous in that we
can compute the resulting risk RP(w) = EP L(w;Z) ex-
actly, and by modifying the distribution P, we can control
the μ-strong convexity of the risk and ensure the gradients
∇L(w;Z) = −(〈w∗ − w,X〉+ E)X are Lipschitz contin-
uous, satisfying the two key conditions of Theorem 1.

Regarding the methods being compared, as classical base-
lines, empirical risk minimization using batch GD (de-
noted ERM-GD) and stochastic GD (denoted SGD) are used.
We also implement standard RGD methods as more mod-
ern benchmarks: RGD-by-MoM (Chen, Su, and Xu 2017a;
Prasad et al. 2018) (denoted here as RGD-MoM), RGD-M
(Holland and Ikeda 2019) (RGD-M), and median-of-means
minimization by gradient descent of Lecué, Lerasle, and
Mathieu (2018) (RGD-Lec). Against these methods, we
compare Algorithm 1 (DC-SGD), with Merge computed us-

3Repository: https://github.com/feedbackward/sgd-roboost
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Figure 1: Excess risk statistics as a function of cost in gradient computations (log scale, base 10). The two right-most plots
zoom in on the region between the dashed lines in the two left-most plots.

Figure 2: Analogous results to Figure 1, for the case of log-Normal noise. Note for the zoomed-in plots on the right, we have
removed the volatile SGD trajectory for visibility.

ing the geometric median (Vardi and Zhang 2000). All de-
tailed settings are in the supplementary materials.

The basic idea of these tests is to calibrate and fix the
methods to the case of “nice” data characterized by addi-
tive Gaussian noise, and then to see how the performance
of each method changes as different experimental parame-
ters are modified. The key performance metric that we look
at in the figures to follow is “excess risk,” computed as
RP(ŵ) − RP(w

∗), where ŵ is the output of any learning
algorithm being studied, and w∗ is the pre-fixed minimum
described in the previous paragraph. Each experimental set-
ting is characterized by the triplet (P, n, d), which we mod-
ify in many different ways to investigate different phenom-
ena. For each setting, we run multiple independent trials, and
compute performance statistics based on these trials. For ex-
ample, when we give the average (denoted ave) and stan-
dard deviation (denoted sd) of excess risk, these statistics
are computed over all trials. All box-plots are also computed
based on multiple independent trials. For convenience, here
we list the key contents of our empirical analysis (extra fig-
ures in supplementary materials):

1. Error trajectories in low dimensions (fixed n and d, many

iterations).

2. Statistical error in high dimensions (d grows, n fixed).

3. Actual computation times (d grows, n fixed/grows).

4. Impact of initialization on error trajectories (‖ŵ0 − w∗‖
grows).

5. Impact of noise level on error trajectories (signal/noise ra-
tio gets worse).

Discussion of results Plots of representative empirical test
results are in Figures 1–4. We start with low-dimensional
tests to examine the nature of the error trajectory of Algo-
rithm 1 (DC-SGD), when run for multiple passes over the
data. With no fine-tuning of algorithm parameters, by sim-
ply doing a proper aggregation of noisy SGD sub-processes,
it is clearly possible to achieve performance comparable to
well-tuned RGD methods, and do so using far less compu-
tational resources, both on average and in terms of between-
trial variance (Figures 1–2). Clearly, even when the underly-
ing sub-processes used by Algorithm 1 are very noisy, only
a few passes over the data are necessary to match the best-
performing RGD methods, both on average and in terms
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Figure 3: Left: box-plot of final excess risk for batch methods (many-pass) versus DC-SGD (two-pass), with d = 1024 under
log-Normal noise. Right: median computation times as d increases.

Figure 4: Excess risk trajectories (averaged over trials) with different initialization error ranges. Here sup refers to the error
range, where ŵ0,j = w∗

j + Uniform[−sup,+sup] for each j ∈ [d].

of between-trial variance. Furthermore, without any algo-
rithm adjustments, this robustness holds over changes to the
signal/noise ratio and initialization error (Figure 4). While
sample-splitting can cause our procedure to take a small hit
in statistical error for very large n, it makes up for this in
scalability as d grows. Even with just two passes over the
data, at the order of thousands of parameters, the proposed
procedure is able to achieve comparable performance un-
der well-behaved gradients, and superior performance un-
der heavy-tailed gradients, without prior knowledge or re-
tuning, and at a fraction of the cost (Figure 3).

Future Directions
This paper presents evidence, both formal and empirical,
that a general-purpose learning algorithm following the
archetype drawn out in Algorithm 1 should be able to im-
prove significantly on the scalability of modern robust gra-
dient descent methods under potentially heavy-tailed losses
and gradients, without sacrificing formal guarantees. Ex-
tending the theory to other algorithms besides vanilla SGD is
a straightforward exercise; less straightforward is when we
start considering a stage-wise strategy, when partition size
k can change from stage to stage. Extending results to al-

low for multiple passes is also of natural interest; the work
of Lin and Rosasco (2017) does this for the squared error,
but without heavy tails. We only covered the 
2 norm case
here, but extensions to cover other geometries (via stochas-
tic mirror descent for example) are also of interest. The RGD
methods cited in this work are chiefly designed for convex
optimization problems; they sacrifice exploration in favor of
exploitation, and it will be interesting to investigate how ap-
proaches like Algorithm 1 fare in non-convex settings due to
their higher tendency to “explore.”
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